Answer:
Released
Explanation:
they convert into a form of energy that can be used by cells
Which food dyes in the diagram on the right only contain one colour?
( Science, Chromatography )
No pain no gain . which figure of speech is this
Answer:
No pain, no gain is a proverb that means in order to make progress or to be successful, one must suffer. This suffering may be in a physical or mental sense. The phrase no pain, no gain was popularized in the 1980s by the American actress, Jane Fonda.
The average adult heart pumps about 84./mLs of blood at 72 beats per minute. Suppose you need to calculate how long it would take the average heart to circulate 1700.mL of blood. Set the math up.
Answer:
1700 mL / 84 mLs
Explanation:
Given that:
Volume of blood pumped per minute = 84 /mLs
Time it takes to circulate 1700 mL of blood :
Time taken = Volume of blood circulate / Rate
Hence, to circulate 1700 mL of blood :
Time taken = 1700 mL / 84 mLs
how many grams of na2co3 would be needed to produce 1000g of nahco3
Answer:
630.95 grams of Na₂CO₃ would be needed to produce 1000g of NaHCO₃
Explanation:
The balanced reaction is:
Na₂CO₃ + CO₂+ H₂O → 2 NaHCO₃
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
Na₂CO₃: 1 moles CO₂: 1 moleH₂O: 1 mole NaHCO₃: 2 molesBeing the molar mass:
Na₂CO₃: 106 g/moleCO₂: 44 g/moleH₂O: 18 g/moleNaHCO₃: 84 g/moleThen by stoichiometry the following quantities of mass participate in the reaction:
Na₂CO₃: 1 mole* 106 g/mole= 106 gCO₂: 1 mole* 44 g/mole= 44 gH₂O: 1 mole* 18 g/mole= 18 gNaHCO₃: 2 moles* 84 g/mole= 168 gYou can apply the following rule of three: if 106 grams of Na₂CO₃ are needed to produce 168 grams of NaHCO₃, how much mass of Na₂CO₃ is necessary to produce 1000 grams of NaHCO₃?
[tex]mass of Na_{2} CO_{3}=\frac{1000grams ofNaHCO_{3} *106gramsofNa_{2} CO_{3} }{168grams ofNaHCO_{3}}[/tex]
mass of Na₂CO₃= 630.95 grams
630.95 grams of Na₂CO₃ would be needed to produce 1000g of NaHCO₃
3
A student has a 5.00 gram sample of calcium chloride (CaCl2) solid. How many moles of calcium chloride are
contained in this sample?
Answer: 0.0450 moles of [tex]CaCl_2[/tex]
Explanation:
According to avogadro's law, 1 mole of every substance weighs equal to its molecular mass and contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.
To calculate the moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text {Molar mass}}[/tex]
[tex]\text{Number of moles of} CaCl_2=\frac{5.00g}{110.98g/mol}=0.0450moles[/tex]
Thus there are 0.0450 moles of [tex]CaCl_2[/tex]
50 POINTS
Which of the following correctly describes a compound?
A. The atoms are bonded together, and the compound has different physical and chemical properties than the individual elements.
B. The atoms have no set ratio for how the atoms can combine, and they are not chemically bonded together.
C. The atoms can only combine in fixed ratios, and they retain their individual chemical and physical properties.
D. The atoms retain their individual chemical properties, and they can only be separated from each other by a chemical change.
Answer: A chemical compound can be described as substance composed of atoms from more than one element held together by chemical bonds in a fixed stoichiometric proportion. A compound has different physical and chemical properties from its constituent elements.
For example : compound water is made up of H and O bonded together and it has different properties from O and H.
Thus, among the given options, the one coreectly describing a compound is
a) The atoms are bonded together, and the compound has different physical and chemical properties than the individual elements.
Given this balanced equation:
1 Cu + 1 H2SO4 -> 1 CuSO4 + 1 H2
If you have 22.45 moles of H2SO4 , how many mole of CuSO4 can you make?
Answer value
When drawing a Bohr model for Sulfur, how many energy levels will you
draw?
5
4
3
2.
Answer:
3
Explanation:
2,8,6
To a flask, 15.0 mL of 1.25 M hydrofluoric acid is added. Then, 3.05 M NaOH is used to titrate the acid sample. Write the balanced net ionic equation for the acid-base reaction.
HF(aq) + OH^- → H2O(I) + F^-
Answer:
H^+(aq) + OH^-(aq) --------> H2O(l)
Explanation:
We must first obtain the molecular equation, the net ionic equation before we obtain the net ionic equation.
The molecular reaction equation is;
HF(aq) + NaOH(aq) -------> H2O(l) + NaF(aq)
The complete ionic equation is;
H^+(aq) + F^-(aq) + Na^+(aq) + OH^-(aq) --------> H2O(l) + Na^+(aq) + F^-(aq)
The net ionic equation is;
H^+(aq) + OH^-(aq) --------> H2O(l)
Describe what an Ionic Substance is....
Answer:
Ionic Substance is....
Explanation:
In chemistry, an ionic compound is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding. The compound is neutral overall, but consists of positively charged ions called cations and negatively charged ions called anions.
The pain reliever morphine contains 17.900 g C, 1.680 g H, 4.225 g O, and 1.228 g N. Determine the empirical Formula.
Answer: The empirical formula is [tex]C_{17}H_{19}O_3N[/tex]
Explanation:
Mass of C= 17.900 g
Mass of H = 1.680 g
Mass of O = 4.225 g
Mass of N = 1.228 g
Step 1 : convert given masses into moles.
Moles of C =[tex]\frac{\text{ given mass of C}}{\text{ molar mass of C}}= \frac{17.990g}{12g/mole}=1.5moles[/tex]
Moles of H =[tex]\frac{\text{ given mass of H}}{\text{ molar mass of H}}= \frac{1.680g}{1g/mole}=1.680moles[/tex]
Moles of O =[tex]\frac{\text{ given mass of O}}{\text{ molar mass of O}}= \frac{4.225g}{16g/mole}=0.264moles[/tex]
Moles of N =[tex]\frac{\text{ given mass of N}}{\text{ molar mass of N}}= \frac{1.228g}{14g/mole}=0.087moles[/tex]
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = [tex]\frac{1.5}{0.087}=17[/tex]
For H = [tex]\frac{1.680}{0.087}=19[/tex]
For O =[tex]\frac{0.264}{0.087}=3[/tex]
For N = [tex]\frac{0.087}{0.087}=1[/tex]
The ratio of C : H: O: N = 17: 19: 3: 1
Hence the empirical formula is [tex]C_{17}H_{19}O_3N[/tex]