Answer:
H₂CO₃ H₂O ⇄ HCO₃⁻ + H₃O⁺ Ka1
HCO₃⁻ + H₂O ⇄ CO₃⁻² + H₃O⁺ Ka2
CO₃⁻² + H₂O ⇄ HCO₃⁻ + OH⁻ Kb1
HCO₃⁻ + H₂O ⇄ H₂CO₃ + OH⁻ Kb2
Explanation:
Formula for carbonic acid is: H₂CO₃
It is a dyprotic acid, because it can release two protons. We can also mention that is a weak one. The equilibrums are:
H₂CO₃ H₂O ⇄ HCO₃⁻ + H₃O⁺ Ka1
HCO₃⁻ + H₂O ⇄ CO₃⁻² + H₃O⁺ Ka2
When the conjugate strong bases, carbonate and bicarbonate take a proton from water, the reactions are:
CO₃⁻² + H₂O ⇄ HCO₃⁻ + OH⁻ Kb1
HCO₃⁻ + H₂O ⇄ H₂CO₃ + OH⁻ Kb2
Notice, that bicarbonate anion can release or take a proton to/from water. This is called amphoteric,
A solution of HCOOH has 0.16M HCOOH at equilibrium. The Ka for HCOOH is 1.8×10−4. What is the pH of this solution at equilibrium? Express the pH numerically.
Answer:
[tex]pH=2.28[/tex]
Explanation:
Hello,
In this case, for the acid dissociation of formic acid (HCOOH) we have:
[tex]HCOOH(aq)\rightarrow H^+(aq)+HCOO^-(aq)[/tex]
Whose equilibrium expression is:
[tex]Ka=\frac{[H^+][HCOO^-]}{[HCOOH]}[/tex]
That in terms of the reaction extent is:
[tex]1.8x10^{-4}=\frac{x*x}{0.16-x}[/tex]
Thus, solving for [tex]x[/tex] which is also equal to the concentration of hydrogen ions we obtain:
[tex]x=0.00528M[/tex]
[tex][H^+]=0.00528M[/tex]
Then, as the pH is computed as:
[tex]pH=-log([H^+])[/tex]
The pH turns out:
[tex]pH=-log(0.00528M)\\\\pH=2.28[/tex]
Regards.
What is the mass of 7.2 moles of titanium to the nearest tenth?
Answer:
7.2 moles of titanium weigh 344.7 grams.
Explanation:
Molar mass of titanium = 47.88 g
[tex]1 \: mole \: of \: titanium = 47.88 \: grams \\ 7.2 \: moles \: of \: titanium = g[/tex]
solve for g
[tex]g = ( \frac{7.2 \times 47.88}{1} ) \\ g = 344.7 \: grams[/tex]
Answer:
[tex]\boxed {\boxed {\sf 344.7 \ g \ Ti}}[/tex]
Explanation:
We are asked to find the mass of 7.2 moles of titanium.
To convert from moles to grams, we use the molar mass. This value is the mass of 1 mole of a substance. They are equivalent to the atomic masses found on the Periodic Table, but the units are grams per moles instead of atomic mass units.
Look up titanium's molar mass on the Periodic Table.
Ti: 47.87 g/molConvert moles to grams using dimensional analysis. First, set up a ratio using the molar mass.
[tex]\frac {47.87 \ g \ Ti}{1 \ mol \ Ti}[/tex]
We are converting 7.2 moles to grams, so we multiply the ratio by this value.
[tex]7.2 \ mol \ Ti *\frac {47.87 \ g \ Ti}{1 \ mol \ Ti}[/tex]
The units of moles of titanium cancel.
[tex]7.2 *\frac {47.87 \ g \ Ti}{1 }[/tex]
The denominator of 1 can be ignored (a number over 1 is just the number).
[tex]7.2 *47.87 \ g \ Ti}[/tex]
[tex]344.664 \ g \ Ti[/tex]
We are asked to round to the nearest tenth. The 6 in the hundredth place tells us to round the 6 in the tenth place up to a 7.
[tex]344.7 \ g \ Ti[/tex]
There are approximately 344.7 grams of titanium in 7.2 moles of titanium.
The entropy of a substance above absolute zero will always be:
a. Negative
b. Positive
c. Neither Negative nor positive
21. What are the two main ways of working with clay?
Answer:
Diferentes tipos de arcilla
ARCILLA DE LADRILLOS. Contiene muchas impurezas. ...
ARCILLA DE ALFARERO. Llamada también barro rojo y utilizada en alfarería y para modelar. ...
ARCILLA DE GRES. Es una arcilla con gran contenido de feldespato. ...
ARCILLAS “BALL CLAY” O DE BOLA. ...
CAOLIN. ...
ARCILLA REFRACTARIA. ...
BENTONITA.
Explanation:
Answer:
Coil method and the slab method.
Explanation:
Evaluate the exponential expression (−2)6.
A general exponential expression is something like:
A^n
This means that we need to multiply the number A by itself n times.
Using that we will get (-2)^6 = 64
With that definition, we can rewrite:
(-2)^6 = (-2)*(-2)*(-2)*(-2)*(-2)*(-2)
So we just need to solve the above expression.
Also, remember the rule of signs:
(-)*(-) = (+)
We will get:
(-2)*(-2)*(-2)*(-2)*(-2)*(-2) = [(-2)*(-2)]*[(-2)*(-2)]*[(-2)*(-2)]
= 4*4*4 = 16*4 = 64
Then we got:
(-2)^6 = 64
If you want to learn more, you can read:
https://brainly.com/question/17172630
Write the half-reactions as they occur at each electrode and the net cell reaction for this electrochemical cell containing indium and cadmium. In(s)|
Answer:
Oxidation half equation;
3Cd(s) -------> 3Cd^2+(aq) + 6e
Reduction half equation;
2In^3+(aq) + 6e -----> 2In(s)
Explanation:
Since the reduction potentials of Indium and Cadmium are -0.34 V and - 0.40 V respectively, we can see that cadmium will be oxidized while indium will the reduced.
We arrived at this conclusion by examining the reduction potential of both species. The specie with more negative reduction potential is oxidized in the process.
Oxidation half equation;
3Cd(s) -------> 3Cd^2+(aq) + 6e
Reduction half equation;
2In^3+(aq) + 6e -----> 2In(s)
What type of bond would form between two atoms of phosphorus? A. Single covalent bond B. Single ionic bond C. Triple covalent bond D. Double covalent bond
Answer:
A double bond is formed when two pairs of electrons are shared between the two participating atoms. It is represented by two dashes (=). It is represented by two dashes (=). Double covalent bonds are much stronger than a single bond, but they are less stable
Explanation:
How many grams of Al were reacted with excess HCl if 3.86 L of hydrogen gas were collected at STP in the following reaction?
2 Al (s) + 6 HCl (aq) → 2 AlCl₃ (aq) + 3 H₂ (g)
The amount, in grams, of Al that reacted with excess HCl if 3.86 L of hydrogen gas were collected at STP in the reaction would be 3.099 grams.
Stoichiometric problemFrom the equation of the reaction, the mole ratio of Al that reacts with that of hydrogen gas that forms is 2:3.
At STP, 1 mole of any gas is equivalent to 22.4 Liters of the gas.
But only 3.86 L of hydrogen was formed in the reaction.
The equivalent mole of 3.86 L hydrogen at STP would be:
3.86 x 1/22.4 = 0.1723 moles
From the mole ratio, the equivalent mole of Al that will produce 0.1723 moles of hydrogen gas would be:
0.1723 x 2/3 = 0.1149 moles
Recall that: mass = mole x molar mass
Mass of 0.1149 moles Al = 0.1149 x 26.98
= 3.099 grams
Thus, the amount of Al that reacted with excess HCl is 3.099 grams.
More on stoichiometric problems can be found here: https://brainly.com/question/28297916
#SPJ1
Given the following values of pKa, determine which is the weakest base of the answers listed. Acid pKa HClO2 1.95 HClO 7.54 HCOOH 3.74 HF 3.17 HNO2 3.15
Answer:
HClO 7.54
Explanation:
Hypochlorous acid (HClO) is a weakest acid because the pKa value of Hypochlorous acid is very high among the options given in the activity. pKa is a method which is used in order to identify the strength of an acid. The higher the value of pKa of a liquid, lower the strength of an acid while lower the value of pKa of chemical, higher the strength of an acid. In the options, HClO2 is a strong acid due to high lower pKa value.
You have to prepare a pH 3.65 buffer, and you have the following 0.10M solutions available: HCOOH, CH3COOH, H3PO4, HCOONa, CH3COONa, and NaH2PO4. How many mL of HCOOH and HCOONa would you use to make approximately a liter of the buffer?
Answer:
550mL of HCOOH 0.1M and 450mL of HCOONa 0.1M
Explanation:
It is possible to find the pH of a buffer by using H-H equation:
pH = pKa + log [A⁻]/[HA]
For the formic buffer (HCOOH/HCOONa):
pH = 3.74 + log [HCOONa]/[HCOOH]
As you need a buffer of pH 3.65:
pH = 3.74 + log [HCOONa]/[HCOOH]
3.65 = 3.74 + log [HCOONa]/[HCOOH]
0.81283 = [HCOONa]/[HCOOH] (1)Where [HCOONa]/[HCOOH] can be taken as the moles of each specie.
As molarity of both solutions is 0.10M (0.10mol / L) and you need 1L of solution, total moles of the buffer are:
0.10 moles = [HCOONa] + [HCOOH] (2)Replacing (2) in (1):
0.81283 = 0.10 - [HCOOH] /[HCOOH]
0.81283[HCOOH] = 0.10 - [HCOOH]
1.81283[HCOOH] = 0.10
[HCOOH] = 0.055 molesAnd moles of HCOONa are:
[HCOONa] = 0.1 mol - 0.055mol =
[HCOONa] = 0.045 molesAs concentration of the solutions is 0.1M, the volume you need to add of both solutions is:
HCOOH = 0.055 mol ₓ (1L / 0.1mol) = 0.55L = 550mL of HCOOH 0.1M
HCOONa = 0.045 mol ₓ (1L / 0.1mol) = 0.45L = 450mL of HCOONa 0.1M
The number should be considered like 550mL of HCOOH 0.1M and 450mL of HCOONa 0.1M.
Calculation of mL:Here we used the H-H equation:
pH = pKa + log [A⁻]/[HA]
Now
For the formic buffer (HCOOH/HCOONa):
So,
pH = 3.74 + log [HCOONa]/[HCOOH]
Now
need a buffer of pH 3.65:
So,
pH = 3.74 + log [HCOONa]/[HCOOH]
3.65 = 3.74 + log [HCOONa]/[HCOOH]
0.81283 = [HCOONa]/[HCOOH] (1)
here [HCOONa]/[HCOOH] can be considered as the moles of each specie.
Now the total moles should be
0.10 moles = [HCOONa] + [HCOOH] (2)
Now
0.81283 = 0.10 - [HCOOH] /[HCOOH]
0.81283[HCOOH] = 0.10 - [HCOOH]
1.81283[HCOOH] = 0.10
[HCOOH] = 0.055 moles
And moles of HCOONa should be
[HCOONa] = 0.1 mol - 0.055mol =
[HCOONa] = 0.045 moles
Now
HCOOH = 0.055 mol ₓ (1L / 0.1mol) = 0.55L = 550mL of HCOOH 0.1M
HCOONa = 0.045 mol ₓ (1L / 0.1mol) = 0.45L = 450mL of HCOONa 0.1M
Learn more about moles here: https://brainly.com/question/2154505
An ionic bond is a bond
Answer:
That involve the complete transfer of an electron from one atom of an element to another
A balloon is filled to a volume of 1.50 L with 3.00 moles of gas at 25 °C. With pressure and temperature held constant, what will be the volume (in L) of the balloon if 0.50 moles of gas are released?
Answer:
Volume : 1.25 L
Explanation:
We are given here that the volume ( V[tex]_1[/tex] ) = 1.50 Liters, the initial moles ( held at 25 °C ) = 3.00 mol, and the final moles ( n[tex]_2[/tex] ) = 3.00 - 0.5 = 2.5 mol. The final mol is calculated given that 0.50 mol of gas are released from the prior 3.00 moles of gas.
Volume ( V[tex]_1[/tex] ) = 1.50 L,
Initial moles ( n[tex]_1[/tex] ) = 3.00 mol,
Final Volume ( n[tex]_2[/tex] ) = 3.00 - 0.5 = 2.5 mol
Applying the combined gas law, we can calculate the final volume ( V[tex]_2[/tex] ).
P[tex]_1[/tex]V[tex]_1[/tex] / n[tex]_1[/tex]T[tex]_1[/tex] = P[tex]_2[/tex]V[tex]_2[/tex] / n[tex]_2[/tex]T[tex]_2[/tex] - we know that the pressure and temperature are constant, and therefore we can apply the following formula,
V[tex]_1[/tex] / n[tex]_1[/tex] = V[tex]_2[/tex] / n[tex]_2[/tex] - isolate V[tex]_2[/tex],
V[tex]_2[/tex] = V[tex]_1[/tex] n[tex]_2[/tex] / n[tex]_1[/tex] = 1.50 L [tex]*[/tex] 2.5 mol / 3.00 mol = ( 1.5 [tex]*[/tex] 2.5 / 3 ) L = 1.25 L
The volume of the balloon will be 1.25 L.
Given the reactants of the chemical reaction that will take place in Part D (construction of a lead concentration cell) prior to the assembly of the cell, determine the type of chemical reaction it is. Hint: Determine the products of the reaction.
Answer:
hi
Explanation:
Draw the major condensation product obtained by treatment of ethyl 3-methylbutanoate with sodium ethoxide in ethanol.
Answer:
ethyl 3-ethoxy-3-hydroxy-2-isopropyl-5-methyl hexanoate
Explanation:
In this case, we have a very strong base (sodium ethoxide). Therefore, this compound will remove a hydrogen from ethyl 3-methyl butanoate generating a carbanion.
This carbanion, can attack another ethyl 3-methyl butanoate molecule on the carbonyl group generating a new C-C bond and producing a negative charge in the oxygen.
Then the ethanol can protonate the molecule generating an "OH" group and the ethoxide.
See figure 1
I hope it helps!
A chemist fills a reaction vessel with 0.978 g aluminum hydroxide AlOH3 solid, 0.607 M aluminum Al+3 aqueous solution, and 0.396 M hydroxide OH− aqueous solution at a temperature of 25.0°C.
Under these conditions, calculate the reaction free energy ΔG for the following chemical reaction:
Al(OH)3(s) = A1+ (aq) +30H (aq)
Use the thermodynamic information in the ALEKS Data tab. Round your answer to the nearest kilojoule.
KJ
Answer: [tex]\Delta G^{0}[/tex] = 168.12 kJ
Explanation: Gibbs Free Energy, at any time, is defined as the enthalpy of the system minus product of temperature and entropy of the reaction, i.e.:
[tex]\Delta G^{0} = \Delta H^{0} - T.\Delta S^{0}[/tex]
Enthalpy is defined as internal heat existent in the system. It is calculated as:
[tex]\Delta H^{0} = \Sigma H^{0}_{product} - \Sigma H^{0}_{reagent}[/tex]
Using Enthalpy Formation Table:
[tex]\Delta H^{0} = [3*(-299.9)+(-524.7)] - (-1277)[/tex]
[tex]\Delta H^{0} = 62,6 kJ[/tex]
Entropy is the degree of disorder in the system. It is found by:
[tex]\Delta S^{0} = \Sigma S^{0}_{products} - \Sigma S^{0}_{reagents}[/tex]
Calculating:
[tex]\Delta S^{0} = (-321.7) + 3(-10.8) - 0[/tex]
[tex]\Delta S^{0} = -354.1J[/tex]
And so, Gibbs Free energy will be:
[tex]\Delta G^{0} = \Delta H^{0} - T.\Delta S^{0}[/tex]
[tex]\Delta G^{0} = 62600 - [298.(-354.1)][/tex]
[tex]\Delta G^{0} = 168121.8 J[/tex]
Rounding to the nearest kJ:
[tex]\Delta G^{0}[/tex] = 168.12 kJ
Which of the terms heat of vaporization and heat of fusion refers to condensation and which refers to melting?
Answer:
Heat of vaporization refers to condensation and heat of fusion refers to melting.
Explanation:
Heat of vaporization or heat of evaporation, is defined as the energy required to convert liquid substance into a gas which creates condensation. As a gas condenses to a liquid, heat is released.
Heat of fusion refers to melting because heat of fusion is defined as the energy required to change any amount of substance when it melts.
Hence, the correct answer is "Heat of vaporization refers to condensation and heat of fusion refers to melting.".
Explain why, when the guanidino group of arginine is protonated, the double-bonded nitrogen is the nitrogen that accepts the proton. There is a scheme of a reversible reaction, where one equivalent of the reactant reacts with two equivalents of H plus. The reactant is H2NCNHCH2CH2CH2CHCO minus, with an NH group, with a lone pair at the N atom, double-bonded to the first (from left to right) carbon, an NH2 group attached to the fifth carbon, an O atom double-bonded to the sixth carbon and a lone pair of electrons at the first and the second N atoms of the chain. The product has the same structure as the reactant, except that not an NH group with a lone pair, but an NH2 plus group is double-bonded to the first carbon. In addition, an NH3 plus group is attached to the fifth carbon instead of the NH2 group.
Answer:
Due to the resonance structures
Explanation:
In the question:
"Explain why, when the guanidino group of arginine is protonated, the double-bonded nitrogen is the nitrogen that accepts the proton. There is a scheme of a reversible reaction, where one equivalent of the reactant reacts with two equivalents of H plus"
We have to take into account the structure of the amino acid arginine. In which, we have the amino and the carboxylic groups in the right and the guanidine group in the left.
In this group, we have a central carbon with three nitrogen atoms around and a double bond with the nitrogen on the top. This nitrogen on the top will accept the proton because the structure produced will have a positive charge on this nitrogen. Then, the double bond with the carbon can be delocalized into the nitrogen producing a positive charge in the carbon.
In this structure (the carbocation), we can have several resonance structures. In the blue option, we can produce a double bond with the nitrogen on the right. In the purple option, we can produce a double bond with the nitrogen on the left.
In conclusion, if the nitrogen in the top on the guanidine group accepts an hydrogen atom and we will have several resonance structures that can stabilize the molecule. Due to this, the nitrogen in the top its the best option to accept hydrogens.
See figure 1
I hope it helps!
Different vinegars can be 5-20% acetic acid solutions and have been used for medicinal purposes for thousands of years. If a person takes 2.0 tablespoons of vinegar a day and the Molarity of the vinegar is .84 M, then how many grams of acetic acid (HC2H3O2) will be consumed? 1 Tablespoon is 15 mL.
.013 g
.026 g
.76 g
1.5 g
Answer:
1.5g
Explanation:
Remember that Molarity = (#moles of solute)/(#liters of solution)
This problem informs us that the Molarity of the vinegar is 0.84 and that the solution is 15mL.
First let's get your SI units to the correct ones.
15mL (1L/1000mL) = 0.015L
Molarity = (#moles of solute)/(#liters of solution) ~
(Molarity)(#liters of solution) = #moles of solute
(0.84M)(.015L) = 0.0126moles of acetic acid per tablespoon
2 tablespoons a day = 0.0126moles*2 = 0.0252 moles of acetic acid.
Now that we have the # of moles of acetic acid we need to get our answer into grams. The molecular weight of HC2H3O2 is 60g/mole.
0.0252mole HC2H3O2 (60g HC2H3O2/1mole HC2H3O2) = 1.512g ~ 1.5g HC2H3O2.
The following two compounds each exhibit two heteroatoms (one nitrogen atom and one oxygen atom). In compound A, the lone pair on the nitrogen atom is more likely to function as a base. However, in compound B, the lone pair on the oxygen atom is more likely to function as a base. Explain this difference by selecting the correct reason(s)
Answer:
The answer is the photo attached
Explanation:
28.What is the correct IUPAC name for the following compound?A)12-crown-5B)12-crown-4C)4-crown-12D)12-crown-12E)Cyclododecane tetraether
Answer:
12-crown-4
Explanation:
We must recall that any structural moiety in organic chemistry having the R-O-R unit is an ether. If the oxygen form a ring in which they are sandwiched in between carbon atoms, the compound is known as a crown ether. The name emanates from the close resemblance of the compound to an actual crown.
If we want to name the crown ether, we first count the number of carbon atoms present and the number of oxygen atoms present. The correct name is now, total number of carbon + oxygen atoms -crown- number of oxygen atoms, in this case; 12-crown-4, hence the answer.
Answer:
12-crown-4
Explanation:
g Which ONE of the following pairs of organic compounds are NOT pairs of isomers? A) butanol ( CH3-CH2-CH2-CH2-OH ) and diethyl ether ( CH3–CH2–O–CH2–CH3 ) B) isopentane ( (CH3)2-CH-CH2-CH3 ) and neopentane ( (CH3)4C ) C) ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 ) D) acrylic acid ( CH2=CH-COOH ) and propanedial ( OHC–CH2–CHO ) E) trimethylamine ( (CH3)3N ) and propylamine ( CH3-CH2-CH2-NH2 )
Answer:
ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 )
Explanation:
Isomers are compounds that have the same molecular formula but different structural formulas. Hence any pair of compounds that can be represented by exactly the same molecular formula are isomers of each other.
If we look at the pair of compounds; ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 ), one compound has molecular formula, C2H7ON while the other has a molecular formula, C2H5ON, hence they are not isomers of each other.
Select the true statement concerning voltaic and electrolytic cells. Select one: a. Voltaic cells involve oxidation-reduction reactions while electrolytic cells involve decomposition reactions. b. Voltaic cells require applied electrical current while electrolytic cells do not. . c. all electrochemical cells, voltaic and electrolytic, must have spontaneous reactions. d. Electrical current drives nonspontaneous reactions in electrolytic cells.
Answer:
Electrical current drives nonspontaneous reactions in electrolytic cells.
Explanation:
Electrochemical cells are cells that produce electrical energy from chemical energy.
There are two types of electrochemical cells; voltaic cells and electrolytic cells.
A voltaic cell is an electrochemical cell in which electrical energy is produced from spontaneous chemical process while an electrolytic cell is an electrochemical cell where electrical energy is produced from nonspontaneous chemical processes. Current is needed to drive these nonspontaneous chemical processes in an electrolytic cell.
Answer:
electrolytic cells generate electricity through a non-spontaneous reaction while voltaic cells absorb electricity to drive a spontaneous reaction.
Explanation:
Answer via Educere/ Founder's Education
In the following reaction, what element is gaining mass?
Mg(s) + CuSO4(aq) -> MgSO4(aq) + Cu(s)
A. Mg
B. None of these
C. Cu
D. O
Mg gained mass because it went from being a single element (on the reactant side) to being a molecule (on the product side).
Mg element is gaining mass. Hence, option A is correct.
What is a chemical equation?A chemical reaction is a representation of symbols of the elements to indicate the number of substances and moles of reactant and product.
Mg gained mass because it went from being a single element (on the reactant side) to being a molecule (on the product side).
Hence, option A is correct.
Learn more about chemical equations here:
https://brainly.com/question/12363199
#SPJ5
Bomb calorimetry is a poor choice to determine the number of nutritional Calories in food; it consistently overestimates the Caloric content because options: A) dietary fiber isn't used by the body. B) carbohydrates don't burn to completion. C) proteins don't burn. D) water has Calories and isn't burnable.
Answer:
A) dietary fiber isn't used by the body.
Explanation:
The food we eat contains certain nutritional contents that provides energy, measured in calories (CAL) to the body. A procedure called BOMB CALORIMETRY can be used to determine the energy contents of these foods. The energy-supplying macromolecules contained in food substances we eat are carbohydrate, protein, fats etc.
Bomb calorimetry uses the method of burning the food substance in a device called bomb calorimeter, and measure the caloric content of the burnt food. Bomb calorimetry measures all the present calories in a food substance, which can include dietary fibers. Due to this reason, it is considered a poor choice in determining the number of nutritional calories in a food substance.
Dietary fibers are indigestible carbohydrates that cannot be broken down and used by the body. They pass along the alimentary canal until they are egested. Hence, they are no source of nutrients to the body. Since bomb calorimetry measures all calories including dietary fibers, it is said to overestimate the caloric content of food substances.
s-Block compounds give a characteristic flame colour in the flame test. Based on this, can you give one use of s-block compounds?
Answer:
Lithium is used in making electrochemical cells.
How is the mass percent of elements in a compound different for a 1.0-g sample versus a 100.-g sample versus a 1-mole sample of the compound?
Answer:
since mass percent is based on the proportions of elements in a compound, the mass of a sample does not matter
The mass percent or percentage by mass of a chemical compound is a constant.
What is mass percent?Mass percent can be defined as percentage by mass and it is the concentration of a given amount (quantity) of element in a chemical compound or a component of a mixture.
The mass percent or percentage by mass of a chemical compound is a constant, regardless of the amount of substance that is present. Thus, all chemical compound always have a constant composition because mass percent is typically based on the proportions of the elements contained in a chemical compound.
Read more on mass here: brainly.com/question/3173452
Rank the following amine derivatives from highest acidity (lowest pKa value) to lowest acidity (highest pKa value).
Highest acidity
anilinium ion
aniline
ammonium ion
secondary amine
amide
Lowest acidity
Answer:
anilinium ion > ammonium ion > amide > aniline > secondary amine
Explanation:
Acidity of amine derivatives can derived from their pKa values.
The rule of thumb for acidity with relation to pKa values is that:
As the pKa decreases the acid strength increases and the conjugate base decreases. Similarly, as the pKa increases, the acid strength decreases and the conjugate base increase.
Hence the stronger the acid , the lower pKa value and the weaker the acid , the stronger the pKa value.
So the pKa value for anilinium ion = 4.6
ammonium ion = 9.4
Amide = 15
Similarly, for aniline and secondary amine, in order to determine the derivative with the higher acidity, we will consider the electron withdrawing substituent group.
The more difficult the electron are being withdraw from the electron withdrawing substituent , the more acidic the compound.
In aniline , the stabilized benzene ring attached to NH₂ makes it a less electron withdrawing group compared to the straight chains structure found in secondary amine where electron are easily withdraw by nucleophilic substitution reactions.
Thus, from highest acidity (lowest pKa value) to lowest acidity (highest pKa value).
the amine derivatives ranking is as follows:
anilinium ion > ammonium ion > amide > aniline > secondary amine
Chemistry
What is a chemical reaction
Answer:
A process that involves rearrangement
Explanation:
A chemical reaction is the process that involves rearrangement of the molecular or ironic structure of a substance, as a distinct from a change in physical form or a nuclear reaction.
Answer:
Explanation:
Chemistry
The chemical reaction H2(g) + ½ O2(g) → H2O(l) describes the formation of water from its elements.
The reaction between iron and sulfur to form iron(II) sulfide is another chemical reaction, represented by the chemical equation:
8 Fe + S8 → 8 FeS
2. The reaction of a triglyceride with methanol in the presence of a strong base to form
methyl esters and glycerol is called
O A. transesterification.
O B. saponification.
O C. ester formation.
O D. dehydration condensation.
Answer:
The answer it's A. transesterification
Assume that you are provided with the following materials:
• Strips of metallic zinc, metallic copper, metallic iron
• 1M aqueous solutions of ZnSO4, CuSO4, FeSO4, and aqueous iodine(I2)
• Other required materials to create Voltaic cells such as beakers, porous containers, graphite rods, a voltmeter, and a few wires with alligator clips.
In this modified version of the lab, after thoroughly studying the lab hand out and watching the videos,identify 4 different combinations of Voltaic cells that are possible to be created with the above materials.For each cell created, include the following details.
A) Which electrode was the anode,and which was the Cathode?
B) The anode and cathode half reactions.
C) Balanced equation for each cell you propose to construct.
D) Calculated Eocelle Short hand notation (line notation) for each cell (be sure to include the inactive electrode if needed).
Answer:
See explanation
Explanation:
First voltaic cell;
Zn(s)|Zn^2+(aq)||Cu^2+(aq)|Cu(s)
Anode;
Zinc
Cathode;
Copper
Oxidation half equation;
Zn(s)------> Zn^2+(aq) + 2e
Reduction half equation;
Cu^2+(aq) +2e -----> Cu(s)
Overall; Zn(s) + Cu^2+(aq) -----> Zn^2+(aq) + Cu(s)
E°cell = 0.34 -(-0.76) =1.1 V
Second voltaic cell;
Zn(s)|Zn^2+(aq)||Fe^2+(aq)|Fe(s)
Anode;
Zinc
Cathode;
Iron
Oxidation half equation;
Zn(s)------> Zn^2+(aq) + 2e
Reduction half equation;
Fe^2+(aq) +2e -----> Fe(s)
Overall; Zn(s) + Fe^2+(aq) -----> Zn^2+(aq) + Fe(s)
E°cell = (-0.44) -(-0.76) = 0.32 V
Third voltaic cell;
Fe(s)|Fe^2+(aq)||Cu^2+(aq)|Cu(s)
Anode;
Iron
Cathode;
Copper
Oxidation half equation;
Fe(s)------> Fe^2+(aq) + 2e
Reduction half equation;
Cu^2+(aq) +2e -----> Cu(s)
Overall; Fe(s) + Cu^2+(aq) -----> Fe^2+(aq) + Cu(s)
E°cell = 0.34 -(-0.44) = 0.78 V
Fourth voltaic cell
Cu(s)|Cu^2+(aq)||I2(aq)|C(s)|I^-(aq)
Anode;
Copper
Cathode;
Graphite rod
Oxidation half equation;
Cu(s)------> Cu^2+(aq) + 2e
Reduction half equation;
I2(aq) +2e -----> 2I^-(aq)
Overall; Cu(s) + I2(aq) -----> Cu^2+(aq) + 2I^-(aq)
E°cell = 0.54 -0.34 = 0.20 V