Answer:
Area of ΔEDF = 2.7 in²
Step-by-step explanation:
It's given in the question,
ΔBAC ~ ΔEDF
In these similar triangles,
Scale factor of the sides = [tex]\frac{\text{Measure of one side of triangle BAC}}{\text{Measure of one side of triangle EDF}}[/tex]
[tex]=\frac{\text{BC}}{\text{EF}}[/tex]
[tex]=\frac{3}{2}[/tex]
Area scale factor = (Scale factor of the sides)²
[tex]\frac{\text{Area of triangle BAC}}{\text{Area of triangle EDF}}=(\frac{3}{2})^2[/tex]
[tex]\frac{6}{\text{Area of triangle EDF}}=(\frac{9}{4})[/tex]
Area of ΔEDF = [tex]\frac{6\times 4}{9}[/tex]
= 2.67
≈ 2.7 in²
Therefore, area of the ΔEDF is 2.7 in²
The angle between a chord and a targent is equal to the angle in the alternate segment
that's the diagram above
if <BAD =19°
find <ACB
Answer:
19
Step-by-step explanation:
The angle between a chord and a targent is equal to the angle in the alternate segment
if <BAD =19°
<ACB=19
the volume of a cube is 3375 cubic inches. what is the measure of each side of the cube
Answer:
The measure of each side of the cube is
15 inchesStep-by-step explanation:
Since it's a cube all it's sides are equal
To find the length of each side we use the formula
Volume of a cube = l³
where l is the measure of one side
From the question
Volume = 3375 cubic inches
Substitute this value into the formula and solve for l
That's
[tex] {l}^{3} = 3375[/tex]Find the cube root of both sides
That's
[tex] \sqrt[3]{ {l}^{3} } = \sqrt[3]{3375} [/tex]We have the final answer as
l = 15 inchesHope this helps you
For each ordered pair, determine whether it is a solution to y=-9.
Is it a solution?
Yes or No
(1, -9)
(7,3)
(-9,4)
(0, -9)
Answer:
(1, -9) yes
(7,3) no
(-9,4) no
(0, -9) yes
Step-by-step explanation:
The y value must be -9
The x value can be any value to satisfy the equation y = -9
Which expression is equivalent to 5y^3/(5y)^-2
Answer:
5^3 y^5
125 y^5
Step-by-step explanation:
5y^3/(5y)^-2
Distribute the exponent in the denominator
5y^3/(5 ^-2 y^-2)
A negative exponent in the denominator brings it to the numerator
5y^3 5 ^2 y^2
Combine like terms
5 * 5^2 * y^3 5^2
We know that a^b * a^c = a^(b+c)
5^(1+2) * y^( 3+2)
5^3 y^5
125 y^5
If the coefficient of correlation is 0.8, the percentage of variation in the dependent variable explained by the variation in the independent variable is
Answer:
The percentage of variation in the dependent variable explained by the variation in the independent variable is 80 %.
Step-by-step explanation:
A coefficient of correlation of 0.8 means that dependent variable changes in 0.8 when independent variable changes in a unit. Hence, the percentage of such variation ([tex]\%R[/tex]) is:
[tex]\%R = \frac{\Delta y}{\Delta x}\times 100\,\%[/tex]
Where:
[tex]\Delta x[/tex] - Change in independent variable, dimensionless.
[tex]\Delta y[/tex] - Change in dependent variable, dimensionless.
If [tex]\Delta x = 1.0[/tex] and [tex]\Delta y = 0.8[/tex], then:
[tex]\%R = 80\,\%[/tex]
The percentage of variation in the dependent variable explained by the variation in the independent variable is 80 %.
The weights of a sample of college textbooks has a bell-shaped distribution with a mean of 8.1 p o u n d s ( l b s ) and a standard deviation of 2.1 l b s . According to the Empirical Rule, what percent of all college textbooks will weigh between 1.8 and 14.4 l b s ?
Answer:
The interval ( 1,8 ; 14,4 ) will contains 99,7 % of all values
Step-by-step explanation:
For Normal Distribution N ( μ ; σ ) the Empirical Rule establishes that in the intervals:
( μ ± σ ) we find 68,3 % of all values
( μ ± 2σ ) we find 95,4 % of all values
( μ ± 3σ ) we find 99,7 % of all values
Then we have a normal distribution N ( 8,1 ; 2,1 )
3*σ = 3* 2,1 = 6,3
And 8,1 - 6,3 = 1,8 8,1 + 6,3 = 14,4
Then the interval ( 1,8 ; 14,4 ) will contains 99,7 % of all values
Simplify i^38 ????????
Answer:
i is defined as the square root of -1.
i^2 = -1
i^3 = -i
i^4 = 1
Following the pattern, we see that i^40 = 1, so i^38 is two above, or equal to -1.
So, i^38 = -1.
Let me know if this helps!
∠ACB is a circumscribed angle. Solve for x. 1) 46 2) 42 3) 48 4) 44
Answer:
[tex]\Huge \boxed{x=44}[/tex]
Step-by-step explanation:
The circumscribed angle and the central angle are supplementary.
∠ACB and ∠AOB add up to 180 degrees.
Create an equation to solve for x.
[tex]3x+10+38=180[/tex]
Add the numbers on the left side of the equation.
[tex]3x+48=180[/tex]
Subtract 48 from both sides of the equation.
[tex]3x=132[/tex]
Divide both sides of the equation by 3.
[tex]x=44[/tex]
Answer:
4)44
Step-by-step explanation:
A region is bounded by x=y^2 and x=4 and y=0 and revolved about the line x=5. Find the volume using shell method.
If you draw the bounded region in the x,y-plane, you'll find it to be somewhat ambiguous, but since y = 0 cuts the area between the parabola x = y ² and x = 4 perfectly in half, you can use either the top or bottom half. I'll use the top one, i.e. assume y ≥ 0.
For every x taken from the interval [0, 4], we can get a shell with height √x. The distance from x to the axis of revolution, x = 5, is 5 - x, which corresponds to the radius of the shell. The area of this shell is
2π (radius) (height) = 2π (5 - x) √x
Then the volume of the solid is the sum of infinitely many such shells made at every 0 ≤ x ≤ 4, given by the integral
[tex]\displaystyle 2\pi \int_0^4 (5-x)\sqrt x\,\mathrm dx = 2\pi \int_0^4 \left(5x^{1/2}-x^{3/2}\right)\,\mathrm dx \\\\ = 2\pi \left(\frac{10}3x^{3/2}-\frac25x^{5/2}\right)\bigg|_0^4 \\\\ = \boxed{\frac{416\pi}{15}}[/tex]
Determine that 4/16 and 5/20 forms as proportional relationship.
Answer:
Those two are 0.25
4/16 = 1/4
5/20 = 1/4
Answer: Please Give Me Brainliest, Thank You!
4/16 = 5/20 = 1/4
Step-by-step explanation:
Because If you divide 4 and 16 by 4 you get 1/4 and if you divide 5 and 20 with 5 you get 1/4
Which of these numbers are greater than 24? Check all that apply.
O A. 12
B. 15
O C. 42
D. 41
E. 13
D F. 18
Answer:
A, B, E, F
Step-by-step explanation:
24>12, 24>15, 24>13, 24>18, 24<42, 24<41
A committee of 3 is to be chosen from 4 girls and 7 boys.Find the expected number of girls in a committe, if numbers are chosen at random
Answer: There is only 1 girl.
Step-by-step explanation:
As you can see the probability of choosing a girl is 4/11 out of the whole people which is 7 boys and 4 girls. And the same way the probability of choosing a boy is 7/11 which is almost doubled the amount of girls. So to think about it, there will be more boys than girls if there is a random selection because the boys chances of getting picked is high.
Your job in a company is to fill quart-size bottles of oil from a full 100-gallon oil tank. Then you are to pack 12 quarts of oil in a
case to ship to a store. How many full cases of oil can you get from a full 100-gallon tank of oil?
8 cases of oil
33 cases of oil
25 cases of oil
34 cases of oil
Answer:
33 cases of oil
Step-by-step explanation:
You start with 100 gallons of oil.
1 gallon = 4 quarts
100 gallons = 100 * 4 quarts
100 gallons = 400 quarts
You start with 400 quarts.
You place 12 quarts in each box.
400/12 = 33 1/3
You can pack 33 full cases plus 1/3 of another case.
The question only askes about full cases.
Answer: 33 cases of oil
The number of cases of oil will be 8 cases of oil. Then the correct option is A.
What is Algebra?Algebra is the study of abstract symbols, while logic is the manipulation of all those ideas.
The definition of simplicity is making something simpler to achieve or grasp while also making it a little less difficult.
It is your responsibility to fill quart-size oil bottles from a 100-gallon oil tank at work. The next step is to prepare a case to transport 12 quarts of oil to a retailer.
The number of cases of oil that you can get from a full 100-gallon tank of oil will be given as,
⇒ 100 / 12
⇒ 8.33
⇒ 8 cases of oil
Thus, the correct option is A.
More about the Algebra link is given below.
https://brainly.com/question/953809
#SPJ2
Please help!! 25 points!!
9514 1404 393
Answer:
(a) a^4/(4b^2)
Step-by-step explanation:
The applicable rules of exponents are ...
(a^b)/(a^c) = a^(b-c)
a^-b = 1/a^b
__
Your expression simplifies as follows.
[tex]\dfrac{3a^2b^{-4}}{12a^{-2}b^{-2}}=\dfrac{3}{12}\cdot\dfrac{a^{2-(-2)}}{b^{-2-(-4)}}=\boxed{\dfrac{a^4}{4b^2}}[/tex]
In a local university, 10% of the students live in the dormitories. A random sample of 100 students is selected for a particular study. Carry answer to the nearest ten-thousandths. (Bonus Question)
a. What is the probability that the sample proportion (the proportion living in the dormitories) is between 0.172 and 0.178?
b. What is the probability that the sample proportion (the proportion living in the dormitories) is greater than 0.025?
Answer:
a
[tex]P( 0.172 < X < 0.178 ) = 0.00354[/tex]
b
[tex]P( X >0.025 ) = 0.99379[/tex]
Step-by-step explanation:
From the question we are told that
The population proportion is [tex]p = 0.10[/tex]
The sample size is [tex]n = 100[/tex]
Generally the standard error is mathematically represented as
[tex]SE = \sqrt{\frac{ p (1 - p )}{n} }[/tex]
=> [tex]SE = \sqrt{\frac{ 0.10 (1 - 0.10 )}{100} }[/tex]
=> [tex]SE =0.03[/tex]
The sample proportion (the proportion living in the dormitories) is between 0.172 and 0.178
[tex]P( 0.172 < X < 0.178 ) = P (\frac{ 0.172 - 0.10}{0.03} < \frac{ X - 0.10}{SE} < \frac{ 0.178 - 0.10}{0.03} )[/tex]
Generally [tex]\frac{ X - 0.10}{SE} = Z (The \ standardized \ value \ of X )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P (\frac{ 0.172 - 0.10}{0.03} <Z < \frac{ 0.178 - 0.10}{0.03} )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P (2.4 <Z < 2.6 )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P(Z < 2.6 ) - P (Z < 2.4 )[/tex]
From the z-table
[tex]P(Z < 2.6 ) = 0.99534[/tex]
[tex]P(Z < 2.4 ) = 0.9918[/tex]
[tex]P( 0.172 < X < 0.178 ) =0.99534 - 0.9918[/tex]
[tex]P( 0.172 < X < 0.178 ) = 0.00354[/tex]
the probability that the sample proportion (the proportion living in the dormitories) is greater than 0.025 is mathematically evaluated as
[tex]P( X >0.025 ) = P (\frac{ X - 0.10}{SE} > \frac{ 0.0025- 0.10}{0.03} )[/tex]
[tex]P( X >0.025 ) = P (Z > -2.5 )[/tex]
From the z-table
[tex]P (Z > -2.5 ) = 0.99379[/tex]
Thus
[tex]P( X >0.025 ) = P (Z > -2.5 ) = 0.99379[/tex]
A gas station sells regular gas for $2.30 per gallon and premium gas for $3.00 a gallon. At the end of a business day 320 gallons of gas had been sold, and receipts totaled $799. How many gallons of each type of gas had been sold
Answer:
90 gallons premium gas
230 gallons regular gas
Step-by-step explanation:
We can use the given information to form a system of equations.
First, let's set the variables:
Regular gas: r
Premium gas: p
Throughout the entire day, they sold 320 gallons of r and p combined.
r+p=320
Now, regular gas sells for 2.30 per gallon, which can be written as 2.30r
premium can be shown similarly as 3.00p. After all the gallons they sold, they got 799 in total.
2.30r + 3.00p = 799
As a system of equations, it can be written like this...
r+p=320
2.30r + 3.00p = 799
Now solve. (I won't explain much of the steps here but I'll show it. Comment questions if you have any, and I'll try to answer them.)
r=320-p
2.30r + 3.00p = 799
2.30(320-p)+3.00p=799
736+0.7p=799
0.7p=63
p=90 gallons of premium gas
Now we can solve for regular by just plugging in 90 gallons premium into the top equation.
r+p=320
r+90=320
r=230 gallons of regular gas
check work.
230(2.30)+90.0(3.00)=799
529+270=799
799=799
Find the value of x.
Answer:
6x + 6 = 32
6x = 32 - 6
6x = 26
divide both sides by 6
6x/6 = 26/6
6x + 6 = 4.35
9x - 9 = 24
9x = 24 + 9
9x = 33
divide both sides by 9
9x/9 = 24/9
9x + 9 = 2.66
9x + 9 = 2.66
Answer: x=3
Step-by-step explanation:
[tex]\frac{32}{24} =\frac{4}{3} \\\\\frac{4}{3}=\frac{6x+6}{9x-9}\\ x=3[/tex]
Which is the graph of g(x) = (0.5)x + 3 – 4?
Answer:
Graph (A)
Step-by-step explanation:
Given question is incomplete; find the question in the attachment.
Given function is g(x) = [tex](0.5)^{x+3}-4[/tex]
Parent function of the given function is,
f(x) = [tex](0.5)^{x}[/tex]
When the function 'f' is shifted by 3 units left over the x-axis, translated function will be,
h(x) = f(x+3) = [tex](0.5)^{x+3}[/tex]
When h(x) is shifted 4 units down, translated function will be,
g(x) = h(x) - 4
g(x) = [tex](0.5)^{x+3}-4[/tex]
g(x) has a y-intercept as (-4).
From the given graphs, Graph A shows the y-intercept as (-4).
Therefore, Graph A will be the answer.
Answer:
The Answer A is correct
Step-by-step explanation:
I took the edg2020 test
You pay $16 to buy four pizzas, How much did each pizza cost?
Answer:
16 dollars = 4 pizzas
4 dollars = 1 pizza
Each pizza costs 4 dollars.
Let me know if this helps!
Answer: $4
Step-by-step explanation:
16 divided by 4, equals 4.
PLEASE HELP !! (2/5) -50 POINTS-
Answer:
3 -1 -2
5 1 6
Step-by-step explanation:
An augmented system has the coefficients for the variables and then the solution going across
Rewriting the equations to get them in the form
ax + by = c
-3x+y =2
3x-y =-2
5x+y = 6
The matrix is
3 -1 -2
5 1 6
in the diagram, find the values of a and b.
Answer:
m∠a = 67° , m∠b = 42°Step-by-step explanation:
∠a is alternate interior angle to ∠ECD
∠b is alternate interior angle to ∠BCD
so:
If AB || CD then:
m∠a = m∠ECD = 25° + 42° = 67°
m∠b = 42°
What was the average speed if I drove 60 miles per hour to get to my grandmas house and 30 miles per hour to get home. Represent this in two different ways and explain your reasoning.
Answer:
40 mph.
Step-by-step explanation:
Suppose grandma's house is 30 miles away (any distance would do but 30 is convenient).
Speed = distance / time
time = distance / speed
Time to get there = 30/60 = 1/2 hour.
Time to get back = 30/30 = 1 hour
Average speed = total distance/ total time
= (30 + 30) / ( 1 + 1/2)
= 60 / 1.5
= 40 miles per hour.
You cannot take the average of the speeds directly
(60+ 30)/2 = 45 is not correct as you cannot average ratios ( speed is a ratio).
someone please help me
Answer:
3 mL
Step-by-step explanation:
The fluid level is called the concave meniscus. The adhesive force causes it to crawl up on the sides, but you should ignore that while reading the level.
3y – 6x = 3 y = 2x + 1
Answer:
infinite solutions along the line y = 2x+1
Step-by-step explanation:
3y – 6x = 3
y = 2x + 1
Replace y in the first equation with the second equation
3 ( 2x+1) -6x =3
6x +3 -6x = 3
3=3
This is always true so there are infinite solutions along the line y = 2x+1
Step-by-step explanation:
Hi, there!!!
you mean to solve it, right.
then let's begin...
3y-6x=3..........epuation 1.
y = 2x+1..........equation 2.
now, substituting the value y of equation 2 in equation 1. so, we get,
3y-6x=3
or, 3(2x+1) -6x = 3
or, 6x+3-6x=3
by simplifying it we get, 3=3
so, this equation can have infinite solution.
you may have wrote wrong question ..
complete explanation please
The numbers 1,2,3,4,5,6,7,8,9. How would you put them in each of a square block to create the sum on each line to make the number 15. The sum of each diagonals should also be 15.
Answer:
Here's one way:
4 9 2
3 5 7
8 1 6
Step-by-step explanation:
[tex]Solve. Clear fraction first.6/5 + 2/5 x = 89/30 + 7/6 x + 1/6[/tex]
Step-by-step explanation:
we have denominators 5, 6 and 30.
the smallest number that is divisible by all 3 is clearly 30.
so, we have to multiply everything by 30 to eliminate the fractions.
180/5 + 60/5 x = 89 + 210/6 x + 30/6 =
36 + 12x = 89 + 35x + 5
-58 = 23x
x = -58/23
tan inverse 1/4 +tan inverse 2/7 = 1/2 cos inverse 3/5
Answer:
The equation is always false
Step-by-step explanation:
arctan1/4+arctan2/7=1/2arccos3/5
0.24497866+0.27829965=1/2(0.92729521)
0.52327832 =0.46364760
not equivalent and will never be.
what is the absolute value of -5/9
Answer:
5/9
Step-by-step explanation:
In short, the absolute value of a number turns that number into a positive value no matter what. Here is a small representation:
Negative -> Positive
Positive -> Positive
Since we are working with a negative value, it will turn positive.
Best of Luck!
Which expression is equivalent to x12 + 5x6 – 14?