: In the spring of 2021, the New Horizons spacecraft reached a distance of 50 astronomical units ("AU") from Earth. At that time, how many km was New Horizons from Earth? Note: One astronomical unit is the distance from the Earth to the Sun or about 150 million km. Question 3 (6 points): The planet Mars completes one orbit of the Sun in 687 days. Use scientific notation to express this time in units of seconds. You may use the character ∧
for the power of 10 , like 4.5×10 ∧
4 (4.5 times 10 to the 4 th power).

Answers

Answer 1

The time taken by the planet Mars to complete one orbit of the Sun is 5.94 x 10⁷ seconds.

Given information: In the spring of 2021, the New Horizons spacecraft reached a distance of 50 astronomical units ("AU") from Earth. One astronomical unit is the distance from the Earth to the Sun or about 150 million km.

Calculation: To find how many km was New Horizons from Earth, we need to multiply the distance in AU by the conversion factor. 1 AU = 150 million km 50 AU = 50 x 150 million km = 7.5 billion km Thus, the New Horizons spacecraft was 7.5 billion km from Earth in the spring of 2021. Now, let's move on to the second question. The planet Mars completes one orbit of the Sun in 687 days. We need to express this time in seconds using scientific notation.

To convert days to seconds, we need to multiply the number of days by the conversion factor. 1 day = 86400 seconds 687 days = 687 x 86400 seconds= 5.94 x 10⁷ seconds (using scientific notation) Therefore, the time taken by the planet Mars to complete one orbit of the Sun is 5.94 x 10⁷ seconds.

To know more about Time and Distance here:

https://brainly.com/question/19773192

#SPJ11


Related Questions

a racquetball strikes a wall with a speed of 30 m/s and rebounds in the opposite direction with a speed of 1 6 m/s. the collision takes 5 0 ms. what is the average acceleration (in unit of m/s 2 ) of the ball during the collision with the wall?

Answers

The average acceleration of the racquetball during the collision with the wall is -280 m/s^2.

To find the average acceleration of the racquetball during the collision with the wall, we can use the formula:
Average acceleration = (final velocity - initial velocity) / time

Given that the racquetball strikes the wall with an initial speed of 30 m/s and rebounds with a final speed of 16 m/s, and the collision takes 50 ms (or 0.05 s), we can substitute these values into the formula:
Average acceleration = (16 m/s - 30 m/s) / 0.05 s
Simplifying this equation, we get:

Average acceleration = (-14 m/s) / 0.05 s
Dividing -14 m/s by 0.05 s gives us an average acceleration of -280 m/s^2. The negative sign indicates that the acceleration is in the opposite direction of the initial velocity, which means the ball is decelerating during the collision.
Therefore, the average acceleration of the racquetball during the collision with the wall is -280 m/s^2.
The average acceleration of the racquetball during the collision with the wall can be found using the formula:

average acceleration = (final velocity - initial velocity) / time. Given that the initial speed is 30 m/s, the final speed is 16 m/s, and the collision takes 50 ms (or 0.05 s), we can substitute these values into the formula. By subtracting the initial velocity from the final velocity and dividing by the time, we find that the average acceleration is -280 m/s^2.

The negative sign indicates that the acceleration is in the opposite direction of the initial velocity, meaning the ball is decelerating during the collision.

You can read more about velocity at https://brainly.com/question/80295

#SPJ11