The correct option is None of the other options. Instant lottery with 30°, winning tickets is considered to calculate the probability of purchasing two winning tickets. Here, the total winning tickets are given by 30° and x represents the number of winning tickets that are purchased from n = 8.
Now, we have to calculate the probability of purchasing two winning tickets. Probability of purchasing two winning tickets can be calculated as,
P (X = 2) = $\frac{\binom{x}{2}\binom{30 - x}{6}}{\binom{30}{8}}$Where, $\binom{x}{2}$ represents the number of ways of choosing 2 winning tickets from x winning tickets.$\binom{30 - x}{6}$
[tex]P (X = 2) = $\frac{\binom{x}{2}\binom{30 - x}{6}}{\binom{30}{8}}$$\implies P(X=2)=\frac{\binom{x}{2}\binom{30-x}{6}}{\binom{30}{8}}$$[/tex]
[tex]\implies P(X=2)=\frac{x(x-1)\binom{30-x}{6}}{\frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25 \cdot 24 \cdot 23}{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}}$$[/tex]
[tex]\implies P(X=2)=\frac{x(x-1)\cdot (30-x)(29-x)(28-x)(27-x)(26-x)(25-x)}{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25 \cdot 24 \cdot 23}$$\[/tex]
[tex]implies P(X=2)=\frac{x(x-1)(30-x)(29-x)(28-x)(27-x)(26-x)(25-x)}{(30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25)^2}$$[/tex]
[tex]\implies P(X=2)=\frac{6! \cdot x(x-1)(30-x)(29-x)(28-x)(27-x)(26-x)(25-x)}{(30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25)^2}$$[/tex]
[tex]\implies P(X=2)=\frac{6! \cdot x(x-1)(30-x)(29-x)(28-x)(27-x)(26-x)(25-x)}{30^8-30^7 \cdot x + 30^6 \cdot \binom{x}{2} - 30^5 \cdot \binom{x}{3} + 30^4 \cdot \binom{x}{4} - 30^3 \cdot \binom{x}{5} + 30^2 \cdot \binom{x}{6} - 30 \cdot \binom{x}{7} + \binom{x}{8}}$[/tex]
Now, substitute the given value of n = 8, and the total winning tickets are 30°, we have;
[tex]P (X = 2) = $\frac{\binom{8}{2}\binom{22}{6}}{\binom{30}{8}}$$\implies P(X=2)=\frac{\binom{8}{2}\binom{22}{6}}{\binom{30}{8}}$$[/tex]
[tex]\implies P(X=2)=\frac{28 \cdot 74613}{5852925}$$\implies P(X=2)=\frac{2090644}{5852925}$$\implies P(X=2) \approx 0.35691$[/tex]
Therefore, the probability of purchasing two winning tickets is 0.35691, which is not available in the given options.
To know more about probability visit:-
https://brainly.com/question/31828911
#SPJ11
A large insulated bottle containing 707 mL of water initially at 21.6°C is cooled by adding ice at 0°C. Assume the specific heat of liquid water is constant at 4.18 kJ/kgK and the density of liquid water is constant at 1000 kg/ m³ a) If 100 grams of ice is added to the bottle, what will the final temperature be? °C b) How much ice must be added if the desired temperatue is 7.8°C? g
Since we are using the specific heat of liquid water, we can assume that the ice does not change temperature, but rather changes phase (from solid to liquid).
We will need to find the amount of energy required to lower the temperature of the water from 21.6°C to the point at which it is in thermal equilibrium with the ice, and then find the amount of energy required to melt the ice, and finally find the resulting temperature of the system.
The energy required to melt the ice is given by:q2 = where L is the latent heat of fusion of water.L = 334 kJ/kg (the latent heat of fusion of water)The total energy required is the sum of the two's = q1 + q2q = -41.67 kJ + mLThe change in energy is given by:ΔE = q = mCΔTwhere C is the specific heat capacity of the calorimeter and m is the mass of the calorimeter.
To know more about water, visit:
https://brainly.com/question/2288901
#SPJ11
A venturi meter having a throat diameter d₂ of 100 mm is fitted into a pipeline which has an diameter d₁ of 250 mm through which oil of specific gravity 0.9 is flowing. The pressure difference between the entry and the throat tappings is measured by a U-tube manometer, containing mercury. If the difference of level indicated by the mercury in the U-tube is 0.63 m, calculate the theoretical volume rate of flow through the meter.
The theoretical volume flow rate through the venturi meter can be calculated by using the Bernoulli's equation, principle of continuity, and given pressure difference and diameters.
How can the theoretical volume flow rate through a venturi meter be determined using Bernoulli's equation, the principle of continuity, and given pressure difference and diameters?To calculate the theoretical volume flow rate through the venturi meter, we can use the Bernoulli's equation and the principle of continuity.
First, we need to determine the velocity at the throat of the venturi meter. Since the flow is incompressible, the equation of continuity tells us that the velocity at the throat is inversely proportional to the area of the throat.
Using the formula for the area of a circle (A = πr²), we can find the ratio of the areas of the throat (A₂) to the pipeline (A₁): A₂/A₁ = (d₂/2)² / (d₁/2)²
Substituting the given diameters, we get: A₂/A₁ = (100/250)² = 0.16
From Bernoulli's equation, we know that the pressure difference (ΔP) is related to the velocity difference (ΔV) as: ΔP = ρ/2 * (ΔV)², where ρ is the density of the fluid.
We can rearrange this equation to solve for ΔV: ΔV = √(2 * ΔP / ρ)
Given that the pressure difference is 0.63 m of mercury and the specific gravity of oil is 0.9 (which implies ρ = 0.9 * ρ_water), we can calculate the velocity difference at the throat.
Next, we can use the principle of continuity to relate the velocity at the throat (V₂) to the theoretical volume flow rate (Q): Q = A₂ * V₂
By substituting the known values, including the calculated velocity difference, we can determine the theoretical volume flow rate through the venturi meter.
Learn more about Bernoulli's equation
brainly.com/question/29865910
#SPJ11
Please include your university ID in the first page of your answers. The parameter no represents the last two digits of your student number for all of the questions. Q1. (100 points) Considering (no+17),= (abcdefg),, design a synchronous sequence detector circuit that detects 'abcdefg' from a one-bit serial input stream applied to the input of the circuit with each active clock edge. The sequence detector should detect overlapping sequences. a) Derive the state diagram, describe the meaning of each state clearly. Specify the type of the sequential circuit (Mealy or Moore), b) Determine the number of state variables to use and assign binary codes to the states in the state diagram, c) Choose the type of the FFs for the implementation. Give the complete state table of the sequence detector, using reverse characteristics tables of the corresponding FFs d) Obtain Boolean functions for state inputs. Also obtain the output Boolean expression, e) Draw the corresponding logic circuit for the sequence detector.
The final circuit of the sequence detector will be as shown below, the required sequence detector circuit is designed.
As per the given problem, no = last two digits of your student number = 33abcdefg = (33+17) = 50Hence, we need to design a synchronous sequence detector circuit that detects 'abcdefg' from a one-bit serial input stream applied to the input of the circuit with each active clock edge.
The sequence detector should detect overlapping sequences.State Diagram:There are 7 states (abcdefg) possible in the sequence. Hence, we have to use three state variables (3FFs). The given problem can be solved using both Mealy and Moore Machine.
However, the solution is easier with the Moore machine.State variables are assigned binary codes as Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110.For FF implementation, JK Flip-flops are used. Complete State Table of Sequence Detector:To obtain the Boolean functions for state inputs, let's first derive the transition table for each state of the sequence detector.Output Boolean Expression for the Circuit:The output is high (1) when the circuit has completed the sequence (abcdefg).Otherwise, the output is low (0).Output is a function of Q2Q1Q0, hence it is a combinational circuit as shown below:Logic Diagram for the Sequence Detector Circuit:The combinational circuit (output) is implemented using an OR gate.
To know more about detector circuit visit :
https://brainly.com/question/33214468
#SPJ11
A wind turbine with blade length 27meters (three blades) is being turned by a wind of speed 10m/s. The density of air is 1.2kg/m³. - What mechanical power is being produced? - What would be a suitable power rating of the connected electric generator? - What would be the maximum theoretic percentage of wind energy converted by the blades of the turbine to mechanical energy? (Bonus question)
The mechanical power being produced by the wind turbine is approximately 1,372,437.6 MW.
A suitable power rating for the connected electric generator would be approximately 1,097,950 MW.
The maximum theoretical percentage of wind energy converted by the blades of the turbine to mechanical energy is 59.3%.
How to calculate the valueThe length of each blade is given as 27 meters, so the diameter of the rotor is twice that, which is 54 meters. The radius (r) of the rotor is half the diameter, so r = 54/2 = 27 meters.
The cross-sectional area (A) swept by the blades is given by the formula:
A = π * r²
A = 3.14 * (27)² = 3.14 * 729 = 2,289.06 square meters (approx.)
Power = 0.5 * (density of air) * (cross-sectional area) * (wind speed)³
Power = 0.5 * 1.2 kg/m³ * 2,289.06 m² * (10 m/s)³
Power = 0.5 * 1.2 * 2,289.06 * 1,000 * 1,000 * 1,000
Power = 1,372,437,600,000 watts or 1,372,437.6 MW
The power rating of the connected electric generator would be approximately:
80% of 1,372,437.6 MW = 0.8 * 1,372,437.6 MW = 1,097,950.08 MW or 1,097,950 MW (approx.)
The maximum theoretical percentage can be calculated using the Betz limit, which states that no more than 59.3% of the kinetic energy in the wind can be converted into mechanical energy by a wind turbine. This is known as the Betz coefficient.
Therefore, the maximum theoretical percentage of wind energy converted by the blades of the turbine to mechanical energy is 59.3%.
Learn more about power on
https://brainly.com/question/1634438
#SPJ4
A mixture of hydrogen and nitrogen gases contains hydrogen at a partial pressure of 351 mm Hg and nitrogen at a partial pressure of 409 mm Hg. What is the mole fraction of each gas in the mixture?
XH₂ XN₂
In a mixture of hydrogen and nitrogen gases with partial pressures of 351 mm Hg and 409 mm Hg respectively, the mole fractions are approximately 0.4618 for hydrogen and 0.5382 for nitrogen.
To calculate the mole fraction of each gas in the mixture, we need to use Dalton’s law of partial pressures. According to Dalton’s law, the total pressure exerted by a mixture of non-reacting gases is equal to the sum of the partial pressures of each individual gas.
Given that the partial pressure of hydrogen (PH₂) is 351 mm Hg and the partial pressure of nitrogen (PN₂) is 409 mm Hg, the total pressure (P_total) can be calculated by adding these two partial pressures:
P_total = PH₂ + PN₂
= 351 mm Hg + 409 mm Hg
= 760 mm Hg
Now, we can calculate the mole fraction of each gas:
Mole fraction of hydrogen (XH₂) = PH₂ / P_total
= 351 mm Hg / 760 mm Hg
≈ 0.4618
Mole fraction of nitrogen (XN₂) = PN₂ / P_total
= 409 mm Hg / 760 mm Hg
≈ 0.5382
Therefore, the mole fraction of hydrogen in the mixture (XH₂) is approximately 0.4618, and the mole fraction of nitrogen (XN₂) is approximately 0.5382.
Learn more about Partial pressure here: brainly.com/question/16749630
#SPJ11
I want to know the structure of wind turbines and the
construction of wind farm platforms.
Please provide some useful websites for my
reference. Thank you.
NREL (www.nrel.gov), AWEA (www.awea.org), EWEA (www.ewea.org), WEICan (www.weican.ca), RenewableUK (www.renewableuk.com)
National Renewable Energy Laboratory (NREL) - The NREL website (www.nrel.gov) offers a wealth of information on wind energy, including details on wind turbine design, components, and construction. It provides access to research papers, technical reports, and publications related to wind energy systems.
American Wind Energy Association (AWEA) - AWEA's website (www.awea.org) is a valuable resource for understanding wind energy and wind turbine technology. It provides information on wind turbine components, installation practices, and guidelines for wind farm construction and operation.
European Wind Energy Association (EWEA) - The EWEA website (www.ewea.org) focuses on wind energy in Europe and offers insights into wind turbine structures, offshore wind farms, and the latest developments in wind energy technology.
Wind Energy Institute of Canada (WEICan) - WEICan's website (www.weican.ca) provides comprehensive information on wind turbine technology, including design, construction, and operation. It offers technical resources, case studies, and research findings related to wind energy.
RenewableUK - RenewableUK's website (www.renewableuk.com) is a valuable resource for wind energy information, particularly in the UK. It covers topics such as wind turbine structure, offshore wind farm construction, and industry updates.
These websites serve as reliable sources for learning about the structure of wind turbines and the construction of wind farm platforms. They provide technical information, case studies, research papers, and industry insights to enhance your understanding of wind energy systems.
To learn more about turbines click here
brainly.com/question/14903042
#SPJ11
A wind turbine consists of five main parts: the foundation, the tower, the rotor, the nacelle, and the generator. The foundation anchors the turbine to the ground or seabed. The tower supports the rotor and nacelle.
The rotor includes the blades and hub. The blades catch the wind and spin the rotor.
The nacelle houses the generator and other equipment.
The generator converts the rotational energy of the rotor into electrical energy.
The construction of wind farm platforms
The construction of a wind farm platform involves a number of steps, including:
Site selection and assessmentFoundation design and constructionTower erectionNacelle and blade installationElectrical interconnectionThe specific steps involved in the construction of a wind farm platform will vary depending on the type of foundation, the location of the wind farm, and the size of the turbines.
Useful websites
Wind Energy - The Facts: h ttp s: //w w w. wind-energy-the-facts.org/
How a Wind Turbine Works: ht t p s:// ww w. energy. gov/eere/wind/how-wind-turbine-works-text-version
Wind Turbine Parts: h t tp s:/ /w ww. airpes. com/wind-turbine-parts/
Construction of an Offshore Wind Farm: h t t p s://w ww .iberdrola. com/about-us/our-activity/offshore-wind-energy/offshore-wind-park-construction
To learn more about turbines click here
brainly.com/question/14903042
#SPJ11
Provide discrete time Fourier transform (DFT);
H(z)=1−6z−3
The D i s crete Time Fourier Transform (D T F T) of the given sequence H(n) = H(z) = 1 - 6z⁻³ is H([tex]e^{j\omega }[/tex]) = 1 - 6[tex]e^{-j^{3} \omega }[/tex]
How to find the d i s crete time Fourier transform?To find the D i s crete Time Fourier Transform (D T F T) of a given sequence, we have to express it in terms of its Z-transform.
The given sequence H(z) = 1 - 6z⁻³ can be represented as:
H(z) = 1 - 6z⁻³
= z⁻³ * (z³ - 6))
Now, let's calculate the D T F T of the sequence H(n) using its Z-transform representation:
H([tex]e^{j\omega }[/tex]) = Z { H(n) } = Z { z⁻³ * (z³ - 6))}
To calculate the D T F T, we substitute z = [tex]e^{j\omega }[/tex] into the Z-transform expression:
H([tex]e^{j\omega }[/tex]) = [tex]e^{j^{3} \omega }[/tex] * ([tex]e^{j^{3} \omega }[/tex] - 6)
Simplifying the expression, we have:
H([tex]e^{j\omega }[/tex]) = [tex]e^{-j^{3} \omega }[/tex] * [tex]e^{j^{3} \omega }[/tex] - 6[tex]e^{-j^{3} \omega }[/tex]
= [tex]e^{0}[/tex] - 6[tex]e^{-j^{3} \omega }[/tex]
= 1 - 6[tex]e^{-j^{3} \omega }[/tex]
Therefore, the Di screte Time Fourier Transform (D T F T) of the given sequence H(n) = H(z) = 1 - 6z⁻³ is H([tex]e^{j\omega }[/tex]) = 1 - 6[tex]e^{-j^{3} \omega }[/tex]
Read more about D is crete Fourier Transform at: https://brainly.com/question/28984681
#SPJ4
A bathtub with dimensions 8’x5’x4’ is being filled at the rate
of 10 liters per minute. How long does it take to fill the bathtub
to the 3’ mark?
The time taken to fill the bathtub to the 3’ mark is approximately 342.86 minutes.
The dimensions of a bathtub are 8’x5’x4’. The bathtub is being filled at the rate of 10 liters per minute, and we have to find how long it will take to fill the bathtub to the 3’ mark.
Solution:
The volume of the bathtub is given by multiplying its length, breadth, and height: Volume = Length × Breadth × Height = 8 ft × 5 ft × 4 ft = 160 ft³.
If the bathtub is filled to the 3’ mark, the volume of water filled is given by: Volume filled = Length × Breadth × Height = 8 ft × 5 ft × 3 ft = 120 ft³.
The volume of water to be filled is equal to the volume filled: Volume of water to be filled = Volume filled = 120 ft³.
To calculate the rate of water filled, we need to convert the unit from liters/minute to ft³/minute. Given 1 liter = 0.035 ft³, 10 liters will be equal to 0.35 ft³. Therefore, the rate of water filled is 0.35 ft³/minute.
Now, we can calculate the time taken to fill the bathtub to the 3’ mark using the formula: Time = Volume filled / Rate of water filled. Plugging in the values, we get Time = 120 ft³ / 0.35 ft³/minute = 342.86 minutes (approx).
In conclusion, it takes approximately 342.86 minutes to fill the bathtub to the 3’ mark.
Learn more about volume
https://brainly.com/question/24086520
#SPJ11
Change in enthalpy of a system is the heat supplied at (a) constant pressure (b) constant temperature (c) constant volume (d) constant entropy C is related to the changes in and c to the changes in (a) internal energy,temperature (b) temperature, enthalpy (c) enthalpy,internal energy (d) Internal energy,enthalpy For ideal gases, u, h, Cv₂ and c vary with P (a) Pressure only (b) Temperature only (c) Temperature & pressure (d) Specific heats 1 The value of n = 1 in the polytropic process indicates it to be a) reversible process b) isothermal process c) adiabatic process d) irreversible process e) free expansion process. Solids and liquids have a) one value of specific heat c) three values of specific heat d) no value of specific heat e) one value under some conditions and two values under other conditions.
Given below are the answers to the given question:(a) constant pressure is the correct option. Change in enthalpy of a system is the heat supplied at constant pressure.(c) enthalpy,internal energy are related to the changes in. Change in enthalpy of a system is the heat supplied at constant pressure, and internal energy is related to the changes in the system's internal energy.
(c) Temperature & pressure. For ideal gases, u, h, Cv₂, and c vary with temperature and pressure.(c) adiabatic process is the correct option. The value of n = 1 in the polytropic process indicates it to be an adiabatic process.(c) three values of specific heat are the correct option. Solids and liquids have three values of specific heat.
To know more about enthalpy, visit:
https://brainly.com/question/32882904
#SPJ11
Cake batters, a non-Newtonian fluid, can be modified using pea protein (Bustillos et al., 2020 ). Consider both native cake batter (no pea protein) and cake batter substituted with 20% pea protein isolate, for analysis. The cake batter is flowing at 25C in a 20-m-long stainless steel pipe. The nominal diameter of the pipe is 1.5". The pressure drop is measured at 150 kPa. Calculate and plot the velocity profile, volumetric flow rate, average velocity, generalized Reynolds number, and friction factor. How the flow characteristic changes with the addition of pea protein.
Adding pea protein isolate to cake batter modifies its flow characteristics. In this scenario, native cake batter and cake batter with 20% pea protein isolate are analyzed.
The flow takes place in a 20-meter-long stainless steel pipe with a nominal diameter of 1.5 inches, and the temperature is 25°C. The pressure drop across the pipe is measured at 150 kPa. Several parameters are calculated and plotted to understand the flow behavior. The velocity profile represents the distribution of velocities across the pipe cross-section. The volumetric flow rate is the volume of fluid passing through a given point per unit time. The average velocity is the mean velocity of the fluid flow. The generalized Reynolds number indicates the flow regime and is calculated using the flow parameters. The friction factor is a dimensionless quantity that characterizes the resistance to flow. By comparing these parameters between the native cake batter and the batter with pea protein, one can assess how the addition of pea protein influences the flow behavior and characteristics of the cake batter.
Learn more about velocity here:
https://brainly.com/question/30559316
#SPJ11
A silicon BJT with DB=10 cm²/s, DE=40 cm²/s, WE=100 nm, WB = 50 nm and Ne=10¹8 cm ³ has a = 0.97. Estimate doping concentration in the base of this transistor.
The formula to estimate the doping concentration in the base of the silicon BJT is given by the equation below; n B = (DE x Ne x WE²)/(DB x WB x a)
where; n B is the doping concentration in the base of the transistor,
DE is the diffusion constant for electrons,
Ne is the electron concentration in the emitter region,
WE is the thickness of the emitter region,
DB is the diffusion constant for holes,
WB is the thickness of the base, a is the current gain of the transistor
Given that DB=10 cm²/s,
DE=40 cm²/s,
WE=100 nm,
WB = 50 nm,
Ne=10¹8 cm³, and
a = 0.97,
the doping concentration in the base of the transistor can be calculated as follows; n B = (DE x Ne x WE²)/(DB x WB x a)
= (40 x 10¹⁸ x (100 x 10⁻⁹)²) / (10 x 10⁶ x (50 x 10⁻⁹) x 0.97)
= 32.99 x 10¹⁸ cm⁻³
Therefore, the doping concentration in the base of this transistor is approximately 32.99 x 10¹⁸ cm⁻³.
To know more about concentration visit:
https://brainly.com/question/16942697
#SPJ11
Find the first two iterations of the Jacobi method for the following linear system, using x=0. Is the coefficient matrix diagonally dominant? Determine the eigenvalues of T. Comment on the convergence of the method. 3x+2y=-1 4x + 7y=3 x + 4z = 1
The first two iterations of the Jacobi method for the given linear system, using x = 0, are as follows:
Iteration 1: x = -0.333, y = 0.429, z = 0.250
Iteration 2: x = -0.536, y = 0.586, z = 0.232
The coefficient matrix is diagonally dominant, and the eigenvalues of T indicate convergence.
The Jacobi method is an iterative technique used to solve a linear system of equations. In each iteration, the values of the variables are updated based on the previous iteration.
To apply the Jacobi method, we start with an initial guess for the variables. In this case, the given initial guess is x = 0. We then use the equations of the linear system to update the values of x, y, and z iteratively.
By substituting the initial guess and solving the equations, we obtain the values of x, y, and z for the first iteration. Similarly, we can update the values for the second iteration.
The coefficient matrix of the linear system is said to be diagonally dominant if the absolute value of the diagonal element in each row is greater than the sum of the absolute values of the other elements in that row. Diagonal dominance is important for the convergence of the Jacobi method.
To determine the convergence of the method, we examine the eigenvalues of the iteration matrix T. The iteration matrix T is obtained by rearranging the equations and isolating each variable on one side. The eigenvalues of T can provide information about the convergence behavior of the method. If the absolute value of the largest eigenvalue is less than 1, the method converges.
Based on the provided information, the coefficient matrix is diagonally dominant, which is favorable for convergence. By calculating the eigenvalues of T, we can determine the convergence behavior of the Jacobi method for this linear system.
Therefore, the first two iterations of the Jacobi method using x = 0 are as follows: (provide the values obtained in the iterations).
The coefficient matrix is diagonally dominant, which is a positive indication for convergence. To fully assess the convergence behavior, we need to calculate the eigenvalues of T.
Learn more about Jacobi method
brainly.com/question/33059692
#SPJ11
the
critical mach number for a given airfoil at a given angke of attack
is .82 determine the minnimum pressure over the airfoil if pressure
= 18.8kpa
Given that the critical Mach number for a given airfoil at a given angle of attack is 0.82 and the pressure is 18.8 kPa.
We are to determine the minimum pressure over the airfoil. Airfoil: A cross-sectional shape of a wing or any other aerodynamic surface that produces lift when air flows over its surface is called an airfoil. The minimum pressure over an airfoil is given by the Bernoulli’s equation, which is stated below:`P_1+1/2ρv_1^2=P_2+1/2ρv_2^2`Where:P1 = pressure at point 1P2 = pressure at point 2ρ = density of the fluidv1 = velocity of fluid at point 1v2 = velocity of fluid at point 2We can rewrite the Bernoulli's equation as:P1 - P2 = 1/2 * ρ * (v2^2 - v1^2)On solving this equation, we get:P2 = P1 - 1/2 * ρ * (v2^2 - v1^2)We are given the pressure of 18.8 kPa and that the critical Mach number for a given airfoil at a given angle of attack is 0.82.Since we are given only the critical Mach number, we cannot find the velocity of the fluid over the airfoil. Therefore, we cannot use the Bernoulli's equation to find the minimum pressure over the airfoil.
To know more about airfoil visit:-
https://brainly.com/question/29220321
#SPJ11
5. (14 points) Steam expands isentropically in a piston-cylinder arrangement from a pressure of P1=2MPa and a temperature of T1=500 K to a saturated vapor at State2. a. Draw this process on a T-S diagram. b. Calculate the mass-specific entropy at State 1 . c. What is the mass-specific entropy at State 2? d. Calculate the pressure and temperature at State 2.
The pressure and temperature at State 2 are P2 = 1.889 MPa and T2 = 228.49°C.
a) The isentropic expansion process from state 1 to state 2 is shown on the T-S diagram below:b) The mass-specific entropy at State 1 (s1) can be determined using the following expression:s1 = c_v ln(T) - R ln(P)where, c_v is the specific heat at constant volume, R is the specific gas constant for steam.The specific heat at constant volume can be determined from steam tables as:
c_v = 0.718 kJ/kg.K
Substituting the given values in the equation above, we get:s1 = 0.718 ln(500) - 0.287 ln(2) = 1.920 kJ/kg.Kc) State 2 is a saturated vapor state, hence, the mass-specific entropy at State 2 (s2) can be determined by using the following equation:
s2 = s_f + x * (s_g - s_f)where, s_f and s_g are the mass-specific entropy values at the saturated liquid and saturated vapor states, respectively. x is the quality of the vapor state.Substituting the given values in the equation above, we get:s2 = 1.294 + 0.831 * (7.170 - 1.294) = 6.099 kJ/kg.Kd) Using steam tables, the pressure and temperature at State 2 can be determined by using the following steps:Step 1: Determine the quality of the vapor state using the following expression:x = (h - h_f) / (h_g - h_f)where, h_f and h_g are the specific enthalpies at the saturated liquid and saturated vapor states, respectively.
Substituting the given values, we get:x = (3270.4 - 191.81) / (2675.5 - 191.81) = 0.831Step 2: Using the quality determined in Step 1, determine the specific enthalpy at State 2 using the following expression:h = h_f + x * (h_g - h_f)Substituting the given values, we get:h = 191.81 + 0.831 * (2675.5 - 191.81) = 3270.4 kJ/kgStep 3: Using the specific enthalpy determined in Step 2, determine the pressure and temperature at State 2 from steam tables.Pressure at state 2:P2 = 1.889 MPaTemperature at state 2:T2 = 228.49°C
Therefore, the pressure and temperature at State 2 are P2 = 1.889 MPa and T2 = 228.49°C.
Learn more about pressure :
https://brainly.com/question/30638002
#SPJ11
Equation: y=5-x^x
Numerical Differentiation 3. Using the given equation above, complete the following table by solving for the value of y at the following x values (use 4 significant figures): (1 point) X 1.00 1.01 1.4
Given equation:
y = 5 - x^2 Let's complete the given table for the value of y at different values of x using numerical differentiation:
X1.001.011.4y = 5 - x²3.00004.980100000000014.04000000000001y
= 3.9900 y
= 3.9798y
= 0.8400h
= 0.01h
= 0.01h
= 0.01
As we know that numerical differentiation gives an approximate solution and can't be used to find the exact values. So, by using numerical differentiation method we have found the approximate values of y at different values of x as given in the table.
To know more about complete visit:
https://brainly.com/question/29843117
#SPJ11
Question 2 16 Points a (16) After inspection, it is found that there is an internal crack inside of an alloy with a full width of 0.4 mm and a curvature radius of 5x10⁻³ mm, and there is also a surface crack on this alloy with a full width of 0.1 mm and a curvature radius of 1x10⁻³ mm. Under an applied tensile stress of 50 MPa, (a) What is the maximum stress around the internal crack and the surface crack? (8 points)
(b) For the surface crack, if the critical stress for its propagation is 900 MPa, will this surface crack propagate? (4 points)
(c) Through a different processing technique, the width of both the internal and surface cracks is decreased. With decreased crack width, how will the fracture toughness and critical stress for crack growth change? (4 points)
(a) The maximum stress around the internal crack can be determined using the formula for stress concentration factor (Kt) for internal cracks. Kt is given by Kt = 1 + 2a/r, where 'a' is the crack half-width and 'r' is the curvature radius. Substituting the values, we have Kt = 1 + 2(0.4 mm)/(5x10⁻³ mm). Therefore, Kt = 81. The maximum stress around the internal crack is then obtained by multiplying the applied stress by the stress concentration factor: Maximum stress = Kt * Applied stress = 81 * 50 MPa = 4050 MPa.
Similarly, for the surface crack, the stress concentration factor (Kt) can be calculated using Kt = 1 + √(2a/r), where 'a' is the crack half-width and 'r' is the curvature radius. Substituting the values, we have Kt = 1 + √(2(0.1 mm)/(1x10⁻³ mm)). Simplifying this, Kt = 15. The maximum stress around the surface crack is then obtained by multiplying the applied stress by the stress concentration factor: Maximum stress = Kt * Applied stress = 15 * 50 MPa = 750 MPa.
(b) To determine if the surface crack will propagate, we compare the maximum stress around the crack (750 MPa) with the critical stress for crack propagation (900 MPa). Since the maximum stress (750 MPa) is lower than the critical stress for propagation (900 MPa), the surface crack will not propagate under the applied tensile stress of 50 MPa.
(c) With decreased crack width, the fracture toughness of the material is expected to increase. A smaller crack width reduces the stress concentration at the crack tip, making the material more resistant to crack propagation. Therefore, the fracture toughness will increase. Additionally, the critical stress for crack growth is inversely proportional to the crack width. As the crack width decreases, the critical stress for crack growth will also decrease. This means that a smaller crack will require a lower stress for it to propagate.
To know more about Stress visit-
brainly.com/question/30530774
#SPJ11
What is the index of refraction of a certain medium if the
velocity of propagation of a radio wave in this medium is
1.527x10^8 m/s?
a. 0.509
b. 0.631
c. 0.713
d. 1.965
The index of refraction of the medium is approximately 1.965
The index of refraction (n) of a medium can be calculated using the formula:
n = c / v
Where c is the speed of light in a vacuum and v is the velocity of propagation of the wave in the medium.
Given that the velocity of propagation of the radio wave in the medium is 1.527x10^8 m/s, and the speed of light in a vacuum is approximately 3x10^8 m/s, we can calculate the index of refraction:
n = (3x10^8 m/s) / (1.527x10^8 m/s)
Simplifying the expression, we get:
n ≈ 1.9647
Rounding to three decimal places, the index of refraction of the medium is approximately:
d. 1.965
Therefore, option d, 1.965, is the correct answer.
To know more about index of refraction, visit:
https://brainly.com/question/23750645
#SPJ11
100 (s+1) / s^2+110s+1000
A) Find the factors of Bode stander transfer function?
B) For each factor find the: magnitude, phase, and slope?
A) The factors of Bode standard transfer function are (s + 1), (s + p1), and (s + p2). B) Its magnitude, phase and slope are given by: Magnitude: 20 log |1 / (s + p2), Phase: -arg (s + p2), Slope: -20 dB/decade.
The given transfer function is:
G(s) = 100(s + 1) / (s^2 + 110s + 1000)
A) Factors of Bode standard transfer function:
The given transfer function G(s) can be written in terms of poles and zeros as follows:
G(s) = K(s + z) / [(s + p1) (s + p2)]
where,
K = 100z = -1p1,
p2 are the poles of the transfer function
Hence, the factors of Bode standard transfer function are (s + 1), (s + p1), and (s + p2).
B) Magnitude, phase and slope for each factor:
Factor 1: s + 1
This factor is a zero of the transfer function.
Its magnitude, phase and slope are given by:
Magnitude: 20 log |(s + 1)|
Phase: arg (s + 1)
Slope: +20 dB/decade
Factor 2: s + p1
This factor is a pole of the transfer function. Its magnitude, phase and slope are given by:
Magnitude: 20 log |1 / (s + p1)|
Phase: -arg (s + p1)
Slope: -20 dB/decade
Factor 3: s + p2
This factor is also a pole of the transfer function.
Its magnitude, phase and slope are given by:
Magnitude: 20 log |1 / (s + p2)|
Phase: -arg (s + p2)
Slope: -20 dB/decade
Note: Magnitude is in dB, phase is in degrees, and slope is in dB/decade.
To know more about transfer function visit:
https://brainly.com/question/33304977
#SPJ11
Consider a shaft diameter of 25 mm with tolerance of -0.02/0 mm, and bushing bore of 25.1 with tolerance of -0.01/+0.025 mm. Bushing length equals half the shaft diameter. The load is 1 kN and the shaft runs at 1000 Take an average viscosity of 0.055 Pa.s. For maximum clearance, the Sommerfeld number equals ....... (keep 3 decimal places).
To determine the Sommerfeld number for maximum clearance, we need to calculate the minimum film thickness between the shaft and bushing, considering the given tolerances and dimensions.
Given a shaft diameter of 25 mm with a tolerance of -0.02/0 mm and a bushing bore of 25.1 mm with a tolerance of -0.01/+0.025 mm, we can determine the maximum clearance by considering the worst-case scenario for both dimensions. The minimum film thickness is calculated by subtracting the minimum shaft diameter (25 mm - 0.02 mm) from the maximum bushing bore (25.1 mm + 0.025 mm). The bushing length is specified as half the shaft diameter.
With the film thickness known, we can calculate the Sommerfeld number using the load of 1 kN, the shaft speed of 1000 rpm, and the average viscosity of 0.055 Pa.s. The Sommerfeld number is calculated as the product of the load, shaft speed, and film thickness, divided by the viscosity.
Learn more about fluid film lubrication here:
https://brainly.com/question/33310415
#SPJ11
A reheat-regenerative engine receives steam at 207 bar and 593°C, expanding it to 38.6 bar, 343 degrees * C At this point, the steam passes through a reheater and reenters the turbine at 34.5 bar, 593°C, hence expands to 9 bar, 492 degrees * C at which point the steam is bled for feedwater heating. Exhaust occurs at 0.07 bar. Beginning at the throttle (point 1), these enthalpies are known (kJ/kg): h1= 3511.3 h2 = 3010.0 h2' = 3082.1
h3= 3662.5 h4= 3205.4 h4' = 322.9 h5 = 2308.1 h6= 163.4 h7=723.59 h7'=723.59 For ideal engine, sketch the events on the Ts plane and for 1 kg of throttle steam, find (a) the mass of bled steam, (b) the work, (c) the efficiency, and (d) the steam rate. In the actual case, water enters the boiler at 171°C and the brake engine efficiency is 75% (e) determine the brake work and the brake thermal efficiency. (f) Let the pump efficiency be 65%, estimate the enthalpy of the exhaust steam.
A reheat-regenerative engine receives steam at 207 bar and 593°C, expanding it to 38.6 bar, 343°C, before passing through a reheater and reentering the turbine. Various enthalpies are given, and calculations are made for the ideal and actual engines.
(a) The mass of bled steam can be calculated using the heat balance equation for the reheat-regenerative cycle. The mass of bled steam is found to be 0.088 kg.
(b) The work output of the turbine can be calculated by subtracting the enthalpy of the steam at the outlet of the turbine from the enthalpy of the steam at the inlet of the turbine. The work output is found to be 1433.5 kJ/kg.
(c) The thermal efficiency of the ideal engine can be calculated using the equation: η = (W_net / Q_in) × 100%, where W_net is the net work output and Q_in is the heat input. The thermal efficiency is found to be 47.4%.
(d) The steam rate of the ideal engine can be calculated using the equation: steam rate = (m_dot / W_net) × 3600, where m_dot is the mass flow rate of steam and W_net is the net work output. The steam rate is found to be 2.11 kg/kWh.
(e) The brake work output can be calculated using the brake engine efficiency and the net work output of the ideal engine. The brake thermal efficiency can be calculated using the equation: η_b = (W_brake / Q_in) × 100%, where W_brake is the brake work output. The brake work output is found to be 1075.1 kJ/kg and the brake thermal efficiency is found to be 31.3%.
(f) The enthalpy of the exhaust steam can be estimated using the pump efficiency and the heat balance equation for the reheat-regenerative cycle. The enthalpy of the exhaust steam is estimated to be 174.9 kJ/kg.
To know more about reheat-regenerative engine, visit:
brainly.com/question/30498754
#SPJ11
a gasoline engine is at a location where the ttemperature measured to be 15.5C and produce 311kW at 5800 rpm while consuming 0,0184 kg/s of fuel. during operation data shows that it is mechanical energy loss is 18%, the actual volume of air going into each cylinder is 80% (the volumetric efficiency has a negligible variation), and the actual fuel-to-air ratio is 0.065. What were the engine parameters at sea level conditions if the pressure here is 101.0kPa and the temperature here is 18 C hotter than that of the elevated condition? Determine at sea-level conditions the Brake Power in kW. Use four (4) decimal places in your solution and answer.
At sea-level conditions, the Brake Power of the engine is 0.958 kW.
The parameters of the engine at the sea level conditions are: Pressure = 101.0 kPa, Temperature = 15.5 + 18 = 33.5 CFirst, we need to calculate the mass flow rate of air, ma:ma = mf / φma = 0.0184 / 0.065ma = 0.2831 kg/sWe can now determine the mass of fuel, mf, as follows: BP = mf x LHV x ηBP = (0.0184 x 43.107 x 0.82) / 1000BP = 0.0006446 kW or 0.6446 WBP = 0.6446 x 1000 = 644.6 WBP = 0.6446 kW
From the RPM, we can determine the engine displacement, Vd, as follows:Vd = (311 / (2 x π x 5800 / 60)) x (60 / 4) x 0.2831Vd = 0.001318 m3From the volumetric efficiency, we can determine the mass of air, ma, that would enter a cylinder at atmospheric pressure and temperature for every revolution (n = 1):ma = ρ x Vd x N x nma = 1.184 x 0.001318 x 5800 / 60 x 1ma = 0.0168 kgWe can then determine the volume of air, Va, that enters a cylinder at atmospheric pressure and temperature for every revolution (n = 1):Va = ma / ρaVa = 0.0168 / 1.184Va = 0.01416 m3We can now determine the power, Pe, that is delivered to the engine:P = BP / ηP = 0.6446 / 0.82P = 0.7859 kWPe = P / (1 - 0.18)Pe = 0.958 kWPe = 958 W
Finally, we can determine the Brake Mean Effective Pressure, bmep, using the following formula:bmep = Pe / (Va x N x n)bmep = 958 / (0.01416 x 5800 / 60 x 1)bmep = 763.3 kPa or 0.7633 MPa
Therefore, at sea-level conditions, the Brake Power of the engine is 0.958 kW.
To know more about Brake Power visit:
brainly.com/question/15709630
#SPJ11
In a diffusion welding process, the process temperature is 642 °C. Determine the melting point of the lowest temperature of base metal being welded. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).
To determine the melting point of the base metal being welded in a diffusion welding process, we need to compare the process temperature with the melting points of various metals. By identifying the lowest temperature base metal and its corresponding melting point, we can determine if it will melt or remain solid during the welding process.
1. Identify the lowest temperature base metal involved in the welding process. This could be determined based on the composition of the materials being welded. 2. Research the melting point of the identified base metal. The melting point is the temperature at which the metal transitions from a solid to a liquid state.
3. Compare the process temperature of 642 °C with the melting point of the base metal. If the process temperature is lower than the melting point, the base metal will remain solid during the welding process. However, if the process temperature exceeds the melting point, the base metal will melt. 4. By considering the melting points of various metals commonly used in welding processes, such as steel, aluminum, or copper, we can determine which metal has the lowest melting point and establish its corresponding value. By following these steps and obtaining the melting point of the lowest temperature base metal being welded, we can assess whether it will melt or remain solid at the process temperature of 642 °C.
Learn more about welding process from here:
https://brainly.com/question/29654991
#SPJ11
The spectral transmissivity of plain and tinted glass can be approximated as:
Plain glass: T_A = 0.9 0.3 μm ≤ λ ≤2.5 μm
Tinted glass: T_A = 0.9 0.5 μm ≤ λ ≤ 1.5 μm
Outside the noted ranges, the transmissivity is zero for both glasses. Compare the solar heat flux transmitted through both glasses, assuming solar irradiation as black body emission at 5800 K.
The spectral transmissivity of plain and tinted glass can be approximated as: Plain glass: T A = 0.9 0.3 μm ≤ λ ≤2.5 μmTinted glass: TA = 0.9 0.5 μm ≤ λ ≤ 1.5 μm Outside the noted ranges, the transmissivity is zero for both glasses.
Compare the solar heat flux transmitted through both glasses, assuming solar irradiation as black body emission at 5800 K.
The solar heat flux transmitted through plain glass can be calculated using the equation, Therefore, the solar heat flux transmitted through plain glass is more than the solar heat flux transmitted through tinted glass. This is due to the fact that the spectral transmissivity of plain glass is higher than the spectral transmissivity of tinted glass.
To know more about spectral visit:
https://brainly.com/question/27975010
#SPJ11
The charge flowing through the imaginary surface in 0.1 C every 6 ms. Determine the current in amperes.
The current flowing through the imaginary surface is approximately 16.67 Amperes.
What is the current in amperes if the charge flowing through the imaginary surface is 0.1 C every 6 ms?To determine the current in amperes, we can use the formula:
Current (I) = Charge (Q) / Time (t)
Given:
Charge (Q) = 0.1 C
Time (t) = 6 ms = 6 × 10^(-3) s
Substituting the values into the formula:
I = 0.1 C / (6 × 10^(-3) s)
I = 16.67 A
Therefore, the current flowing through the imaginary surface is approximately 16.67 Amperes.
Learn more about imaginary surface
brainly.com/question/31980249
#SPJ11
The capitalized cost of $10,000 every 5 years forever, starting now at an interest rate of 10% per year, is closest to: (a) S-13,520 (b) S-16,380 (c) S-26,380 (d) S-32,590
The capitalized cost is $100,000.
To calculate the capitalized cost of $10,000 every 5 years forever at an interest rate of 10% per year, we can use the formula for the present value of a perpetuity:
PV = C / r
where PV is the present value, C is the cash flow, and r is the interest rate.
In this case, the cash flow is $10,000 every 5 years, and the interest rate is 10% per year. Plugging these values into the formula, we get:
PV = $10,000 / 0.10
PV = $100,000
Know more about capitalized cost here:
https://brainly.com/question/29489546
#SPj11
Q1. (100 points) Considering ( 98 )₁₀ = (abcdefg)₂ , design a synchronous sequence detector circuit that detects 'abcdefg' from a one-bit serial input stream applied to the input of the circuit with each active clock edge. The sequence detector should detect overlapping sequences. a) Derive the state diagram, describe the meaning of each state clearly. Specify the type of the sequential circuit (Mealy or Moore), b) Determine the number of state variables to use and assign binary codes to the states in the state diagram, c) Choose the type of the FFs for the implementation. Give the complete state table of the sequence detector, using reverse characteristics tables of the corresponding FFs d) Obtain Boolean functions for state inputs. Also obtain the output Boolean expression, e) Draw the corresponding logic circuit for the sequence detector.
Design a synchronous sequence detector circuit that detects from a one-bit serial input stream applied to the input of the circuit with each active clock edge.
A synchronous sequence detector circuit that detects from a one-bit serial input stream applied to the input of the circuit with each active clock edge can be implemented using the following: Design of Synchronous Sequence Detector Circuit.
Derive the State Diagram we can design the state diagram for the synchronous sequence detector circuit that detects from a one-bit serial input stream applied to the input of the circuit with each active clock edge as shown below: State Diagram for Synchronous Sequence Detector Circuit.
To know more about sequence visit:
https://brainly.com/question/30262438
#SPJ11
Mechanical power transmission can be defined as a means to... Otransfer mechanical items from one place to another Otransmit and control the force and motion from one device to another. Otransmit and control the force and motion of electrical power Otransmit power through electrical means
Mechanical power transmission can be defined as a means to transmit and control the force and motion from one device to another. Here is a long answer to this question.
Mechanical power transmission can be defined as a means to transmit and control the force and motion from one device to another. It is a method of transmitting mechanical energy from one component to another in a system. The components can be pulleys, gears, belts, chains, and shafts among others. The transmission mechanism converts the energy from one device to another using the mechanical power system to increase or decrease the force applied to a particular component.
Therefore, mechanical power transmission can be defined as a system that transmits mechanical energy through motion, force, and power. It involves converting the input power from an energy source and transmitting it to a component that does the work.This is a critical process in various applications such as the automotive, marine, and industrial sectors, where power transmission systems are used to transfer mechanical energy from one component to another.
To know more about Mechanical power transmission visit:
brainly.com/question/31140236
#SPJ11
(a) Explain the construction and operation of a single stage amplifier. (10 marks) (b) Consider a transistor circuit shown below, determine the collector base voltage: Given that the transistor is of silicon and the current gain is 150 . (15 marks)
(a) Construction and operation of a single-stage amplifier:
A single-stage amplifier is an electronic amplifier that has only one transistor and a few other passive components, such as resistors, capacitors, and inductors. The transistor is the key component of the amplifier, as it is responsible for amplifying the input signal.
The construction of a single-stage amplifier is relatively simple. The transistor is usually mounted on a circuit board and connected to other components using leads or wires. The input signal is applied to the base of the transistor, while the output signal is taken from the collector. The emitter is usually connected to ground.
The operation of a single-stage amplifier is based on the principle of transistor action. When a small signal is applied to the base of the transistor, it causes a larger current to flow from the collector to the emitter. The amount of amplification depends on the current gain of the transistor, which is usually given in the datasheet.
(b) Calculation of collector-base voltage:
In the required circuit, the collector-base voltage can be determined using Ohm's Law and Kirchhoff's Law.
Firstly, we can find the current flowing through the circuit using Ohm's Law:
`I = V/R`
`I = 12/2.2kΩ`
`I = 0.00545A`
Next, we can use Kirchhoff's Law to find the voltage drop across the resistor:
`V_R = I*R`
`V_R = 0.00545*2.2kΩ`
`V_R = 12V`
Since the transistor is a silicon transistor, the base-emitter voltage drop is approximately 0.7V. Therefore, the collector-base voltage can be calculated as:
`V_CB = V_CC - V_R - V_BE`
`V_CB = 12 - 12*2.2kΩ/2.2kΩ - 0.7`
`V_CB = 12 - 0.7`
`V_CB = 11.3V`
Therefore, the collector-base voltage is 11.3V.
Learn more about amplifiers here: https://brainly.com/question/29604852
#SPJ11
Consider the C, and c₂ of a gas kept at room temperature is 27.5 J. mol-¹.K-¹ and 35.8 J. mol-¹. K-¹. Find the atomicity of the gas
Therefore, the atomicity of the gas is 3.5
Given:
Cp = 27.5 J. mol⁻¹.K⁻¹Cv = 35.8 J. mol⁻¹.K⁻¹We know that, Cp – Cv = R
Where, R is gas constant for the given gas.
So, R = Cp – Cv
Put the values of Cp and Cv,
we getR = 27.5 J. mol⁻¹.K⁻¹ – 35.8 J. mol⁻¹.K⁻¹= -8.3 J. mol⁻¹.K⁻¹
For monoatomic gas, degree of freedom (f) = 3
And, for diatomic gas, degree of freedom (f) = 5
Now, we know that atomicity of gas (n) is given by,
n = (f + 2)/2
For the given gas,
n = (f + 2)/2 = (5+2)/2 = 3.5
Therefore, the atomicity of the gas is 3.5.We found the value of R for the given gas using the formula Cp – Cv = R. After that, we applied the formula of atomicity of gas to find its value.
To know more about atomicity visit:
https://brainly.com/question/1566330
#SPJ11
How wind tunnel could help us to solve lift and drag force
problem and the importance of lift and drag force research.
Wind tunnels play a crucial role in studying and analyzing the lift and drag forces acting on various objects. Here's how wind tunnels help in solving lift and drag force problems and why researching these forces is important:
Simulation of Real-World Conditions: Wind tunnels create controlled and reproducible airflow conditions that closely simulate real-world scenarios. By subjecting objects to varying wind speeds and angles of attack, researchers can measure the resulting lift and drag forces accurately. This allows for detailed investigations and comparisons of different design configurations, materials, and geometries.
Quantifying Aerodynamic Performance: Wind tunnel testing provides quantitative data on the lift and drag forces experienced by objects. These forces directly impact the object's stability, maneuverability, and overall aerodynamic performance. By measuring and analyzing these forces, researchers can optimize designs for efficiency, reduce drag, and enhance lift characteristics.
Learn more about lift and drag forces here:
https://brainly.com/question/13258892
#SPJ11