In the far future, astronauts travel to the planet Saturn and land on Mimas, one of its 62 moons. Mimas is small compared with the Earth's moon, with mass Mm = 3.75 ✕ 1019 kg and radius Rm = 1.98 ✕ 105 m, giving it a free-fall acceleration of g = 0.0636 m/s2. One astronaut, being a baseball fan and having a strong arm, decides to see how high she can throw a ball in this reduced gravity. She throws the ball straight up from the surface of Mimas at a speed of 43 m/s (about 96 mph, the speed of a good major league fastball)."

Required:
a. Predict the maximum height of the ball assuming g is constant and using energy conservation. Mimas has no atmosphere, so there is no air resistance.
b. Now calculate the maximum height using universal gravitation.
c. How far off is your estimate of part (a)? Express your answer as a percent difference and indicate if the estimate is too high or too low.

Answers

Answer 1

Answer:

a)[tex]h_{max}=14536.16 m[/tex]

b)[tex]h = 15687.9 m[/tex]

c)[tex]PD=7.62\%[/tex] The estimate is low.

Explanation:

a) Using the energy conservation we have:

[tex]E_{initial}=E_{final}[/tex]

we have kinetic energy intially and gravitational potential energy at the maximum height.

[tex]\frac{1}{2}mv^{2}=mgh_{max}[/tex]

[tex]h_{max}=\frac{v^{2}}{2g}[/tex]

[tex]h_{max}=\frac{43^{2}}{2*0.0636}[/tex]

[tex]h_{max}=14536.16 m[/tex]  

b)  We can use the equation of the gravitational force

[tex]F=G\frac{mM}{R^{2}}[/tex]   (1)

We have that:

[tex] F = ma [/tex]    (2)

at the surface G will be:

[tex]G=\frac{gR^{2}}{M}[/tex]

Now the equation of an object at a distance x from the surface.

is:

[tex]F=\frac{mgR^{2}}{(R+x)^{2}}[/tex]

[tex]m\frac{dv}{dt}=\frac{mgR^{2}}{(R+x)^{2}}[/tex]

Using that dv/dt is vdx/dt and integrating in both sides we have:

[tex]v_{0}=\sqrt{\frac{2gRh}{R+h}}[/tex]

[tex]h=\frac{v_{0}^{2}R}{2gR-v_{0}^{2}}[/tex]

[tex]h=15687.9[/tex]

c) The difference is:

So the percent difference will be:

[tex]PD=|\frac{14536.16-15687.9}{(14536.16+15687.9)/2}*100%[/tex]

[tex]PD=7.62\%[/tex]

The estimate is low.

I hope it helps you!


Related Questions

at the temperature at which we live, earth's core is solid or liquid?

Answers

Explanation:

The Earth has a solid inner core

Determine the minimum gauge pressure needed in the water pipe leading into a building if water is to come out of a faucet on the fourteenth floor, 43

Answers

Answer:

The  gauge pressure is  [tex]P = 4.2*10^{5} \ N/m^2[/tex]

Explanation:

From the question we are told that

     The height of the 14th floor from the point where the water entered the building  is  h = 43 m

   

The  gauge pressure is  mathematically represented as

           [tex]P = mgh[/tex]

Where  the m is the mass of the water which is  mathematically represented as  

      [tex]m = \frac{\rho}{V}[/tex]

Where  [tex]\rho[/tex] is the density of the water which has a constant value of  [tex]\rho = 1000 \ kg/m^3[/tex] and this standard value of density the volume is  [tex]1 m^3[/tex] so

     [tex]m = \frac{1000}{1}[/tex]

     [tex]m = 1000 \ kg[/tex]

Thus  

     [tex]P = 1000 * 9.8 * 43[/tex]

     [tex]P = 4.2*10^{5} \ N/m^2[/tex]

 

Consider the Earth and the Moon as a two-particle system.

Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon. Assume the Moon lies on the +r-axis. Give the scalar component of the gravitational field. Do not substitute numerical values; use variables only. Use the following as necessary: G, Mm, Me, r, and d for the distance from the center of Earth to the center of the Moon.)"

Answers

sorry but I don't understand

A circle has a radius of 13m Find the length of the arc intercepted by a central angle of .9 radians. Do not round any intermediate computations, and round your answer to the nearest tenth.

Answers

Answer:

11.7 m

Explanation:

The radius of the circle is 13 m.

The central angle of the arc is 0.9 radians

The length of an arc is given as:

L = r θ

where θ = central angle in radians = 0.9

=> L = 0.9 * 13 = 11.7 m

Length of the arc will be 11.7 m ≈ 10 m

What is an arc length?

Arc length refers to the distance between two points along a curve’s section.

Arc length = radius * theta

where

Arc length  = ? to find

given :

radius = 13 m

theta ( central angle) = 0.9 radians

Arc length = 13 m * 0.9 radians

                = 11.7 m ≈ 10 m

length of the arc will be 11.7 m ≈ 10 m

Learn more about Arc length

https://brainly.com/question/16403495?referrer=searchResults

#SPJ2

5) What is the weight of a body in earth. if its weight is 5Newton
in moon?​

Answers

Answer:

8.167

Explanation:

How do I find an apparent weight in N for a metal connected to a string submerged in water if a scale shows the mass 29.52 g when it is submerged ? Also how do I measure its density

Answers

The Tension of the string is going to be less when submerged in water by a value called the buoyancy force, so below in the attached file is explanation on how to calculate the apparent weight and density of the submerged object

The frequency of a physical pendulum comprising a nonuniform rod of mass 1.15 kg pivoted at one end is observed to be 0.658 Hz. The center of mass of the rod is 42.5 cm below the pivot point. What is the rotational inertia of the pendulum around its pivot point

Answers

Answer:

The rotational inertia of the pendulum around its pivot point is [tex]0.280\,kg\cdot m^{2}[/tex].

Explanation:

The angular frequency of a physical pendulum is measured by the following expression:

[tex]\omega = \sqrt{\frac{m\cdot g \cdot d}{I_{o}} }[/tex]

Where:

[tex]\omega[/tex] - Angular frequency, measured in radians per second.

[tex]m[/tex] - Mass of the physical pendulum, measured in kilograms.

[tex]g[/tex] - Gravitational constant, measured in meters per square second.

[tex]d[/tex] - Straight line distance between the center of mass and the pivot point of the pendulum, measured in meters.

[tex]I_{O}[/tex] - Moment of inertia with respect to pivot point, measured in [tex]kg\cdot m^{2}[/tex].

In addition, frequency and angular frequency are both related by the following formula:

[tex]\omega =2\pi\cdot f[/tex]

Where:

[tex]f[/tex] - Frequency, measured in hertz.

If [tex]f = 0.658\,hz[/tex], then angular frequency of the physical pendulum is:

[tex]\omega = 2\pi \cdot (0.658\,hz)[/tex]

[tex]\omega = 4.134\,\frac{rad}{s}[/tex]

From the formula for the physical pendulum's angular frequency, the moment of inertia is therefore cleared:

[tex]\omega^{2} = \frac{m\cdot g \cdot d}{I_{o}}[/tex]

[tex]I_{o} = \frac{m\cdot g \cdot d}{\omega^{2}}[/tex]

Given that [tex]m = 1.15\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]d = 0.425\,m[/tex] and [tex]\omega = 4.134\,\frac{rad}{s}[/tex], the moment of inertia associated with the physical pendulum is:

[tex]I_{o} = \frac{(1.15\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (0.425\,m)}{\left(4.134\,\frac{rad}{s} \right)^{2}}[/tex]

[tex]I_{o} = 0.280\,kg\cdot m^{2}[/tex]

The rotational inertia of the pendulum around its pivot point is [tex]0.280\,kg\cdot m^{2}[/tex].

Charge of uniform surface density (0.20 nC/m2) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z

Answers

The question is not complete, the value of z is not given.

Assuming the value of z = 4.0m

Answer:

the magnitude of the electric field at any point having z(4.0 m)  =

E = 5.65 N/C

Explanation:

given

σ(surface density) = 0.20 nC/m² = 0.20 × 10⁻⁹C/m²

z = 4.0 m

Recall

E =F/q (coulumb's law)

E = kQ/r²

σ = Q/A

A = 4πr²

∴ The electric field at point z =

E = σ/zε₀

E = 0.20 × 10⁻⁹C/m²/(4 × 8.85 × 10⁻¹²C²/N.m²)

E = 5.65 N/C

How much heat does it take to raise the temperature of 7.0 kg of water from
25-C to 46-C? The specific heat of water is 4.18 kJ/(kg.-C).
Use Q = mcTr-T)
A. 148 kJ
B. 176 kJ
C. 610 kJ
D. 320 kJ​

Answers

Answer:

non of the above

Explanation:

Quantity of heat = mass× specific heat× change in temperature

m= 7kg c= 4.18 temp= 46-25=21°

.......H= 7×4.18×21= 614.46kJ

Answer:610 KJ

Explanation:A P E X answers

Lightbulbs are typically rated by their power dissipation when operated at a given voltage. Which of the following lightbulbs has the largest resistance when operated at the voltage for which it's rated?
A. 0.8 W, 1.5 V
B. 6 W 3 V
C. 4 W, 4.5 V
D. 8 W, 6 V

Answers

Answer:

The arrangement with the greatest resistance is the light bulb of option C. 4 W, 4.5 V

Explanation:

The equation for electric power is

power P = IV

also,  I = V/R,

substituting into the equation, we have

[tex]P = \frac{V^{2} }{R}[/tex]

[tex]R = \frac{V^{2} }{P}[/tex]

a)  [tex]R = \frac{1.5^{2} }{0.8}[/tex] = 2.8 Ω

b) [tex]R = \frac{3^{2} }{6}[/tex] = 1.5 Ω

c) [tex]R = \frac{4.5^{2} }{4}[/tex] 5.06 Ω

d) [tex]R = \frac{6^{2} }{8}[/tex] = 4.5 Ω

from the calculations, one can see that the lightbulb with te greates resistance is

C. 4 W, 4.5 V

A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal energy generated by the impact remains with the bullet. What is the temperature change of the bullet?

Answers

Explanation:

KE = q

½ mv² = mCΔT

ΔT = v² / (2C)

ΔT = (200 m/s)² / (2 × 236 J/kg/°C)

ΔT = 84.7°C

This question involves the concepts of the law of conservation of energy.

The temperature change of the bullet is "84.38°C".

What is the Law of Conservation of Energy?

According to the law of conservation of energy, total energy of the system must remain constant. Therefore, in this situation.

[tex]Kinetic\ energy\ of\ bullet\ before\ impact=heat\ absorbed\ in\ bullet\\\\\frac{1}{2}mv^2=mC\Delta T\\\\\Delta T = \frac{v^2}{2C}[/tex]

where,

ΔT = change in temperature of the bullet = ?C = specific heat capacity of silver = 237 J/kg°Cv = speed of bullet = 200 m/s

Therefore,

[tex]\Delta T = \frac{(200\ m/s)^2}{2(237\ J/kg.^oC)}[/tex]

ΔT = 84.38°C

Learn more about the law of conservation of energy here:

https://brainly.com/question/20971995

#SPJ2

Two small identical speakers are connected (in phase) to the same source. The speakers are 3 m apart and at ear level. An observer stands at X, 4 m in front of one speaker. If the amplitudes are not changed, the sound he hears will be least intense if the wavelength is:

a. 1 m
b. 2 m
c. 3 m
d. 4 m
e. 5 m

Answers

Answer:

b. 2 m

Explanation:

Given that:

the identical speakers are connected in phases ;

Let assume ; we have speaker A and speaker B which are = 3 meter apart

An observer stands at X = 4m in front of one speaker.

If the amplitudes are not changed, the sound he hears will be least intense if the wavelength is:                  

From above;  the distance between speaker  A and speaker B can be expressed as:

[tex]\sqrt{3^2 + 4^2 } \\ \\ = \sqrt{9+16 } \\ \\ = \sqrt{25} \\ \\ = 5 \ m[/tex]

The path length difference  will now be:

= 5 m - 4 m

= 1 m

Since , we are to determine the least intense sound; the destructive interference for that path length  will be half the wavelength; which is

= [tex]\dfrac{1}{2}*4 \ m[/tex]

= 2 m

The sound will be heard with least intensity if the wavelength is 2 m. Hence, option (b) is correct.

Given data:

The distance between the speakers is, d = 3 m.

The distance between the observer and speaker is, s = 4 m.

The amplitude of sound wave is the vertical distance from the base to peak of wave. Since sound amplitudes are not changed in the given problem. Then  the distance between speaker  A and speaker B can be expressed as:

[tex]=\sqrt{3^{2}+4^{2}}\\\\=\sqrt{25}\\\\=5\;\rm m[/tex]

And the path length difference is,

= 5 m - 4 m

= 1 m

Since , we are to determine the least intense sound; the destructive

interference for that path length  will be half the wavelength; which is

 [tex]=\dfrac{1}{2} \times s\\\\=\dfrac{1}{2} \times 4[/tex]

= 2 m

Thus, we can conclude that the sound will be heard with least intensity if the wavelength is 2 m.

Learn more about the interference here:

https://brainly.com/question/16098226

A car moving at a speed of 25 m/s enters a curve that traces a circular quarter turn of radius 129 m. The driver gently applies the brakes, slowing the car with a constant tangential acceleration of magnitude 1.2 m/s2.a) Just before emerging from the turn, what is the magnitudeof the car's acceleration?
b) At that same moment, what is the angle q between the velocity vector and theacceleration vector?
I am having trouble because this problem seems to have bothradial and tangential accleration. I tried finding the velocityusing V^2/R, but then that didnt take into account thedeceleration. Any help would be great.

Answers

Answer:

8.7 m/s^2

82.15°

Explanation:

Given:-

- The initial speed of the car, vi = 25 m/s

- The radius of track, r = 129 m

- Car makes a circular " quarter turn "

- The constant tangential acceleration, at = 1.2 m/s^2

Solution:-

- We will solve the problem using rotational kinematics. Determine the initial angular velocity of car ( wi ) as follows:

                          [tex]w_i = \frac{v_i}{r} \\\\w_i = \frac{25}{129}\\\\w_i = 0.19379 \frac{rad}{s}[/tex]

- Now use the constant tangential acceleration ( at ) and determine the constant angular acceleration ( α ) for the rotational motion as follows:

                           at = r*α

                           α = ( 1.2 / 129 )

                           α = 0.00930 rad/s^2

- We know that the angular displacement from the initial entry to the exit of the turn is quarter of a turn. The angular displacement would be ( θ = π/2 ).

- Now we will use the third rotational kinematic equation of motion to determine the angular velocity at the exit of the turn (wf) as follows:

                            [tex]w_f^2 = w_i^2 + 2\alpha*theta\\\\w_f = \sqrt{0.19379^2 + 0.00930\pi } \\\\w_f = 0.25840 \frac{rad}{s}[/tex]

- We will use the evaluated final velocity ( wf ) and determine the corresponding velocity ( vf ) as follows:

                            [tex]v_f = r*w_f\\\\v_f = 129*0.2584\\\\v_f = 33.33380 \frac{x}{y}[/tex]

- Now use the formulation to determine the centripetal acceleration ( ac ) at this point as follows:

                            [tex]a_c = \frac{v_f^2}{r} \\\\a_c = \frac{33.3338^2}{129} \\\\a_c = 8.6135 \frac{m}{s^2}[/tex]

- To determine the magnitude of acceleration we will use find the resultant of the constant tangential acceleration ( at ) and the calculated centripetal acceleration at the exit of turn ( ac ) as follows:

                             [tex]|a| = \sqrt{a^2_t + a_c^2} \\\\|a| = \sqrt{1.2^2 + 8.6135^2} \\\\|a| = 8.7 \frac{m}{s^2}[/tex]

- To determine the angle between the velocity vector and the acceleration vector. We need to recall that the velocity vector only has one component and always tangential to the curved path. Hence, the velocity vector is parallel to the tangential acceleration vector ( at ). We can use the tangential acceleration ( at ) component of acceleration ( a ) and the centripetal acceleration ( ac ) component of the acceleration and apply trigonometric ratio as follows:

                          [tex]q = arctan \frac{a_c}{a_t} = arctan \frac{8.7}{1.2} \\\\q = 82.15 ^.[/tex] 

Answer: The angle ( q ) between acceleration vector ( a ) and the velocity vector ( v ) at the exit of the turn is 82.15° .

200 J of heat is added to two gases, each in a sealed container. Gas 1 is in a rigid container that does not change volume. Gas 2 expands as it is heated, pushing out a piston that lifts a small weight. Which gas has the greater increase in its thermal energy?Which gas has the greater increase in its thermal energy?Gas 1Gas 2Both gases have the same increase in thermal energy.

Answers

Answer:

Gas 1

Explanation:

The reason for this is that for gases attached to both gases or containers, with a heat of 200 J, the change in volume is only observed in gas 2, whereas the volume of gas 1 is the same as that of gas. Therefore, the internal energy (heat) or thermal energy of the system is not utilized for Gas 1 and hence the absorption and transfer of energy is the same, whereas Gas 2 is propagated by the use of additional heat of heat. Thus there is a large increase in the thermal energy of Gas1.

When a certain capacitor carries charge of magnitude Q on each of its plates, it stores energy Ep. In order to store twice as much energy, how much charge should it have on its plates

Answers

Answer:

2Q

Explanation:

When a capacitor carries some certain charge, the energy stored in the capacitor is its electric potential energy E. The magnitude of this potential energy is given by;

E  = [tex]\frac{1}{2}qV[/tex]            ------------(i)

Where;

q = charge between the plates of the capacitor

V = potential difference between the plates of the capacitor

From the question;

q = Q

E = Ep

Therefore, equation (i) becomes;

Ep = [tex]\frac{1}{2} QV[/tex]              ----------------(ii)

Make V subject of the formula in equation (ii)

V = [tex]\frac{2E_{p}}{Q}[/tex]

Now, when the energy is doubled i.e E = 2Ep, equation (i) becomes;

2Ep = [tex]\frac{1}{2}qV[/tex]

Substitute the value of V into the equation above;

2Ep = [tex]\frac{1}{2}[/tex]([tex]q *\frac{2E_{p}}{Q}[/tex])

Solve for q;

[tex]2E_{p}[/tex] = [tex]\frac{2qE_p}{2Q}[/tex]

[tex]2E_{p}[/tex] = [tex]\frac{qE_p}{Q}[/tex]

[tex]q = 2Q[/tex]

Therefore, the charge, when the energy stored is twice the originally stored energy, is twice the original charge. i.e 2Q

Cathode ray tubes in old television sets worked by accelerating electrons and then deflecting them with magnetic fields onto a phosphor screen. The magnetic fields were created by coils of wire on either side of the tube carrying large currents. In one such TV set, the phosphor screen is 51.2 cm wide, and is 11.1 cm away from the center of the magnetic deflection coils (that is, the center of the region of magnetic field). The electron beam is first accelerated through a 22,000 V potential difference before it enters the magnetic field region, which is 1.00 cm wide. The field is approximately uniform and perpendicular to the velocity of the electrons. If the field were turned off, the electrons would hit the center of the screen. What magnitude of magnetic field (in mT) is needed to deflect the electrons so that they hit the far edge of the screen

Answers

Answer:

B = 0.046T

Explanation:

given

size of the screen = 51.2cm

distance from center = 11.1cm

region of magnetic field = 1.00cm

V= 22000V= 22kV

 

An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm .
a. If the slits are very narrow, what would be the angular position of the second- order, two-slit interference maxima?
b. Let the slits have a width 0.300 mm. In terms of the intensity lo at the center of the central maximum, what is the intensity at the angular position in part "a"?

Answers

Answer:

a

 [tex]\theta = 0.0022 rad[/tex]

b

 [tex]I = 0.000304 I_o[/tex]

Explanation:

From the question we are told that  

   The  wavelength of the light is [tex]\lambda = 550 \ nm = 550 *10^{-9} \ m[/tex]

    The  distance of the slit separation is  [tex]d = 0.500 \ mm = 5.0 *10^{-4} \ m[/tex]

 

Generally the condition for two slit interference  is  

     [tex]dsin \theta = m \lambda[/tex]

Where m is the order which is given from the question as  m = 2

=>    [tex]\theta = sin ^{-1} [\frac{m \lambda}{d} ][/tex]

 substituting values  

      [tex]\theta = 0.0022 rad[/tex]

Now on the second question  

   The distance of separation of the slit is  

       [tex]d = 0.300 \ mm = 3.0 *10^{-4} \ m[/tex]

The  intensity at the  the angular position in part "a" is mathematically evaluated as

      [tex]I = I_o [\frac{sin \beta}{\beta} ]^2[/tex]

Where  [tex]\beta[/tex] is mathematically evaluated as

       [tex]\beta = \frac{\pi * d * sin(\theta )}{\lambda }[/tex]

  substituting values

     [tex]\beta = \frac{3.142 * 3*10^{-4} * sin(0.0022 )}{550 *10^{-9} }[/tex]

    [tex]\beta = 0.06581[/tex]

So the intensity is  

    [tex]I = I_o [\frac{sin (0.06581)}{0.06581} ]^2[/tex]

   [tex]I = 0.000304 I_o[/tex]

An experimenter finds that standing waves on a string fixed at both ends occur at 24 Hz and 32 Hz , but at no frequencies in between. Part A What is the fundamental frequency

Answers

Answer:

8 Hz

Explanation:

Given that

Standing wave at one end is 24 Hz

Standing wave at the other end is 32 Hz.

Then the frequency of the standing wave mode of a string having a length, l, is usually given as

f(m) = m(v/2L), where in this case, m could be 1. 2. 3. 4 etc

Also, another formula is given as

f(m) = m.f(1), where f(1) is the fundamental frequency..

Thus, we could say that

f(m+1) - f(m) = (m + 1).f(1) - m.f(1) = f(1)

And as such,

f(1) = 32 - 24

f(1) = 8 Hz

Then, the fundamental frequency needed is 8 Hz

Problem 2: A 21-W horizontal beam of light of wavelength 430 nm, travelling at speed c, passes through a rectangular opening of width 0.0048 m and height 0.011 m. The light then strikes a screen at a distance 0.36 m behind the opening.

a) E = 4.62E-19 Joules

b) N = 4.543E+19 # of photons emitted

c) If the beam of light emitted by the source has a constant circular cross section whose radius is twice the height of the opening the beam is approaching, find the flow density of photons as the number of photons passing through a square meter of cross-sectional area per second.

d) Calculate the number of photons that pass through the rectangular opening per second.

e) The quantity NO that you found in part (d) gives the rate at which photons enter the region between the opening and the screen. Assuming no reflection from the screen, find the number of photons in that region at any time.

f) How would the number of photons in the region between the opening and the screen change, if the photons traveled more slowly? Assume no change in any other quantity, including the speed of light.

Answers

Answer:

a. E = 4.62 × 10⁻¹⁹J

b. n = 4.54 × 10¹⁹photons

c. 2.99 × 10²²photons/m²

d. 1.58 ×10¹⁸photons/seconds

e.  n = 1.896 × 10 ⁹ photons

f. the number of photons will be more if it travels slowly

Explanation:

The electron density in copper is 8.49 × 1028 electrons/m3. When a 1.00 A current is present in a copper wire with a 0.40 cm2 cross-section, the electron drift velocity, in m/s, with direction defined relative to the current density, is

Answers

Answer:

Drift velocity in m/s is [tex]1.84 \times 10^{-8}\ m/s[/tex].

Explanation:

Formula for Drift Velocity is:

[tex]u = \dfrac{I}{nAq}[/tex]

Where I is the current

n is the number of electrons in 1 [tex]m^3[/tex] or the electron density

A is the area of cross section and

q is the charge of one electron.

We are given the following:

n = [tex]8.49 \times 10^{28}\ electrons/m^3[/tex]

I = 1 A

A = 0.40 [tex]cm^2[/tex] = 40 [tex]\times 10^{-4}[/tex] [tex]m^{2}[/tex]

We know that q = [tex]1.6\times10^{-19} C[/tex]

Putting all the values to find drift velocity:

[tex]u = \dfrac{1}{8.49 \times 10 ^{28} \times 40 \times 10^{-4}\times 1.6 \times 10^{-19}}\\u = \dfrac{1}{543.36 \times 10 ^{5} }\\u = 1.84 \times 10^{-8}\ m/s[/tex]

So, drift velocity in m/s is [tex]1.84 \times 10^{-8}\ m/s[/tex].

If the frequency of a periodic wave is cut in half while the speed remains the same, what happens to the wavelength

Answers

Answer:

The wavelength becomes twice the original wavelength

Explanation:

Recall that for regular waves, the relationship between wavelength, velocity (i.e speed) and frequency is given by

v = fλ

where,

v = velocity,

f = frequency

λ = wavelength

Before a change was made to the frequency, we have: v₁ = f₁ λ₁

After a change was made to the frequency, we have: v₂ = f₂ λ₂

We are told that the speed remains the same, so

v₁ = v₂

f₁ λ₁ = f₂ λ₂ (rearranging this)

f₁ / f₂ = λ₂/λ₁ --------(1)

we are given that the frequency is cut in half.

f₂ = (1/2) f₁     (rearranging this)

f₁/f₂ = 2 -------------(2)

if we substitute equation (2) into equation (1):

f₁ / f₂ = λ₂/λ₁

2 = λ₂/λ₁

λ₂ = 2λ₁

Hence we can see that the wavelength after the change becomes twice (i.e doubles) the initial wavelength.

A pickup truck moves at 25 m/s toward the east. Ahmed is standing in the back and throws a baseball in what to him is the southwest direction at 28 m/s (with respect to the truck). A person at rest on the ground would see the ball moving how fast in what direction? HTML EditorKeyboard Shortcuts

Answers

Answer:

Speed = 20 m/sec at 75 deg South of East = 20 m/sec at 15 deg East of South

Explanation:

given data

truck moves = 25 m/s toward the east.

throws a baseball = 28 m/s southwest

solution

first we take here Speed of truck w.r.to ground i.e. V(p/g) = 25 m/sec toward the east  so we can say

V(p/g) = (25 i) m/sec     ........................1

and

Speed of baseball w.r.t. pickup i.e. V(b/p) = 28 m/sec toward the South West  and   we know that south west direction is in third quadrant

and here both component (x and y) are negative

So  that we can say it

V(b/p) = -28 × cos(45) i - 28 × sin(45) j     =  -19.8 i - 19.8 j  

and

now we use here relative motion  velocity for ball w.r.t ground

V(b/g) = V(b/p) + V(p/g )      ..........................2

put here value and we get

V(b/g) = (-19.8 i - 19.8 j) + 25 i     = 5.2 i - 19.8 j

so

Magnitude of that velocity

| V(b/g) | = [tex]\sqrt{(5.2^2 + 19.8^2)}[/tex]  

| V(b/g) | = 20.47 m/sec

so that  Direction will be here

Direction = arctan (19.8 ÷ 5.2)

Direction = 75.3° South of East

so that

Speed = 20.47 m/sec at 75.3 deg South of East

and 2 significant  

Speed = 20 m/sec at 75 deg South of East = 20 m/sec at 15 deg East of South

In a uniform electric field, the magnitude of torque is given by:-

Answers

Answer:

Electric dipole

Explanation:

the dipole axis makes an angle with the electric field. depending on direction (clockwise/aniclockwise) you get the torque

Hope this helps

Two cannonballs are dropped from a second-floor physics lab at height h above the ground. Ball B has four times the mass of ball A. When the balls pass the bottom of a first-floor window at height above the ground, the relation between their kinetic energies, KA and KB, is

Answers

Answer:

1:4

Explanation:

The formula for calculating kinetic energy is:

[tex]KE=\dfrac{1}{2}mv^2[/tex]

If the mass is multiplied by 4, then, the kinetic energy must be increased by 4 as well. Since they will be travelling at the same speed when they are at the same point, the relation between KA and KB must be 1:4 or 1/4. Hope this helps!

The relation between the kinetic energies of the freely falling balls A and B is obtained as [tex]\frac{KE_{A}}{KE_{B}} =\frac{1}{4}[/tex].

Kinetic Energy

The kinetic energy of an object depends on the mass and velocity with which it moves.

While under free-fall, the mass of an object does not affect the velocity with which it falls.

So, the velocities of both the balls are the same.

Let the mass of ball A is 'm'

So, the mass of ball B is '4m'

The kinetic energy of ball A is given by;

[tex]KE_{A}=\frac{1}{2} mv^2[/tex]

The kinetic energy of ball B is given by;

[tex]KE_{B}=\frac{1}{2} 4mv^2 = 2mv^2[/tex]

Therefore, the ratio of kinetic energies of A and B is,

[tex]\frac{KE_{A}}{KE_{B}} =\frac{1}{4}[/tex]

Learn more about kinetic energy here:

https://brainly.com/question/11580018

The average density of the body of a fish is 1080kg/m^3 . To keep from sinking, the fish increases its volume by inflating an internal air bladder, known as a swim bladder, with air.
By what percent must the fish increase its volume to be neutrally buoyant in fresh water? Use 1.28kg/m^3 for the density of air at 20 degrees Celsius. (change in V/V)

Answers

Answer:

Increase of volume (F)  = 8.01%

Explanation:

Given:

Density of fish = 1,080 kg/m³

Density of water = 1,000 kg/m³

density of air = 1.28 kg/m³

Find:

Increase of volume (F)

Computation:

1,080 kg/m³  + [F × 1.28 kg/m³ ] = (1+F) × 1,000 kg/m³  

1,080 + 1.28 F =1,000 F + 1,000

80 = 998.72 F

F = 0.0801 (Approx)

F = 8.01%  (Approx)

To get an idea of the order of magnitude of inductance, calculate the self-inductance in henries for a solenoid with 900 loops of wire wound on a rod 6 cm long with radius 1 cm?

Answers

Answer:

The  self-inductance is  [tex]L = 0.0053 \ H[/tex]

Explanation:

From the question we are told that  

      The number of loops is  [tex]N = 900[/tex]

      The  length of the rod is  [tex]l =6 \ cm = 0.06 \ m[/tex]

      The radius of the rod is  [tex]r = 1 \ cm = 0.01 \ m[/tex]

The  self-inductance for the solenoid is mathematically represented as

        [tex]L = \frac{\mu_o * A * N^2 }{l}[/tex]

Now the cross-sectional of the solenoid is mathematically evaluated as

        [tex]A = \pi r^2[/tex]

substituting values  

         [tex]A =3.142 * 0.01 ^2[/tex]

        [tex]A = 3.142 *10^{-4} \ m^2[/tex]

and  [tex]\mu_o[/tex] is the permeability of free space with a value  [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

    substituting values into above equation

          [tex]L = \frac{ 4\pi * 10^{-7} ^2* 3.142*10^{-4} * 900^2 }{0.06}[/tex]

          [tex]L = 0.0053 \ H[/tex]

The back wall of an auditorium is 30.0 m from the stage. If you are seated in the middle row, how much time elapses between a sound from the stage reaching your ear directly and the same sound reaching your ear after reflecting from the back wall?

Answers

Answer:

0.0875 sec

Explanation:

Using the relationship to calculate the time that elapse 2x = vt

x = distance between the source and the reflector

v is the velocity of sound in air

t = time elapsed

Given x = 30.0m and v = 343m/s

substituting the values into the formula above to get the total time elapsed t;

t = 2x/v

t = 2(30)/343

t= 60/343

t = 0.175sec

If you are seated in the middle row, the time that will elapse between the sound from the stage reaching your ear directly will be;

0.175/2 = 0.0875 secs

A 2.5-kg object falls vertically downward in a viscous medium at a constant speed of 2.5 m/s. How much work is done by the force the viscous medium exerts on the object as it falls 80 cm?

Answers

Answer:

The workdone is [tex]W_v = - 20 \ J[/tex]

Explanation:

From the question we are told that

    The mass of the object is [tex]m = 2.5 \ kg[/tex]

     The speed of fall is [tex]v = 2.5 \ m/s[/tex]

     The depth of fall is  [tex]d = 80\ cm = 0.8 \ m[/tex]

Generally according to the work energy theorem

      [tex]W = \frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2[/tex]

Now here given the that the velocity is  constant  i.e  [tex]v_1 = v_2 = v[/tex] then

We have that

    [tex]W = \frac{1}{2} mv^2 - \frac{1}{2} mv^2 = 0 \ J[/tex]  

So in terms of workdone by the potential energy of the object and that of the viscous liquid we have

       [tex]W = W_v - W_p[/tex]

Where  [tex]W_v[/tex] is workdone by viscous liquid

             [tex]W_p[/tex] is the workdone by the object which is mathematically represented as

            [tex]W_p = mgd[/tex]

So  

       [tex]0 = W_v + mgd[/tex]

=>    [tex]W_v = - m * g * d[/tex]

substituting values

       [tex]W_v = - (2.5 * 9.8 * 0.8)[/tex]

      [tex]W_v = - 20 \ J[/tex]

Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to:_______

a. one-half.
b. double.
c. reduce to one-fourth.
d. quadruple.

Answers

Answer:

D. quadruple

Explanation:

The stored energy varies with the square of the electric charge stored in the capacitor. If you double the charge, the stored energy in the capacitor will quadruple or increase by a factor of 4.

Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to :

D. Quadruple

"Energy"

Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to Quadruple.

The stored energy shifts with the square of the electric charge put away within the capacitor.

In case you twofold the charge, the put away vitality within the capacitor will fourfold or increment by a calculate of 4.

Thus, the correct answer is D.

Learn more about "energy":

https://brainly.com/question/1932868?referrer=searchResults

Given a double slit apparatus with slit distance 1 mm, what is the theoretical maximum number of bright spots that I would see when I shine light with a wavelength 400 nm on the slits

Answers

Answer:

The maximum number of bright spot is [tex]n_{max} =5001[/tex]

Explanation:

From the question we are told that

     The  slit distance is [tex]d = 1 \ mm = 0.001 \ m[/tex]

      The  wavelength is  [tex]\lambda = 400 \ nm = 400*10^{-9 } \ m[/tex]

       

Generally the condition for interference is  

        [tex]n * \lambda = d * sin \theta[/tex]

Where n is the number of fringe(bright spots) for the number of bright spots to be maximum  [tex]\theta = 90[/tex]

=>     [tex]sin( 90 )= 1[/tex]

So

     [tex]n = \frac{d }{\lambda }[/tex]

substituting values

     [tex]n = \frac{ 1 *10^{-3} }{ 400 *10^{-9} }[/tex]

     [tex]n = 2500[/tex]

given there are two sides when it comes to the double slit apparatus which implies that the fringe would appear on two sides so the maximum number of bright spots is mathematically evaluated as

        [tex]n_{max} = 2 * n + 1[/tex]

The  1  here represented the central bright spot

So  

      [tex]n_{max} = 2 * 2500 + 1[/tex]

     [tex]n_{max} =5001[/tex]      

       

Other Questions
Look at the bar graph.What is the best conclusion that someone can draw about the youth vote in recent presidential elections?The same number of youth voted in 2008 as in 2012.Most young voters favor Republican candidates.Most young voters favor Democratic candidates.Young voters represent most of the electorate. what is a good reflection paragraph about video game? Please answer this in two minutes Use the distributive property to multiply -3(-28) What is the value of - x^2 -4 x -11 if x =.3 The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that we can still apply Gauss's law to a Gaussian surface that is entirely within an insulator by replacing the right-hand side of Gauss's law, Qin/eo, with Qin/e, where is the permittivity of the material. (Technically, Eo is called the vacuum permittivity.) Suppose that a 70 nC point charge is surrounded by a thin, 32-cm-diameter spherical rubber shell and that the electric field strength inside the rubber shell is 2500 N/C.What is the permittivity of rubber? Use mandatos informales singulares y siga el modelo. MODELO: Trabajar en grupo Trabaja en grupo. 1) No llegar tarde _________. 2) Mejorar la productividad __________. 3) No hacer el trabajo de tus compaeros __________. 4) Aprender de tu jefa ____________. 5) No criticar al supervisor/a ____________. 6) Ofrecer ayuda ___________. Which sentence is punctuated correctly ? The house which has been vacant - is finally for sale.The statue, which is made of copper is well crafted.One country- that I would like to visit- is Australia.One play that I would like to read is Julius Caesar. .Many of the same environmental factors, such as cultural factors, that operate in the domestic market also exist internationally. Discuss the key cultural factors Starbucks had to consider as it expanded into China. Give three examples of business processes or operations that would benefit significantly from having detailed real-time or near real-time data and identify the benefits. Find the value of x for which a ll b 9(w + 585) = 360 w = ______ Sal purchased a used toaster at a yard sale. The seller told Sal that although the toaster was more than 10 years old, she had not had any problems with it. Sal takes the toaster home and uses it for a few months. One day, however, as Sal was using the toaster, it malfunctioned and caused a small fire in Sal's kitchen along with significant smoke damage. Sal decides to sue the manufacturer of the toaster and will do so within one month of the fire. What would likely be the manufacturer's best defense in a strict liability in tort action brought by Sal? You perform an experiment in which you take 16 pots of strawberry plants and give half of them 1 gm of ammonium nitrate per liter of water and the other half receive only water. Each group is then split in half again, and exposed to either 8 or 16 hours of light each day. You monitor the height of the plants for 4 weeks. You observe that plants grown in ammonium nitrate and 16 hours of light grow taller than no ammonium nitrate and 8 hours of light.The reason for the uptake by plants of nutrients like ammonium nitrate is asexual reproduction.homeostasis.evolution.sexual reproduction.natural selection Which sentences contain an adverb clause? What is the best description of the transformation shown?What is the best description of the transformation shown? The value that satisfies the equation 7/n=8/7 is What is the slope of the line represented by the equation y = 5 x 3?0-34o5tln mO 3 which process results in the release of carbon? select three options Inga can earn $375 per week in a plant store, or she can earn 3% of total sales. How much would Inga have to sell to earn more in commission than in salary?