In our cells, fermentation is referring to anaerobic respiration (respiration in the absence of oxygen). Which of the following are actual steps of cellular respiration that do NOT occur in the absence of oxygen? (There are three good answers)
Glycolosys
Pyruvate oxydation
Krebs cycle
Transcription
Oxidative phosphorlyation
DNA replication

Answers

Answer 1

In cells, fermentation refers to anaerobic respiration, which is the respiration that occurs in the absence of oxygen. It is a process that occurs in cells when there is an insufficient supply of oxygen, and it is used to produce ATP for the cell to function.

The following are actual steps of cellular respiration that do not occur in the absence of oxygen:Pyruvate oxidation: Pyruvate oxidation is the process that occurs after glycolysis. It is a process that occurs in the presence of oxygen and involves the conversion of pyruvate to acetyl-CoA, which is a precursor to the Krebs cycle.Krebs cycle: The Krebs cycle, also known as the citric acid cycle, occurs in the presence of oxygen and is responsible for producing ATP through the oxidation of acetyl-CoA.

Oxidative phosphorylation: Oxidative phosphorylation is the process by which ATP is synthesized from ADP using the energy released by the electron transport chain. This process occurs in the presence of oxygen and is essential for the production of ATP in cells.Thus, the steps of cellular respiration that do NOT occur in the absence of oxygen are Pyruvate oxidation, Krebs cycle and Oxidative phosphorylation.

To know more about glycolysis visit:

https://brainly.com/question/26990754

#SPJ11


Related Questions

PLEASE HELP ME DUE IN 2 HOURS FROM NOW.
What is the goal of personalized medicine? How will the study of genomics aid in the development of personalized medicine approaches?

Answers

Personalized medicine is an innovative field that focuses on tailoring medical care to each individual's unique genetic and biological makeup. Its main goal is to develop treatments that are specific to each patient's genetic and biological characteristics, making them more effective and personalized.

This approach will make medical care more accurate and targeted to each patient's individual needs and can lead to better clinical outcomes.The study of genomics will play a critical role in the development of personalized medicine. It is the study of the human genome, including its structure, function, and interactions with the environment. Genomic medicine will offer clinicians insights into the genetic makeup of each patient, enabling them to predict the likelihood of certain diseases, select the most effective medications, and determine the most appropriate dosages. As a result, this field will revolutionize the way we practice medicine, as it will lead to better outcomes for patients, reduce the burden of healthcare costs, and enhance the quality of life.

Personalized medicine is a promising field that has the potential to improve medical outcomes and reduce healthcare costs. With the study of genomics, researchers and clinicians will be able to develop personalized treatments that are tailored to each patient's unique needs, resulting in better clinical outcomes. In the future, this approach will become more widespread, and more people will benefit from it. It is an exciting time for personalized medicine and genomic research.

To know more about genomics visit:

brainly.com/question/29674068

#SPJ11

Draw, label and describe the leaf type and leaf arrangement of the species
a) Salvinia sp (floating fern): Fronds round, fingertip-sized, bent in the middle; tiny hairs apparent upon close examination of the upper side; form loose mats
b) Azolla sp (mosquito fern): Fronds irregularly branched, like flattened juniper twig
c) Lygodium sp (climbing fern) : Fronds 1" to 12" long; forms thick climbing mats
d) Asplenium sp (bird’s nest fern) : Fronds flat, wavy or crinkly; forms a rosette
e) Nephrolepis sp (Boston fern) : Fronds long, lacy and narrow; forms a delicate arch

Answers

Leaf types and arrangements of different species are as follows:

a) Salvinia s p (floating fern):

It is characterized by round and small fronds, which are bent in the middle. The fronds are about the size of a fingertip.

Upon close examination, tiny hairs can be seen on the upper surface of the fronds. It forms loose mats. b) Azolla sp (mosquito fern):

It is characterized by irregularly branched fronds, which look like flattened juniper twigs. Lygodium sp (climbing fern):

It is characterized by 1" to 12" long fronds that form thick climbing mats.

To know more about arrangements visit:

https://brainly.com/question/30435320

#SPJ11

1. A 48-year-old woman comes to the emergency department because of a 3-hour history of periumbilical pain radiating to the right lower and upper of the abdomen. She has had nausea and loss of appetite during this period. She had not had diarrhea or vomiting. Her temperature is 38°C (100.4 °F). Abdominal examination show diffuse guarding and rebound tenderness localized to the right lower quadrant. Pelvic examination shows no abnormalities. Laboratory studies show marked leukocytosis with absolute neutrophils and a shift to the left. Her serum amylase active is 123 U/L, and serum lactate dehydrogenase activity is an 88 U/L. Urinalysis within limits. An x-ray and ultrasonography of the abdomen show no free air masses. Which of the following best describes the pathogenesis of the patient's disease?
A. Contraction of the sphincter of Oddi with autodigestion by trypsin, amylase, and lipase
B. Fecalith formation of luminal obstruction and ischemia
C. Increased serum cholesterol and bilirubin concentration with crystallization and calculi formation
D. Intussusception due to polyps within the lumen of the ileum E. Multiple gonococcal infections with tubal plical scaring

Answers

The patient's symptoms, physical examination findings, and laboratory studies are consistent with acute appendicitis, which is characterized by inflammation and obstruction of the appendix.

Based on the given information, the patient presents with classic signs and symptoms of acute appendicitis. The periumbilical pain that radiates to the right lower and upper abdomen, accompanied by nausea, loss of appetite, and fever, are indicative of appendiceal inflammation. The presence of diffuse guarding and rebound tenderness localized to the right lower quadrant on abdominal examination further supports this diagnosis.

Laboratory studies reveal marked leukocytosis with absolute neutrophils, indicating an inflammatory response, and a shift to the left, suggesting an increase in immature forms of white blood cells. These findings are consistent with an infectious process, such as acute appendicitis.

Imaging studies, including an x-ray and ultrasonography of the abdomen, show no free air masses, ruling out perforation of the appendix. This supports the diagnosis of early or uncomplicated appendicitis, where the appendix is inflamed but not yet perforated.

In summary, the patient's clinical presentation, examination findings, and laboratory and imaging results are most consistent with acute appendicitis, which is caused by inflammation and obstruction of the appendix. Early recognition and prompt surgical intervention are crucial to prevent complications and ensure the patient's recovery.

the clinical presentation, diagnosis, and management of acute appendicitis to understand the importance of timely intervention in this condition.

Learn more about physical examination

brainly.com/question/29803572

#SPJ11

question 2
2. Provide answers for the blanks in the paragraph below: carry blood away from the heart, while the heart. Capillaries are the site for the diffusion of carry blood into capillary beds are called whi

Answers

The circulatory system is a vast network of organs and vessels that transport blood, nutrients, oxygen, and hormones throughout the body. The human circulatory system is composed of three main types of blood vessels: arteries, veins, and capillaries.

Arteries carry blood away from the heart, while veins carry blood toward the heart. Capillaries are the site for the diffusion of oxygen, nutrients, and carbon dioxide between the blood and the body's tissues. The blood vessels that carry blood into capillary beds are called arterioles. Arterioles are small arteries that regulate blood flow to the capillaries by contracting or dilating. On the other hand, venules are small veins that collect blood from the capillaries and join together to form larger veins that return blood to the heart. Therefore, arteries carry blood away from the heart while veins carry blood toward the heart. Capillaries are the site for the diffusion of oxygen, nutrients, and carbon dioxide between the blood and the body's tissues. The blood vessels that carry blood into capillary beds are called arterioles.

To know more about blood

https://brainly.com/question/2994911

#SPJ11

Can you explain solution of the question in detail
Sequence Alignment Compute the best possible global alignment for the following two sequences (filling the table below using dynamic programming), assuming a gap penalty of -5, a mismatch penalty of -

Answers

The question involves computing the best global alignment for two sequences using dynamic programming. A gap penalty of -5 and a mismatch penalty of -2 are assumed. The table needs to be filled to determine the optimal alignment.

Sequence alignment is a method used to compare and find similarities between two sequences of characters, such as DNA or protein sequences. In this question, the goal is to compute the best global alignment for two given sequences.

Dynamic programming is a commonly used algorithmic technique for solving sequence alignment problems. It involves filling a table, known as a scoring matrix, to calculate the optimal alignment. Each cell in the matrix represents a specific alignment between two characters from the sequences.

To determine the best alignment, a scoring system is used, which includes penalties for gaps and mismatches. In this case, a gap penalty of -5 and a mismatch penalty of -2 are assumed. The alignment with the highest score is considered the best alignment.

The table needs to be filled using dynamic programming techniques, such as the Needleman-Wunsch algorithm or the Smith-Waterman algorithm. These algorithms consider the scores of neighboring cells to determine the optimal alignment. The alignment path with the highest score is traced back through the matrix to obtain the final alignment.

By following the dynamic programming approach and applying the given gap and mismatch penalties, the table can be filled to compute the best global alignment for the two sequences. The resulting alignment will show how the characters from the sequences are matched, taking into account the penalties and aiming to maximize the overall alignment score.

Learn more about alignment here: https://brainly.com/question/29496002

#SPJ11

Can you explain solution of the question in detail Sequence Alignment Compute the best possible global alignment for the following two sequences (filling the table below using dynamic programming), assuming a gap penalty of -5, a mismatch penalty of -1, and a match score of +3. Would your answer be any different if the gap penalty was -1. S1: AGCGTAT S1: ACGGTAT T A T G C G G G T A T A 0 A с

Describe qualitatively how you expect the solution to this problem to evolve in space and time. Describe in particular the expected changes in shape of the spatial distribution as time progresses and any expected variation in the maximum and/or minimum values as time progresses. Be sufficiently descriptive in your text response so that a reader would be able to sketch the solution at several times based on your description.

Answers

The solution to this problem is expected to evolve both spatially and temporally, with changes in the shape of the spatial distribution and variations in the maximum and/or minimum values as time progresses.

The evolution of the solution in space and time can be described qualitatively as follows:

1. Spatial distribution: Initially, at t = 0, the spatial distribution of the solution may have a particular shape or pattern, depending on the specific problem. As time progresses, the spatial distribution is expected to change.

This change could manifest as the spreading or spreading out of the solution, leading to a broader distribution or a more diffused shape. Alternatively, the spatial distribution might concentrate or concentrate more in certain regions, resulting in a more localized or concentrated shape. The exact evolution of the spatial distribution will depend on the specific dynamics and boundary conditions of the problem.

2. Changes in shape: As time progresses, the shape of the spatial distribution is likely to transform. For example, if the initial distribution is initially more elongated or asymmetric, it might become more symmetrical or circular over time.

Conversely, a symmetric initial distribution might exhibit asymmetry or develop irregular features. The changes in shape can be influenced by factors such as diffusion, advection, or external forces acting on the system.

3. Variation in maximum and/or minimum values: The maximum and/or minimum values of the solution may vary as time progresses. The maximum value could increase, indicating growth or accumulation in certain regions, or decrease, suggesting a diffusion or dispersion process.

Similarly, the minimum value might rise or fall, indicating changes in concentration or the presence of certain phenomena. The specific trends and magnitudes of these variations will depend on the underlying dynamics and boundary conditions of the problem.

In summary, the solution to the problem is expected to evolve both spatially and temporally, leading to changes in the shape of the spatial distribution and variations in the maximum and/or minimum values as time progresses. The evolution of the solution will be influenced by factors such as diffusion, advection, external forces, and the initial conditions of the problem.

To know more about diffusion refer here:

https://brainly.com/question/29787215#

#SPJ11

13) Which of the following has a lower concentration outside of the cell compared to inside of the cell.
A) Ca++
B) K+
C) Cl-
D) Na+
14) Which of the following is an antiport transporter?
A) The Glucose/Sodium Pump
B) The acetylcholine ion transporter.
C) The Calcium Pump
D) The Sodium/Potassium pump

Answers

13) Of the following, Na+ has a lower concentration outside of the cell compared to inside of the cell. Na+ ion is less concentrated outside of the cell in comparison to inside of the cell.

14) The antiport transporters transport two or more molecules in opposite directions across the cell membrane. In the exchange process, one molecule enters the cell while the other molecule exits the cell.

13) Of the following, Na+ has a lower concentration outside of the cell compared to inside of the cell. Na+ ion is less concentrated outside of the cell in comparison to inside of the cell. The difference in the concentration of ions inside and outside of the cell forms an electrochemical gradient that regulates the transport of ions and other molecules across the cell membrane. Na+ ions are an essential component of many cellular processes, including the maintenance of osmotic pressure and the regulation of cellular pH. The concentration of Na+ ions is generally higher inside the cell than outside the cell.

14) The antiport transporters transport two or more molecules in opposite directions across the cell membrane. In the exchange process, one molecule enters the cell while the other molecule exits the cell. The Na+/K+ pump is an antiport transporter. Na+/K+ pump functions by transporting three Na+ ions from inside the cell to the outside of the cell and two K+ ions from the outside of the cell to the inside of the cell. The pump helps to establish an electrochemical gradient across the cell membrane. The other options, Glucose/Sodium pump, acetylcholine ion transporter, and calcium pump are not antiport transporters.

To know more about antiport transporters visit:

https://brainly.com/question/28497235

#SPJ11

Butter is solid at room temperature yet liquid at higher temperatures because a) heat causes formation of double bonds in the fatty acid molecules. b) intermolecular forces of attraction holding the fat molecules together are disrupted. c) butter is more saturated at room temperature. d) addition of the milk protein helps the fat molecules aggregate at room temperature. e) loss of chaperone molecules allows for the separation of the monomers.

Answers

The reason butter is solid at room temperature yet liquid at higher temperatures is that intermolecular forces of attraction holding the fat molecules together are disrupted with increased temperature.

Answer: b) Intermolecular forces of attraction holding the fat molecules together are disrupted. Butter is composed primarily of fats, which are triglycerides consisting of fatty acid molecules attached to a glycerol backbone. At room temperature, these fat molecules are packed closely together, and intermolecular forces such as van der Waals forces and hydrogen bonding hold them in a solid state.

However, when the temperature increases, the added thermal energy disrupts these intermolecular forces. The increased kinetic energy causes the fat molecules to move more rapidly, leading to the breakdown of the ordered packing and the conversion of butter from a solid to a liquid state.

Options a), c), d), and e) are not accurate explanations for the change in the physical state of butter with temperature. Heat does not cause the formation of double bonds in the fatty acid molecules (a), the level of saturation in butter (c) does not solely determine its solid or liquid state, the milk protein does not directly help fat molecules aggregate (d), and the loss of chaperone molecules is not relevant to the behavior of butter (e).

Therefore, the correct answer is b) intermolecular forces of attraction holding the fat molecules together are disrupted.

Learn more about intermolecular forces here:

https://brainly.com/question/31797315

#SPJ11

1. What are the factors and conditions that can increase
bleeding time?

Answers

Several factors and conditions can contribute to an increase in bleeding time. These include certain medications, underlying medical conditions, platelet disorders, and deficiencies in clotting factors.

Bleeding time refers to the duration it takes for blood to clot after an injury. Several factors and conditions can affect bleeding time. Certain medications, such as anticoagulants (e.g., aspirin, warfarin) and nonsteroidal anti-inflammatory drugs (NSAIDs), can interfere with platelet function and prolong bleeding time.

Additionally, underlying medical conditions like liver disease, kidney disease, and vitamin K deficiency can impair the synthesis of clotting factors, leading to prolonged bleeding.

Platelet disorders can also contribute to increased bleeding time. Conditions like thrombocytopenia (low platelet count), von Willebrand disease (deficiency or dysfunction of von Willebrand factor, a protein involved in clotting), and platelet function disorders (e.g., Glanzmann's thrombasthenia) can result in impaired platelet aggregation and clot formation, leading to prolonged bleeding time.

Furthermore, deficiencies in clotting factors, such as hemophilia (inherited clotting factor deficiencies), can cause prolonged bleeding time. Hemophilia A (deficiency of factor VIII) and hemophilia B (deficiency of factor IX) are the most common types of hemophilia.

It is important to note that if you experience prolonged or excessive bleeding, it is essential to consult a healthcare professional for proper evaluation and diagnosis, as the underlying cause needs to be addressed appropriately.

Learn more about blood here ;

https://brainly.com/question/30871175

#SPJ11

In which cases are prezygotic isolating mechanisms expected to strengthen primarily due to the indirect effects of linkage or pleiotropy, or by genetic drift, rather than by the direct effect of natural selection for prezygotic barriers? [Choose all answers that apply.] a. the populations are allopatric. b. mating between the members of populations occurs readily in nature, but the hybrids are sterile. c. members of each population do not mate with members of the other population because mating occurs at different times of year. d. introgression occurs between members of populations at a secondary hybrid zone, but the hybrids are less fit than either parent.

Answers

Prezygotic isolating mechanisms expected to strengthen primarily due to the indirect effects of linkage or pleiotropy, or by genetic drift, rather than by the direct effect of natural selection for prezygotic barriers in the following cases the populations are allopatric. introgression occurs between members of populations

at a secondary hybrid zone, but the hybrids are less fit than either parent. What are Prezygotic isolating mechanisms Prezygotic isolating mechanisms are biological mechanisms that prevent hybridization between two species by preventing the formation of a zygote. These mechanisms are in effect before fertilization and include many forms of mate selection. Prezygotic isolating mechanisms are often influenced by genetic drift, pleiotropy, and linkage. Some species exhibit prezygotic isolating mechanisms that have evolved to prevent cross-species mating. Allopatric populations are those that have been separated geographically. In the case of allopatric populations, prezygotic isolation mechanisms are often the only barriers to interbreeding between populations. Therefore, they are likely to evolve quickly.

In populations that are parapatric or sympatric, direct natural selection is more likely to act on prezygotic barriers because individuals are more likely to come into contact with other species. Prezygotic isolating mechanisms are expected to strengthen primarily due to genetic drift, linkage, and pleiotropy when populations are allopatric. It is also expected to strengthen when introgression occurs between members of populations at a secondary hybrid zone, but the hybrids are less fit than either parent.

To know more about introgression  Visit;

https://brainly.com/question/30887515

#SPJ11

What is the purpose of the Lysine Decarboxylase test
lab? How is Lysine Decarboxylase activity determined in the
lab?
What are the procedural steps of the lab (please include
aseptic technique steps

Answers

The Lysine Decarboxylase test is a laboratory test used to determine the ability of an organism to produce the enzyme lysine decarboxylase.

This test is commonly performed in microbiology to identify and differentiate bacterial species based on their metabolic capabilities. The purpose of the Lysine Decarboxylase test is to detect the presence of lysine decarboxylase activity, which can indicate the ability of an organism to decarboxylate lysine, an amino acid. The test helps in differentiating between bacteria that can ferment lysine and produce the enzyme lysine decarboxylase from those that cannot. The Lysine Decarboxylase activity can be determined in the lab by using a lysine decarboxylase medium. The medium contains lysine as the sole source of carbon and nitrogen. The presence of lysine decarboxylase enzyme in the organism will result in the decarboxylation of lysine, producing the byproduct cadaverine. The pH indicator in the medium changes from purple to yellow as the pH increases due to the production of cadaverine. Procedural steps of the Lysine Decarboxylase test, including aseptic technique steps, may involve the following: Prepare the lysine decarboxylase medium according to the manufacturer's instructions or laboratory protocol.

Use a sterile inoculating loop or needle to obtain a pure bacterial culture.

Aseptically streak the bacterial culture onto the surface of the lysine decarboxylase medium.

Incubate the medium at the appropriate temperature (usually 37°C) for a specific duration (e.g., 24-48 hours).

After incubation, observe the color change in the medium. A yellow color indicates positive lysine decarboxylase activity, while a purple color indicates negative.

Record and interpret the results accordingly, comparing them to known control strains or reference guides.

During the entire process, it is important to maintain proper aseptic technique, including sterilizing the inoculating loop or needle, avoiding contamination from the environment, and ensuring proper handling and disposal of bacterial cultures to prevent cross-contamination.

Learn more about test here:

https://brainly.com/question/33279537

#SPJ11

ed Question 7 1 As the blood pH increases, the amount of H+ ions in plasma increases O True Next False Previous SOL hp
Catabolic reactions release energy in the process to break down bigger molecules

Answers

It is FALSE as the blood pH increases, the amount of H+ ions in plasma increases.

As the blood pH increases, the amount of H+ ions in plasma decreases. The pH scale is a measure of the concentration of hydrogen ions (H+) in a solution. A higher pH value indicates a lower concentration of H+ ions, while a lower pH value indicates a higher concentration of H+ ions. Therefore, when the blood pH increases, it becomes more alkaline or basic, indicating a decrease in the concentration of H+ ions. Conversely, when the blood pH decreases, it becomes more acidic, indicating an increase in the concentration of H+ ions. The regulation of blood pH is essential for maintaining homeostasis in the body, as slight deviations from the normal pH range can have significant physiological consequences.

To know more about blood pH

brainly.com/question/14536764

#SPJ11

Draw and label the following parts of the excretory system: kidney, renal artery, renal vein, ureter, bladder, and urethra. State the function of each organ.

Answers

Each organ in the excretory system plays a vital role in the process of removing waste and maintaining fluid balance in the body.

Kidney: Function: The kidneys are the main organ of the excretory system. They filter waste products and excess substances from the blood.

Renal Artery: Function: The renal artery supplies oxygenated blood to the kidneys, allowing them to perform their filtration and excretory functions.

Renal Vein: Function: The renal vein carries deoxygenated blood away from the kidneys and back to the heart for oxygenation.

Ureter: Function: Ureters are thin, muscular tubes that transport urine from the kidneys to the urinary bladder.

Urinary Bladder:

Function: The urinary bladder is a muscular sac that stores urine until it is expelled from the body.

Urethra: Function: The urethra is a tube that carries urine from the bladder to the external opening, allowing urine to be eliminated from the body during urination.

To learn more about organ follow the link:

https://brainly.com/question/12825206

#SPJ4

Carnitine shuttle is used to
a) Transport FA chains from the adipose tissue to the liver.
b) Transport FA chains from the blood-stream to the cytosol.
c) Transport FA chains from the cytosol to the mitochondrial matrix.
d) Transport FA chains from the mitochondrial matrix to the cytosol.

Answers

Carnitine shuttle is used to transport FA chains from the cytosol to the mitochondrial matrix. So, option C is accurate.

The carnitine shuttle plays a vital role in the transport of fatty acid (FA) chains from the cytosol to the mitochondrial matrix, where they undergo β-oxidation for energy production. Fatty acids are first activated to form acyl-CoA molecules in the cytosol. However, these acyl-CoA molecules cannot directly enter the mitochondrial matrix due to the impermeability of the mitochondrial inner membrane.

To overcome this barrier, the acyl-CoA molecules are converted to acylcarnitine by the enzyme carnitine palmitoyltransferase I (CPT-I) located on the outer mitochondrial membrane. The acylcarnitine is then transported across the mitochondrial inner membrane via a translocase called the carnitine-acylcarnitine translocase.

Once inside the mitochondrial matrix, the acylcarnitine is converted back to acyl-CoA by the enzyme carnitine palmitoyltransferase II (CPT-II). The liberated acyl-CoA can then undergo β-oxidation to produce ATP.

To know more about fatty acid (FA)

brainly.com/question/29763868

#SPJ11

The corpus luteum is Select one: a. the ovarian ligament that anchors the ovary to the uterus b. another name for the oocyte c. the ruptured follicle that remains in the ovary after ovulation d. neces

Answers

The correct answer is c. the ruptured follicle that remains in the ovary after ovulation.

The corpus luteum is a temporary structure that forms in the ovary after ovulation. During each menstrual cycle, a mature follicle in the ovary releases an egg (oocyte) in a process called ovulation. After the egg is released, the remaining part of the follicle collapses and forms the corpus luteum.

The corpus luteum is primarily composed of cells called luteinized granulosa cells and theca cells. It produces and secretes hormones, primarily progesterone, which plays a crucial role in preparing and maintaining the uterus for potential implantation of a fertilized egg. If fertilization and pregnancy occur, the corpus luteum continues to produce progesterone to support the early stages of pregnancy. If fertilization does not occur, the corpus luteum gradually regresses, leading to a decrease in progesterone levels, and a new menstrual cycle begins.

To learn more about ovulation follow:

https://brainly.com/question/31872360

#SPJ11

pls
answer all and the bonus!!!
1. Does this image depict the male or female bladder? 2. List 2 features that helped you come to your conclusion Bonus: What is the specific name of the muscle at the arrow?

Answers

According to the information the image depicted a female bladder. We can come to this conclusion because the urethra is short and the shape is similar to the female reproductive system.

Does the image depict the male or female bladder?

To identify if the image presents a female or male bladder, we must take into account different aspects such as the shape and the parts. In this case, after analyzing the image, we can infer that it corresponds to a female bladder because the shape is very similar to the female reproductive system and the urethra is quite short

Additionally, we can infer that the overlying muscle is called the detrusor muscle.

Note: This question is incomplete. Here is the complete information:

Attached image.

Learn more about female bladder in: https://brainly.com/question/27266868

#SPJ1

1) 1) The centromere is a region in which A) new spindle microtubules form at either end. B) chromosomes are grouped during telophase. the nucleus is located prior to mitosis. D) chromatids remain attached to one another until anaphase. E) metaphase chromosomes become aligned at the metaphase plate. 2) 2) If there are 20 chromatids in a cell, how many centromeres are there? A) 80 B) 10 C) 30 D) 40 E) 20 3) 3) Which is the longest of the mitotic stages? A) anaphase B) telophase prometaphase D) metaphase E) prophase 4) 4) A cell containing 92 chromatids at metaphase of mitosis would, at its completion, produce two nuclei each containing how many chromosomes? A) 92 B) 16 C) 23 D) 46 E) 12 5) Cytokinesis usually, but not always, follows mitosis. If a cell completed mitosis but not cytokinesis, 5) the result would be a cell with A) two nuclei but with half the amount of DNA. B) a single large nucleus. two nuclei. D) two abnormally small nuclei. E) high concentrations of actin and myosin. 6) The formation of a cell plate is beginning across the middle of a cell and nuclei are re-forming at opposite ends of the cell. What kind of cell is this? A) an animal cell undergoing cytokinesis B) an animal cell in telophase C) an animal cell in metaphase D) a plant cell undergoing cytokinesis E) a plant cell in metaphase 7) 7) Chromosomes first become visible during which phase of mitosis? A) metaphase B) prometaphase 9) telophase D) prophase E) anaphase

Answers

1) The centromere is a region in which chromatids remain attached to one another until anaphase.

2) If there are 20 chromatids in a cell, there would be 20 centromeres.

3) The longest stage of mitosis is metaphase.

4) A cell containing 92 chromatids at metaphase of mitosis would, at its completion, produce two nuclei each containing 46 chromosomes.

5) If a cell completed mitosis but not cytokinesis, the result would be a cell with two nuclei but with half the amount of DNA.

6) The formation of a cell plate is beginning across the middle of a cell and nuclei are re-forming at opposite ends of the cell. This kind of cell is a plant cell undergoing cytokinesis.

7) Chromosomes first become visible during prophase of mitosis.

1) The centromere is a region in which D) chromatids remain attached to one another until anaphase.

The centromere is the specialized region of a chromosome where the two sister chromatids are joined together. During mitosis, the chromatids are held together at the centromere until anaphase, when they separate and move towards opposite poles of the cell. This ensures that each daughter cell receives the correct number of chromosomes.

2) If there are 20 chromatids in a cell, the number of centromeres would be E) 20.

Each chromatid contains one centromere. Since there are 20 chromatids, there would be 20 centromeres. Each chromatid is a replicated chromosome consisting of two sister chromatids held together at the centromere.

3) The longest stage of mitosis is D) metaphase.

Metaphase is the stage of mitosis where the replicated chromosomes align along the equatorial plane of the cell, known as the metaphase plate. This alignment ensures that each chromosome is correctly positioned before the separation of sister chromatids during anaphase. Metaphase can take a relatively longer time compared to other stages of mitosis.

4) A cell containing 92 chromatids at metaphase of mitosis would, at its completion, produce two nuclei each containing D) 46 chromosomes.

In metaphase of mitosis, each chromatid is still attached to its sister chromatid at the centromere. When the chromatids separate during anaphase and complete mitosis, each resulting daughter cell will receive the same number of chromosomes as the parent cell. Since there are 92 chromatids, there would be 46 chromosomes in each of the two nuclei produced at the completion of mitosis.

5) If a cell completed mitosis but not cytokinesis, the result would be a cell with A) two nuclei but with half the amount of DNA.

Cytokinesis is the process of dividing the cytoplasm and organelles to form two daughter cells. If mitosis is completed without cytokinesis, the result would be a single cell with two nuclei. However, the DNA content would not be halved because the chromosomes have already replicated during the S phase of the cell cycle. Therefore, each nucleus would still contain the same amount of DNA as the original cell.

6) The formation of a cell plate is beginning across the middle of a cell and nuclei are re-forming at opposite ends of the cell. This kind of cell is D) a plant cell undergoing cytokinesis.

The formation of a cell plate is a characteristic feature of cytokinesis in plant cells. During cytokinesis, a cell plate made of vesicles derived from the Golgi apparatus starts to form across the equatorial plane of the cell. This cell plate eventually develops into a new cell wall, dividing the cytoplasm into two daughter cells. The reformation of nuclei at opposite ends of the cell indicates that mitosis has already occurred.

7) Chromosomes first become visible during D) prophase of mitosis.

Prophase is the initial stage of mitosis where the chromatin fibers condense

To know more about Cytokinesis, refer here:

https://brainly.com/question/29765124#

#SPJ11

A point mutation would have highest chance of being important for natural selection if A. It occurred at a synonymous sight in an intron B. It occurred at a nonsynonymous site of an exon C. It occurred at a 3rd codon position in an exon D. It occurred anywhere in an intron

Answers

The coreect option is (B).A point mutation would have the highest chance of being important for natural selection if it occurred at a nonsynonymous site of an exon.

A point mutation is the process that causes a change in a single nucleotide in DNA. It can occur anywhere in the DNA sequence, such as introns, exons, and noncoding regions.

When point mutations occur in the coding regions of DNA (exons), they can alter the amino acid sequence of the protein, and thus can have an impact on natural selection.

The highest chance of the mutation being significant would be if it occurred at a nonsynonymous site of an exon, where the change would result in a different amino acid being incorporated into the protein. This could alter the protein's structure, function, or interaction with other molecules.

Point mutation is a type of genetic mutation that involves a change in a single nucleotide in the DNA sequence. Point mutations can occur in various parts of the genome, such as introns, exons, and noncoding regions. The effects of point mutations depend on their location and the nature of the change.

If a point mutation occurs in an exon, it can have a significant impact on the protein's structure and function.Point mutations that occur in the coding regions of DNA (exons) can be divided into two categories: synonymous and nonsynonymous mutations.

Synonymous mutations do not change the amino acid sequence of the protein because the genetic code is redundant, meaning that multiple codons can encode the same amino acid. On the other hand, nonsynonymous mutations change the amino acid sequence of the protein because they substitute one nucleotide for another, which can result in a different amino acid being incorporated into the protein.

Sequence changes that occur at nonsynonymous sites are more likely to have an impact on natural selection than those that occur at synonymous sites. The reason is that nonsynonymous mutations can change the protein's structure, function, or interaction with other molecules.

Therefore, nonsynonymous mutations are more likely to be selected against or for, depending on their effects on the protein's fitness. In summary, a point mutation would have the highest chance of being important for natural selection if it occurred at a nonsynonymous site of an exon.

To learn more about mutation

https://brainly.com/question/17106056

#SPJ11

Describe the structure of the male and female reproductive systems, relating structure to function (AC 1.1). Use clear diagrams, either ones you have drawn or ones you have annotated Remember to relate structures to functions: how does the structure enable that function to effectively take place

Answers

The male and female reproductive systems have distinct structures that enable their respective functions in the process of reproduction.

What are the structures and functions of the male and female reproductive systems?

Male Reproductive System:

The testes produce sperm through the process of spermatogenesis. Sperm mature and are stored in the epididymis before being transported through the vas deferens. The prostate gland and seminal vesicles contribute fluids to semen, which nourish and protect the sperm.

Female Reproductive System:

The ovaries produce eggs through oogenesis and also release hormones such as estrogen and progesterone. The fallopian tubes capture eggs released from the ovaries and provide a site for fertilization by sperm.

The fertilized egg then travels to the uterus, where it implants and develops into a fetus. The cervix acts as the entrance to the uterus and undergoes changes during the menstrual cycle. The vagina serves as the birth canal during childbirth and also facilitates sexual intercourse.

The structures of the male and female reproductive systems are specialized to perform their respective functions in reproduction. The male system is designed for the production, storage, and delivery of sperm, while the female system is responsible for producing and releasing eggs, facilitating fertilization, and supporting embryo development. These structures ensure the effective transfer of genetic material and the continuation of the species.

Learn more about female reproductive systems

brainly.com/question/32116218

#SPJ11

Which of the following would not be expected to lead to fixation? A ongoing bottlenecks impacting a small population B. negative frequency-dependent selection on a large population (such as with a large population of purple and yellow elderflower orchids) Cunderdominance D. ongoing strong directional selection on a highly heritable trait across an entire population

Answers

The option which would not be expected to lead to fixation is B: negative frequency-dependent selection on a large population (such as with a large population of purple and yellow elderflower orchids).

Fixation refers to the situation when all members of a population carry only one allele. Fixation can occur when a population's gene pool lacks diversity.

Fixation can be a gradual process or an abrupt one. However, fixation's genetic consequence is the same: a homozygous gene pool.Below are explanations on why the other options would lead to fixation:A.

Ongoing bottlenecks impacting a small Population bottlenecks can happen due to natural events such as droughts, fires, or floods.

It can also happen because of human activity. In either case, when a population bottleneck occurs, there is a reduction in population size, and there is a loss of genetic variation.

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

1. Adjust the view so you can see the paired kidneys near the top and rotate the view to see the dorsal portion of the kidneys. How would you describe their relationship to the intestines and the spin

Answers

The kidneys are located near the top of the abdominal cavity, and when viewed dorsally, they are positioned posterior to the intestines and slightly lateral to the spine.

The kidneys are paired organs located in the upper part of the abdominal cavity, just below the diaphragm, on either side of the spine. When viewed dorsally (from the back), the kidneys can be seen positioned posteriorly, which means they are located toward the back of the body. They are also slightly lateral to the spine, meaning they are situated on the sides of the spine rather than directly in the middle.

In relation to the intestines, the kidneys are typically positioned superiorly, meaning they are located above the intestines. The intestines, including the small intestine and large intestine, are positioned anteriorly (toward the front) of the kidneys. This arrangement allows the kidneys to have a more protected location within the abdominal cavity, as the intestines provide some degree of cushioning and support.

Overall, the kidneys' relationship to the intestines and spine can be described as being posterior and slightly lateral to the spine, and superior to the intestines.

Learn more about kidneys here: https://brainly.com/question/29992259

#SPJ11

Jessica recently struggled with remembering at university and failed all of her tests. An MRI scan was ordered, which revealed that her hippocampus had been infected with an unknown virus.
Using your synaptic transmission knowledge
1) Describe the synaptic transmission processes and identify the structures involved.
2) How would an excitatory neuromodulator impact her ability to remember if the virus has lowered the amount of AMPA receptors? Justify your decision.

Answers

1. Synaptic transmission is the process by which information is transmitted between neurons. It involves structures such as the presynaptic terminal, synaptic vesicles, the synaptic cleft, and the postsynaptic membrane.

2. If the virus has reduced the number of AMPA receptors, an excitatory neuromodulator would have a diminished impact on her ability to remember.

1. Synaptic transmission is the process by which information is transmitted between neurons. It involves several structures and steps. When an action potential reaches the presynaptic terminal of a neuron, it triggers the release of neurotransmitters from synaptic vesicles into the synaptic cleft. The neurotransmitters diffuse across the cleft and bind to specific receptors on the postsynaptic membrane. This binding can either excite or inhibit the postsynaptic neuron, depending on the type of neurotransmitter and receptor involved. If the postsynaptic neuron is excited, an action potential may be generated and propagated down the neuron.

The structures involved in synaptic transmission include the presynaptic terminal, synaptic vesicles, the synaptic cleft, and the postsynaptic membrane. The presynaptic terminal contains the neurotransmitter-filled vesicles and voltage-gated calcium channels that trigger neurotransmitter release. The synaptic cleft is the small gap between the presynaptic terminal and the postsynaptic membrane. The postsynaptic membrane contains receptors that bind neurotransmitters and initiate postsynaptic responses.

2. If the virus has lowered the amount of AMPA receptors, which are a type of ionotropic glutamate receptor involved in excitatory synaptic transmission, it would likely impact Jessica's ability to remember. AMPA receptors play a crucial role in synaptic plasticity and the strengthening of synaptic connections during learning and memory formation. They are responsible for the fast excitatory transmission in the brain.

With fewer AMPA receptors, the excitatory neuromodulator would have a reduced impact on the postsynaptic neuron. This means that the transmission of excitatory signals and the generation of action potentials may be compromised. As a result, the ability to form and consolidate memories could be impaired. AMPA receptor downregulation could lead to synaptic dysfunction and deficits in synaptic plasticity, which are essential processes for memory formation and storage.

In summary, a decreased number of AMPA receptors due to the virus would likely negatively impact Jessica's ability to remember by impairing the strength and efficiency of excitatory synaptic transmission, which is crucial for memory formation and recall.

To know more about synaptic transmission:

https://brainly.com/question/32918646


#SPJ11

Nutrition
Carlo is developing a research project to investigate the prevalence of overweight and obesity in adult Australian men. He will need to collect data from 300 men aged 19 years and over, who will be recruited from the electoral roll in the Melbourne metropolitan area. Carlo will need to analyse this data to determine the current prevalence of overweight and obesity in this cohort. Answer the following questions about this case study.
a. In order to support his rationale, Carlo must refer to some important data from the Australian Health Survey. What proportion of adult Australian men are overweight or obese? About 75%
About 81%
About 63%
About 67%
b. Why is it important to reduce the prevalence of overweight and obesity in Australia? Overweight and obesity are directly associated with an increased risk of scurvy
Overweight and obesity lead to chronic inflammation, which increases the risk of metabolic dysfunction
Overweight and obesity are typically associated with poor protein intake, which is also a key nutrient of importance in this demographic
Overweight and obesity are associated with low intake of sodium and excessive fibre intake, which are risk factors for cardiovascular disease
c. Select the study design that Carlo should use for this research, and then select whether this study is observational or experimental research. A Randomised Controlled Trial
A Case-control study
A Cross-sectional Study
A Prospective Cohort Study
Observational Study Design
Experimental Study Design
d. What is 1 dietary recommendation that aligns with the Australian Dietary Guidelines, which Carlo could make to his study participants to decrease their risk of overweight and obesity? (2 Marks)
Add sesame oil to a beef stir fry
Consume 3.5 - 4 serves of lean meats and poultry, fish, eggs, nuts and seeds per day
Consume 5 - 6 serves of vegetables per day
Consume 3 serves of full-fat milk, yoghurt cheese and/or alternatives per day
e. One of Carlo’s participants is a 21 year old male, who is 180cm tall and weighs approximately 71kg. Carlo determines that he has a physical activity level (PAL) of 1.6. According to the Nutrient Reference Values, how much dietary energy (in kilojoules) should Carlo’s participant be consuming per day? Write your answer in the space provided below, expressed as a number. No spaces or punctuation are required.

Answers

Australian men: 63% overweight/obese. Reduce overweight/obesity: aggravation, brokenness. Study design: Cross-sectional, observational. Recommendation: Eat 5-6 vegetables/day. Participation: 10,898 kilojoules/day.

How do you determine how much dietary energy (in kilojoules) should Carlo’s participant be consuming per day

a. The proportion of grown-up Australian men who are overweight or stout agreeing to the Australian Wellbeing Overview is around 63%.

b. It is critical to decreasing the predominance of overweight and corpulence in Australia since overweight and corpulence are related to unremitting aggravation and expanded chance of metabolic brokenness.

c. Carlo ought to utilize a Cross-sectional design as the study design for his inquiry. It is an observational study design.

d. One dietary suggestion that adjusts with the Australian Dietary Rules to reduce the chance of being overweight and corpulence is to expend 5-6 servings of vegetables per day.

e. Agreeing to the Nutrient Reference Values, the member with a PAL of 1.6 ought to be eating around 10,898 kilojoules of dietary vitality per day.

Learn more about dietary energy here:

https://brainly.com/question/27915226

#SPJ4

D-branching, glycogen phosphorylase, phosphoglucomutase, and transferase are four enzymes involved in glycogen breakdown. What are their functions?

Answers

The functions of D-branching, glycogen phosphorylase, phosphoglucomutase, and transferase are essential in glycogen breakdown and play different roles in this process.

The enzymes involved in glycogen breakdown are

Glycogen phosphorylase: This enzyme catalyzes the rate-limiting step of glycogenolysis. It cleaves α-1,4-glycosidic bonds, releasing glucose-1-phosphate as a product.Phosphoglucomutase: It is an isomerase enzyme that converts glucose-1-phosphate to glucose-6-phosphate. It is the second enzyme involved in the breakdown of glycogen. Transferase: This enzyme plays a vital role in the synthesis of glycogen and is also involved in its degradation. It catalyzes the transfer of oligosaccharide units from one glycogen molecule to another.D-Branching: This enzyme removes oligosaccharide units from one branch and attaches them to another branch, generating a new branch point. It plays a critical role in glycogen metabolism by facilitating branching and debranching of glycogen molecules.

Therefore, these four enzymes, i.e. D-branching, glycogen phosphorylase, phosphoglucomutase, and transferase are essential in glycogen breakdown and play different roles in this process.

Learn more about Glycogen phosphorylase: https://brainly.com/question/31991451

#SPJ11

What muscle causes the downward pull on the first
metatarsal?
What ligament partially inserts on the medial talar
tubercle?
What bone does the medial malleoulus part of?
What ligament connects the sus

Answers

The tibialis anterior muscle pulls downward on the first metatarsal. The deltoid ligament inserts on the medial talar tubercle. The medial malleolus is part of the tibia bone. The spring ligament connects the sustentaculum tali to the navicular bone.

The muscle that causes the downward pull on the first metatarsal is the tibialis anterior. The ligament that partially inserts on the medial talar tubercle is the deltoid ligament.The medial malleoulus is part of the tibia bone.The ligament that connects the sustentaculum tali of the calcaneus bone to the navicular bone is the spring ligament.In summary:Muscle causing downward pull on first metatarsal is Tibialis Anterior.The deltoid ligament partially inserts on the medial talar tubercle.The medial malleolus is part of the tibia bone.The spring ligament connects the sustentaculum tali of the calcaneus bone to the navicular bone.The tibialis anterior muscle pulls downward on the first metatarsal. The deltoid ligament inserts on the medial talar tubercle. The medial malleolus is part of the tibia bone. The spring ligament connects the sustentaculum tali to the navicular bone.content loadedWhat muscle causes the downward pull on the firstmetatarsal?What ligament partially inserts on the medial talartubercle?What bone does the medial malleoulus part of?What ligament connects the sus

learn more about malleolus here:

https://brainly.com/question/30812826

#SPJ11

Enzymes are: (select all correct responses)
a. highly specific
b. carbohydrates
c. consumed/destroyed in reactions
d. used to increase the activation energy of a reaction
e. catalysts

Answers

The correct responses are: a. Highly specific, e. Catalysts, enzymes are highly specific catalysts that accelerate chemical reactions by lowering the activation energy barrier.

Enzymes are highly specific (option a) in their ability to catalyze specific reactions. Each enzyme is designed to interact with a specific substrate or group of substrates, enabling them to perform their function with precision. Enzymes are not carbohydrates (option b). Carbohydrates are a type of biomolecule that includes sugars, starches, and cellulose, whereas enzymes are proteins or sometimes RNA molecules known as ribozymes.

Enzymes are not consumed or destroyed in reactions (option c). They are not altered or used up during the catalytic process. Instead, enzymes facilitate reactions by lowering the activation energy required for the reaction to occur. Enzymes are catalysts (option e). They increase the rate of chemical reactions by lowering the activation energy barrier, thereby accelerating the conversion of substrates into products. Enzymes achieve this by providing an alternative reaction pathway with a lower energy barrier, making the reaction more favorable.

Learn more about energy barrier here

https://brainly.com/question/32067765

#SPJ11

3. Assume a person receives the Johnson&Johnson vaccine. Briefly list the cellular processes or molecular mechanisms that will take place within the human cells that will result in the expression of the coronavirus antigen.

Answers

Processes include viral vector entry into cells, vector replication, expression of the viral spike protein gene, translation of the spike protein mRNA, and presentation of the spike protein on the cell surface.

The Johnson & Johnson vaccine utilizes a viral vector-based approach to generate an immune response against the coronavirus antigen. The vaccine uses a modified adenovirus, specifically Ad26, as the viral vector. Once the vaccine is administered, several cellular processes and molecular mechanisms come into play.

Firstly, the viral vector (Ad26) enters human cells, typically muscle cells near the injection site. This is facilitated by the specific interactions between viral proteins and cell surface receptors.

After the entry, the viral vector undergoes replication within the host cells. This replication allows for the amplification of the viral genetic material and subsequent gene expression.

The coronavirus antigen expression is achieved through the insertion of the genetic material encoding the spike protein of the SARS-CoV-2 virus into the viral vector genome. The spike protein gene is under the control of specific regulatory elements to ensure its expression.

Once the spike protein mRNA is transcribed, it undergoes translation, resulting in the synthesis of spike protein molecules within the host cells. These spike proteins are similar to those found on the surface of the SARS-CoV-2 virus and act as antigens.

Finally, the host cells present the spike protein antigens on their surface using major histocompatibility complex (MHC) molecules. This antigen presentation allows immune cells, such as T cells and B cells, to recognize and mount an immune response against the spike protein.

In summary, upon receiving the Johnson & Johnson vaccine, the viral vector enters human cells, undergoes replication, and expresses the coronavirus spike protein gene.

The spike protein mRNA is translated into spike protein molecules, which are presented on the cell surface, leading to the subsequent immune response against the coronavirus antigen.

Learn more about mRNA here:

https://brainly.com/question/29316969

#SPJ11

Which of these events causes a spring bloom in temperate waters?
Group of answer choices:
cooling of the air so that the water will mix deep enough to bring nutrients to the surface
creation of a warm buoyant surface layer that traps phytoplankton near the surface
March showers that bring May flowers
increase of sunlight after nutrients build up over the winter

Answers

A spring bloom in temperate waters is primarily caused by the cooling of the air, which leads to the mixing of water layers and brings nutrients to the surface. The correct answer is option a.

During winter, nutrient-rich waters are found at deeper levels due to limited mixing. However, as the air cools, it creates temperature gradients that induce mixing, allowing the nutrient-rich water to rise to the surface.

This influx of nutrients, combined with increasing sunlight as the days lengthen, provides ideal conditions for the growth of phytoplankton.

The creation of a warm buoyant surface layer or the influence of March showers may play secondary roles, but the primary trigger for the spring bloom is the cooling of the air and subsequent nutrient mixing.

The correct answer is option a.

To know more about buoyant refer to-

https://brainly.com/question/31379289

#SPJ11

Complete question

Which of these events causes a spring bloom in temperate waters?

Group of answer choices:

a. cooling of the air so that the water will mix deep enough to bring nutrients to the surface

b. creation of a warm buoyant surface layer that traps phytoplankton near the surface

c. March showers that bring May flowers

d. increase of sunlight after nutrients build up over the winter

Pair molecular technique types below with their respective definitions. (Note: Each definition may fit multiple different technique types and can be used multiple times): 1) cDNA Library 7) Microarrays 2) Cloning 8) PCR 3) Colony Blot 4) DNA Sequencing 9) Reverse Transcription 10) RNA-Sequencing D) Determine RNA levels of one gene: II) Determine all RNA levels of a cell: III) Utilize RNA template to produce DNA copy: IV) Amplify/Intensify a DNA sequence for detection: VDetect specific DNA via probing: VI) Gather cloned DNA of transcribed genes: VII) Gather all cloned DNA: VIII) Utilize restriction enzymes: IX) Determines nucleotide order. X) Utilize complementary base pairing: 5) Genomic Library 11) RT-qPCR 6) Labeling

Answers

The following are the Pair molecular technique types with their respective definitions:

Utilize RNA template to produce DNA copy:

Reverse Transcription (RT)This technique is widely utilized in the field of molecular biology to produce a complementary DNA (cDNA) copy of RNA. Primarily, this method is used to detect gene expression levels by utilizing polymerase chain reaction (PCR) or cloning.

Amplify/Intensify a DNA sequence for detection:

PCRThis molecular technique is employed to amplify a particular segment of DNA in vitro. In PCR, the temperature is controlled, and DNA primers are employed to define the DNA fragment to be copied. PCR is a potent tool for diagnosing diseases, detecting DNA mutations, and sequencing DNA.

Via probing detect specific DNA:

Colony BlotThis molecular technique is utilized for the detection of a specific DNA sequence from a large group of clones or colonies in a screening procedure. This technique is useful when you have a gene with no known sequence information but want to identify a single clone that contains the gene.

Labeling:

DNA SequencingThis molecular technique is used to detect nucleotide sequences in DNA molecules. A sequence of DNA is initially fragmented into many small fragments, and each fragment is then labeled with a fluorescent dye. Detection of nucleotides occurs as the DNA is electrophoresed through a gel.

Detect all RNA levels of a cell:

RNA-SequencingRNA sequencing is a method used to determine the complete RNA content in a cell or tissue. The entire transcriptome, including low-abundance transcripts, can be detected using this technique.

Gather cloned DNA of transcribed genes:

cDNA LibrarycDNA libraries are produced by reverse transcribing mRNA, followed by cloning the cDNA into a plasmid or a viral vector. This method produces a collection of cloned DNA molecules, each of which corresponds to a single RNA molecule.

Gather all cloned DNA:

Genomic LibraryThis technique involves the cloning of complete sets of an organism's genomic DNA into plasmids or other vectors. All of the genes present in the organism's genome are included in this library.

Determines nucleotide order:

DNA SequencingDNA sequencing is a technique that allows scientists to determine the order of nucleotides in DNA molecules.

Utilize complementary base pairing:

PCRPCR amplification is based on complementary base pairing between DNA primers and the target DNA sequence. PCR can amplify a single target sequence from a complex mixture of DNA.

Determine RNA levels of one gene:

RT-qPCRRT-qPCR is a method for detecting and quantifying the expression of a particular gene in RNA.

To know more about RNA visit:

https://brainly.com/question/4120168

#SPJ11

In dogs, a dominant gene (W) produes a wire-haired texture. The recessive allele (w) produces smooth hair.
a) A homozygous wire-haired male is mated with a female with smooth hair. Draw the Punnett square for the cross. What percentage of the F1 generation is expected to have wirey hair?
b) Draw the Punnett square and identify what percentage of the F2 generation is expected to have wirey hair.

Answers

The Punnett square for the cross between a homozygous wire-haired male and a female with smooth hair is shown below Dominant gene: WWRecessive gene The male parent has a dominant allele (W) and a recessive allele (Ww).

The female parent has two recessive alleles (ww).From this Punnett square, we can see that all the F1 generation offspring will have the Ww genotype. Thus, they will all have wire-haired texture.So, 100% of the F1 generation is expected to have wirey hair.

The Punnett square for the cross between two heterozygous wire-haired dogs (Ww x Ww) is shown below From this Punnett square, we can see that 25% of the F2 generation is expected to have smooth hair (ww genotype), while 75% is expected to have wire-haired texture (WW or Ww genotype).Thus, 75% of the F2 generation is expected to have wirey hair.

To know more about homozygous visit :

https://brainly.com/question/28405832

#SPJ11

Other Questions
4. An extreme ultra violet (EUV) lithography source uses a 13-nm exposure wavelength. (a) what is the resolution that can be reproduced with this source? Assume that NA (numerical aperture) = 0.65, and k (process factor) = 0.6. (b) What happens to resolution if the light wavelength increases? (c) What is the NA to get the smallest feature size of 5 nm? Animals in an experiment are to be kept under a strict diet. Each animal should receive 30 grams of protein and 8 grams of fat. The laboratory technician is able to purchase two food mixes: Mix A has 10% protein and 6% fat; mix B has 40% protein and 4% fat. How many grams of each mix should be used to obtain the right diet for one animal? One animal's diet should consist of grams of Mix A. One animal's diet should consist of grams of Mix B. Q18. Describe the negative feedback loop that controls the rateof erythropoiesis. Under what circumstances would you expect therate of erythropoiesis to increase? How would it be possible totell if Three routes connect an origin and a destination with performance functions t1 = 9+ 0.4x1, t2 = 2 + 1.0x2, and t3 = 1 + 1.2x3, with the x's expressed in thousands of vehicles per hour and the t's expressed in minutes. If the peak-hour traffic demand is 4700 vehicles, determine the user-equilibrium traffic flow on Route 3. Please provide your answer in decimal format in units of vehicles (round up to the nearest integer number). Find the distance between the pair of points.(-10,11) and (-4,4)The exact distance is 85 units (Type an exact answer, using radicals as needed)The distance is approximately _____ units. (Round to the nearest thousandth as needed) A bar of a steel alloy that exhibits the stress-strain behavior shown in the Animated Figure 6.22 is subjected to a tensile load; the specimen is 375 mm (14.8 in.) long and has a square cross section 5.5 mm (0.22 in.) on a side. (a) Compute the magnitude of the load necessary to produce an elongation of 0.525 mm (0.021 in.). N(b) What will be the deformation after the load has been released? mm What is the purpose of a polymerase chain reaction? Describe each stage of the reaction in detail. A steam power plant operates on an ideal reheat regenerative Rankine cycle with two turbine stages, one closed feed water heater and one open feed water heater. Steam is superheated and supplied to the high-pressure turbine at 200 bar and 700 C. Steam exits at 30 bar and a fraction of it is bled to a closed feed water heater. The remaining steam is reheated in the boiler to 600 C before entering the low-pressure turbine. During expansion in the low pressure turbine, another fraction of the steam is bled off at a pressure of 2 bar to the open feed water heater. The remaining steam is expanded to the condenser pressure of 0.2 bar. Saturated liquid water leaving the condenser is pumped to the pressure of the open feed heater. Water leaving this is then pumped through the closed feed heater and mixed with the pumped cross flow bled steam. The whole of the water is returned to the boiler and super heater and the cycle is repeated.i) Starting with state 1 at the entrance to the high-pressure turbine, draw a fully annotated schematic diagram of the steam power plant, and a sketch an accompanying temperature - specific entropy diagram.ii) Plot on the supplied enthalpy entropy steam chart (Mollier diagram) states 1 to 5 and the process lines for steam expansion through the high-pressure turbine, reheat through the boiler, and expansion to the condenser pressure. Clearly mark on the chart all state properties. Ensure that you include the annotated steam chart along with your solutions to obtain relevant marks for the above question part.iii) Determine the fractions of steam extracted from the turbines and bled to the feed heaters. State all assumptions used and show all calculation steps.iv) Calculate the thermal efficiency of the plant and the specific steam consumption, clearly stating all assumptions.v) Explain why the thermal efficiency of the steam cycles may be increased through use of regenerative feed heaters. Make use of suitable sketches and clearly identify the main thermodynamic reasons 8.Which of the following statements regarding insulin is true?a. Insulin is secreted by pancreatic alpha islet cellsb. Insulin causes the insertion of GLUT4 transportersc. All of these are true.d When in a buffer the concentration of the acid is equal to the concentration of the conjugate base [HA] = [A-]: a)pH=7 c) buffering capacity is minimal for acids b) the pH=gka d) the buffering capacity has been exhausted 25. In the conformation of the a-helix of a protein: a) structures are formed in the form of folded sheets. b) the main chain of the polypeptide is coiled. c) disulfide bridges can form between carbohydrates far apart in the sequence d) stability is maintained primarily by covalent bonds. 26. Chaperones are protein complexes that: a) perform proteolytic cuts to activate enzymes. b) assist in the correct folding of proteins for their tertiary structure. c) break the disulfide bonds between two proteins. d) their structures resemble some old ones that accompany you to parties. 27. When a protein is renatured: a) changes its primary sequence b) loses its biological activity c) decreasing its lipid solubility d) recovering its initial structure 28. The affinity curve of bemoglobin for 02 is sigmoid rather than hyperbolic in shape because in bemoglobin a) 02 oxidizes the bes group irreversibly. b) CO2 competes for Fe++ when metabolic activity increases. c) 02 adheres cooperatively by changing the tertiary structure of globins d) CO2 increases the pH of the blood and alters secondary structures. Which is NOT an advantage to supplementing protein for athletes? O Ensures adequate leucine O Rapidy digested proteins O practical way to obtain adequate protein quality and quantity O maximizes calor Explain why 33.134.25 is not a prime factorization and find the prime factorization of the number. Why is 33 134.253 not a prime factorization? . A. Because some factors are missing B. Because there are exponents on the factors C. Because not all of the factors are prime numbers D. Because the factors are not in a factor tree What is the prime factorization of the number? Q1) Consider the following plant transfer function 10.000 G (s) = s(5+30) (5+100) a) Design a lead controller that will provide a closed-loop a phase margin of 45 bandwidth of 30radls, and Your design must be based on frequency response methods. b) Check your design using Matlab. If needed, modify satisfy the requirements. your controller until you A certain stochastic process has the following ensemble averages: ___x(t) = 2 __________(x(t1)x(t2) = 2 + cos(t1 - t2) where t is given in seconds. Question 1 (1.2 points) Select all the true statements from the list: O a. This process is weakly stationary O b. The PSD of this process includes a delta function at f= 1 Hz O c. The DC power of this process is 2 O d. The PSD of this process includes a delta function at f= 0 O e. The RMS value of this process is 3 O f. The AC power of this process is 1 A 4 pole, 250 V, dc series motor has a wave- connected armature with 205 conductors. The flux per pole is 25 mWb when the motor is drawing 60 A from the supply. The armature resistance is 0.34 while series field winding resistance is 0.4 2. Calculate the speed under this condition. Which of these statements about hetersporous plants is false? a.All seed plants are heterosporous. b.Their spores develop into either male gametophytes or female gametophytes. c.All seedless plants are are heterosporous. d.They produce two types of spores. "Write an essay on the biogeography of Southeast Asia and CentralAmerica, making reference to key historical figures and theircontribution to our understanding of the natural history of theseregions" Both high energy electrons and X-rays have the potential for yielding information about the arrangement of atoms in complex molecules. In recent years, electron microscopes have increasingly been used to obtain high resolution information about the structure of biological macromolecules. What are the advantages of using electron microscopes (i.e., cryo-EM) over X-ray diffraction for this purpose? Professional boundaries are an important feature of therapeutic relationships between nurses and patients. Discuss this statement. Identify the difference between boundary violations and boundary crossings and provide an example of each. Margination and diapedesis involves positive chemotaxis. True False Question 14 The heat associated with inflammation is due to the water in the plasma. True False Question 15 Bulk flow is involved in