Answer:
A) his observation is of little importance ,
B) This observation is very important since the movement of the point of light depends on the relationship between the already magnetic electric force
C) see that in this second case it is 4 times less
D) the force of gravity is of the order of 10⁻⁴⁰
therefore it is 10²⁸ times less than the electric force,
Explanation:
A) This observation is of little importance since the cacodylate ray tube always emits electrons, regardless of the material of which it is made.
B) This observation is very important since the movement of the point of light depends on the relationship between the already magnetic electric force
C) the elect's load is 1.6 10⁻¹⁹ C its mass is 9.1 10⁻³¹ kg, let's look for its relation
e / m = 1.6 10⁻¹⁹ / 9.1 10⁻³¹
e / m = 0.1 758 10 10¹² N
look for this in the case of an atom, let's use the lightest atom hydrogen
the homogenize have an electron of charge 1.6 10⁻¹⁹ C
and a mass of 1.6735575 10⁻²⁷ ka
e / M = 1.6 10⁻⁻¹⁹ / 1.67 10⁻²⁷
e / M = 0.96 10⁸ N
We see that in this second case it is 4 times less
D) the force of gravity is of the order of 10⁻⁴⁰
therefore it is 10²⁸ times less than the electric force, therefore it should not contribute to the movement of the light beam
Two 2.0-cm-diameter insulating spheres have a 6.70 cm space between them. One sphere is charged to +70.0 nC, the other to -40.0 nC. What is the electric field strength at the midpoint between the two spheres?
Answer:
Explanation:
The distance of middle point from centres of spheres will be as follows
From each of 2 cm diameter sphere
R = 1 + 6.7 / 2 = 4.35 cm = 4.35 x 10⁻² m
Expression for electric field = Q / 4πε R²
Electric field due to positive charge
E₁ = 70 x 10⁻⁹ x 9 x 10⁹ / 4.35² x 10⁻⁴
= 33.3 x 10⁴ N/C
Electric field due to negative charge
E₂ = 40 x 10⁻⁹ x 9 x 10⁹ / 4.35² x 10⁻⁴
= 19.02 x 10⁴ N/C
E₁ and E₂ act in the same direction so
Total field = (33.3 + 19.02 ) x 10⁴
= 52.32 x 10⁴ N/C .
How would the magnetic field lines appear for a bar magnet cut at the midpoint, with the two pieces placed end to end with a space in between such that the cut edges are closest to each other? What would the general shape of the field lines look like? What would the field lines look like in between the two pieces?
Answer:
Explanation:
check this out and rate me
Which jovian planet should have the most extreme seasonal changes? a. Saturn b. Neptune c. Jupiter d. Uranus
Answer:
D). Uranus.
Explanation:
Jovian planets are described as the planets which are giant balls of gases and located farthest from the sun which primarily include Jupiter, Saturn, Uranus, and Neptune.
As per the question, 'Uranus' is the jovian planet that would have the most extreme seasonal changes as its tilted axis leads each season to last for about 1/4 part of its 84 years orbit. The strong tilted axis encourages extreme changes in the season on Uranus. Thus, option D is the correct answer.
A tube of water is open on one end to the environment while the other end is closed. The height of the water relative to the base is 100 cm on the open end and 40 cm on the closed end. What is the absolute pressure of the water at the top of the closed end in units of atm
Answer:
1.06 atm
Explanation:
On the open end of the tube, the pressure will be the sum of atmospheric pressure and the pressure due to the height of water
The pressure due to a height of water = ρgh
where ρ is the density of water = 1000 kg/m^3
g is the acceleration due to gravity = 9.81 m/s^2
h is the height of the water column
The height of water column on the open end = 100 cm = 1 m
pressure on this end = ρgh = 1000 x 9.81 x 1 = 9810 Pa
Atmospheric pressure = 101325 Pa
The total pressure on the open end = 101325 Pa + 9810 Pa = 111135 Pa
The pressure due to the water column on the closed end = ρgh
The height of the water in the closed end = 40 cm = 0.4 m
The pressure due to this column of water = 1000 x 9.81 x 0.4 = 3924 Pa
The resultant pressure on the water on the top of the closed end of the tube = 111135 Pa - 3924 Pa = 107211 Pa
In atm unit, this pressure = 107211/101325 = 1.06 atm
As an ice skater begins a spin, his angular speed is 3.14 rad/s. After pulling in his arms, his angular speed increases to 5.94 rad/s. Find the ratio of teh skater's final momentum of inertia to his initial momentum of inertia.
Answer:
I₂/I₁ = 0.53
Explanation:
During the motion the angular momentum of the skater remains conserved. Therefore:
Angular Momentum of Skater Before Pulling Arms = Angular Momentum of Skater After Pulling Arms
L₁ = L₂
but, the formula for angular momentum is:
L = Iω
Therefore,
I₁ω₁ = I₂ω₂
I₂/I₁ = ω₁/ω₂
where,
I₁ = Initial Moment of Inertia
I₂ = Final Moment of Inertia
ω₁ = Initial Angular Velocity = 3.14 rad/s
ω₂ = Final Angular velocity = 5.94 rad/s
Therefore,
I₂/I₁ = (3.14 rad/s)/(5.94 rad/s)
I₂/I₁ = 0.53
When a spinning bike wheel is placed horizontally, hung from a pivot at one end, the axis of rotation of the wheel will swing in a horizontal circle. In which direction does it turn?a) upwardb) downwardc) horizontally, CWd) horizontally, CCW
Answer:
answer is D
Explanation:
horizontally, CCW
What must be the diameter of a cylindrical 120-m long metal wire if its resistance is to be ? The resistivity of this metal is 1.68 × 10-8 Ω • m.
Answer:
The diameter is [tex]d = 6.5 *10^{-4} \ m[/tex]
Explanation:
From the question we are told that
The length of the cylinder is [tex]l = 120 \ m[/tex]
The resistance is [tex]\ 6.0\ \Omega[/tex]
The resistivity of the metal is [tex]\rho = 1.68 *10^{-8} \ \Omega \cdot m[/tex]
Generally the resistance of the cylindrical wire is mathematically represented as
[tex]R = \rho \frac{l}{A }[/tex]
The cross-sectional area of the cylindrical wire is
[tex]A = \frac{\pi d^2}{4}[/tex]
Where d is the diameter, so
[tex]R = \rho \frac{l}{\frac{\pi d^2}{4 } }[/tex]
=> [tex]d = \sqrt{ \rho* \frac{4 * l }{\pi * R } }[/tex]
[tex]d = \sqrt{ 1.68 *10 ^{-8}* \frac{4 * 120 }{3.142 * 6 } }[/tex]
[tex]d = 6.5 *10^{-4} \ m[/tex]
What would be the Roche limit (in units of Earth radii) if the Earth had the same mass, but its radius was increased to 1.5 Earth radii?
First calculate the density of this new, larger, Earth. Now use this new density and the new radius in the calculator above to determine the Roche limit for this new larger 'Earth.
Answer:
Roche limit = 1.89 of earth radius
Explanation:
We know that,
Mass of earth = 5.972 × 10²⁷ g
New radius = 1.5(old radius) = 1.5(6.371 × 10⁸) = 9.5565 × 10⁸
Density of earth = 5.5132 g/cm³
New density of earth = Mass of earth / (4/3)πr³
New density of earth = 5.972 × 10²⁷ kg / (4/3)(22/7)( 9.5565 × 10⁸)³
New density of earth = 1.634 g/cm³
Roche limit = [2(Density of earth)/(New density of earth)]¹/³r
Roche limit = 1.89 of earth radius
A wet shirt is put on a clothesline to dry on a sunny day. Do water molecules lose heat and condense, gain heat and condense or gain heat and evaporate
For a wet shirt is put on a clothesline to dry on a sunny day, water molecules gain heat and evaporate.
When a clothe is placed on a line to dry, the idea is to ensure that the water molecules should evaporate.
For the water molecules to evaporate, they must gain more energy that will enable them to transit from liquid to gaseous state.
Recall that he change from liquid to vapor requires energy, this is why water molecules gain energy when they evaporate.
Learn more: https://brainly.com/question/5019199
Now moving horizontally, the skier crosses a patch of soft snow, where the coefficient of friction is μk = 0.160. If the patch is of width 62.0 m and the average force of air resistance on the skier is 160 N , how fast is she going after crossing the patch?
Answer:
14.1 m/s
Explanation:
From the question,
μk = a/g...................... Equation 1
Where μk = coefficient of kinetic friction, a= acceleration of the skier, g = acceleration due to gravity.
make a the subject of the equation
a = μk(g).................. Equation 2
Given: μk = 0.160, g = 9.8 m/s²
Substitute into equation 2
a = 0.16(9.8)
a = 1.568 m/s²
Using,
F = ma
Where F = force, m = mass.
Make m the subject of the equation
m = F/a................... Equation 3
m = 160/1.568
m = 102.04 kg.
Note: The work done against air resistance by the skier+ work done against friction is equal to the kinetic energy after cross the patch.
Assuming the initial velocity of the skier to be zero
Fd+mgμ = 1/2mv²........................Equation 4
Where v = speed of the skier after crossing the patch, d = distance/width of the patch.
v = √2(Fd+mgμ)/m)................ Equation 5
Given: F = 160 N, m = 102.04 kg, d = 62 m, g = 9.8 m/s, μk = 0.16
Substitute these values into equation 5
v = √[2[(160×62)+(102.04×9.8×0.16)]/102.04]
v = √197.57
v = 14.1 m/s
v = 9.86 m/s
A ball bouncing against the ground and rebounding is an example of an elastic collision. Describe two different methods of evaluating this interaction, one for which momentum is conserved, and one for which momentum is not conserved. Explain your answer.
Answer:
Momentum is conserved when there are no outside forced present and it has an equal and opposite reaction, also momentum is conserved the ball's momentum is transferred to the ground. This first instance is the case of a Closed system.
The second case where momentum is not conserved is when there is a variation or difference in the moment of the ball because of influence of external forces
Find the pressure difference (in kPa) on an airplane wing if air flows over the upper surface with a speed of 125 m/s, and along the bottom surface with a speed of 109 m/s. [Express answer in TWO decimal places]
Answer:
P= 2414.9 Pa
Explanation:
given
density of air , p = 1.29 kg/m³
speed of air over the upper surface , v₁ = 125 m/s
speed of air over the lower surface , v₂ = 109 m/s
the pressure difference on an airplane wing , P = 0.5 × p × ( v₁² - v₂²)
P = 0.5 × 1.29 × ( 125² - 109²)
P= 0.645(3744)
P = 2414.9 Pa
the pressure difference on an airplane wing is 2414.9 Pa
A 0.410 cm diameter plastic sphere, used in a static electricity demonstration, has a uniformly distributed 35.0 pC charge on its surface. What is the potential (in V) near its surface
Answer:
The potential is [tex]V = 153.659 \ V[/tex]
Explanation:
From the question we are told that
The diameter of the plastic sphere is [tex]d = 0.410 \ cm = 0.0041 \ m[/tex]
The magnitude of the charge is [tex]q = 35.0 pC = 35.0 *10^{-12} \ C[/tex]
The radius of the plastic sphere is mathematically evaluated as
[tex]r = \frac{d}{2}[/tex]
=> [tex]r = \frac{0.0041}{2}[/tex]
[tex]r = 0.00205 \ m[/tex]
The potential near the surface is mathematically represented as
[tex]V = \frac{k * q}{r }[/tex]
Where k is the Coulombs constant with value [tex]9 *10^{9} \ kg\cdot m^3\cdot s^{-4} \cdot A^{-2}.[/tex]
substituting values
[tex]V = \frac{9*10^9 * 35 *10^{-12}}{0.00205}[/tex]
[tex]V = 153.659 \ V[/tex]
Find the average value of position x, momentump, and square of the mometum p2 for the ground and first excited states of the particle-in-a-box with mass m and box length L.
Answer:
Explanation:
Find the average value of position x, momentump, and square of the mometum p2 for the ground and first excited states of the particle-in-a-box with mass m and box length L.
Which of the following is not a benefit of improved cardiorespiratory fitness
Answer:
C - Arteries grow smaller
Explanation:
The option choices are:
A. Faster post-exercise recovery time
B. Lungs expand more easily
C. Arteries grow smaller
D. Diaphragm grows stronger
Explanation:
There are many advantages of cardiorespiratory fitness. It can decrease the risk of heart disease, lung cancer, type 2 diabetes, stroke, and other diseases. Cardiorespiratory health helps develop lung and heart conditions and enhances feelings of well-being.
If a key is pressed on a piano, the frequency of the resulting sound will determine the ________, and the amplitude will determine the ________ of the perceived musical note.
Answer:
If a key is pressed on a piano, the frequency of the resulting sound will determine the ___PITCH_____, and the amplitude will determine the _____LOUDNESS___ of the perceived musical note.
Explanation:
The frequency of a vibrating string is primarily based on three factors:
The sounding length (longer is lower, shorter is higher)
The tension on the string (more tension is higher, less is lower)
The mass of the string, normally based on a uniform density per unit length (higher mass is lower, lower mass is higher)
To make a shorter string (such as in an upright piano) sound the same fundamental frequency as a longer string (such as in a 9' grand piano), either the thickness of the string must be increased (which increases the density and the mass) or the tension must be decreased, and usually it's a bit of both.
Thicker strings are often stiffer and that creates more inharmonic partials, and lower tension is associated with other problems, so the best way to make a string sound lower is the make it longer, but it is not practical to make a piano from strings that are all the same density and tension, because the lowest strings would have to be ridiculously long. Nine feet is already a great demand on space for a single musical instrument, and of course those pianos are extremely expensive and difficult to move.
And alsoBesides the pitch of a musical note, perhaps the most noticeable feature in how loud the note is. The loudness of a sound wave is determined from its amplitude. While loudness is only associated with sound waves, all types of waves have an amplitude. Waves on a calm ocean may be less than 1 foot high. Good surfing waves might be 10 feet or more in amplitude. During a storm the amplitude might increase to 40 or 50 feet.
Many things can influence the amplitude.
What is producing the sound?
How far are you from the source of the sound? The farther away the smaller the amplitude.
Intervening material. Sound does not travel through walls as well as air.
Depends on what is detecting the wave sound. Ear vs. microphone.
Answer:
The frequency will determine the pitch
the amplitude will determine the loudness
Explanation:
The frequency of a sound refers to the number of vibrations made by the sound wave produced in a unit of time. This usually affects how high or how low a note is perceived in music. High-frequency sounds have higher pitches, while low-frequency sounds have lower pitches.
The amplitude of a sound wave refers to the height between the wave crests and the equilibrium line in a sound wave. It shows how loud a sound will be. High amplitude sounds are loud while low amplitude sounds are quiet.
hich muscle fibers are best suited for activities that involve lifting large, heavy objects for a short period of time? cardiac slow twitch intermediate fast twitch
Answer:
Dead lifting uses tho muscle fundamentals
Explanation:
Answer:
Fast twitch
Explanation:
Edmentum
A ranger needs to capture a monkey hanging on a tree branch. The ranger aims his dart gun directly at the monkey and fires the tranquilizer dart. However, the monkey lets go of the branch at exactly the same time as the ranger fires the dart. Will the monkey get hit or will it avoid the dart?
Answer:
Yes the monkey will get hit and it will not avoid the dart.
Explanation:
Yes, the monkey will be hit anyway because the dart will follow a hyperbolic path and and will thus fall below the branches, so if the monkey jumps it will be hit.
No, the monkey will not avoid the dart because dart velocity doesn't matter. The speed of the bullet doesn’t even matter in this case because a faster bullet will hit the monkey at a higher height and while a slower bullet will simply hit the monkey closer to the ground.
A 0.140-kg baseball is dropped from rest. It has a speed of 1.20 m/s just before it hits the ground, and it rebounds with an upward speed of 1.00 m/s. The ball is in contact with the ground for 0.0140 s.
Required:
What is the average force exerted by the ground on the ball during this time? Also explain whether it's upwards or downwards.
Answer:
22 N upward
Explanation:
From the question,
Applying newton's second law of motion
F = m(v-u)/t....................... Equation 1
Where F = Average force exerted by the ground on the ball, m = mass of the baseball, v = final velocity, u = initial velocity, t = time of contact
Note: Let upward be negative and downward be positive
Given: m = 0.14 kg, v = -1.00 m/s, u = 1.2 m/s, t = 0.014 s
Substitute into equation 1
F = 0.14(-1-1.2)/0.014
F = 0.14(-2.2)/0.014
F = 10(-2.2)
F = -22 N
Note the negative sign shows that the force act upward
A rod 16.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electric field along the axis of the rod at a point 42.0 cm from its center.
Answer:
-1.4x10^6N/C
Explanation:
Pls see attached file
The magnitude of the electric field.
Magnitude is the size of the object in properties that is determines the size of the object. It also displays the result of the order of class of the object. The direction of the electric field tells us about the position of the field in four different directions. As per the question, the answer is 1.4x10^6N/C.
The rod of 16cm of total length is given. Has a charge of a total of -25.0uc. The rod's axis is pointed at 42.0 cm from its center and is given in the question. The rod Length will be then 0.16m and the total change will be 25x10 cm and point where the electricity will be calculated is shown by the axis of the rod at the distance of 42 cms.The magnitude and direction will be calculated based on the measure of the formula of E. This answer to the question will be 1.4x10^6N/C.Learn more about the uniformly charged.
brainly.com/question/12088419.
A ball is thrown horizontally from the top of a 41 m vertical cliff and lands 112 m from the base of the cliff. How fast is the ball thrown horizontally from the top of the cliff?
Answer:
4.78 second
Explanation:
given data
vertical cliff = 41 m
height = 112 m
solution
we know here time taken to fall vertically from the cliff = time taken to move horizontally ..........................1
so we use here vertical component of ball
and that is accelerated motion with initial velocity = 0
so we can solve for it as
height = 0.5 × g × t² ........................2
put here value
112 = 0.5 × 9.8 × t²
solve it we get
t² = 22.857
t = 4.78 second
ball thrown horizontally from the top of the cliff in 4.78 second
If the current flowing through a circuit of constant resistance is doubled, the power dissipated by that circuit will Group of answer choices
Answer:
P' = 4 P
Therefore, the power dissipated by the circuit will becomes four times of its initial value.
Explanation:
The power dissipation by an electrical circuit is given by the following formula:
Power Dissipation = (Voltage)(Current)
P = VI
but, from Ohm's Law, we know that:
Voltage = (Current)(Resistance)
V = IR
Substituting this in formula of power:
P = (IR)(I)
P = I²R ---------------- equation 1
Now, if we double the current , then the power dissipated by that circuit will be:
P' = I'²R
where,
I' = 2 I
Therefore,
P' = (2 I)²R
P' = 4 I²R
using equation 1
P' = 4 P
Therefore, the power dissipated by the circuit will becomes four times of its initial value.
g A point mass of 1.5kg is attached to a spring and set to oscillate through simple harmonic oscillations. If the period of the oscillation is 10s, find the spring constant.
Answer:
k = 0.6 N/m
Explanation:
The time period of a spring mass oscillation system is given by the following formula:
T = 2π√(m/k)
where,
T = Time Period of Oscillation = 10 s
m = Mass attached to the spring = 1.5 kg
k = spring constant = ?
Therefore,
10 s = 2π√(1.5 kg/k)
squaring on both sides we get:
100 s² = 4π²(1.5 kg/k)
k = 6π² kg/100 s²
k = 0.6 N/m
When a nucleus at rest spontaneously splits into fragments of mass m1 and m2, the ratio of the momentum of m1 to the momentum of m2 is
Answer:
p₁ = - p₂
the moment value of the two particles is the same, but its direction is opposite
Explanation:
When a nucleus divides spontaneously, the moment of the nucleic must be conserved, for this we form a system formed by the initial nucleus and the two fragments of the fission, in this case the forces during the division are internal and the moment is conserved
initial instant. Before fission
p₀ = 0
since they indicate that the nucleus is at rest
final moment. After fission
[tex]p_{f}[/tex] = m₁ v₁ + m₂ v₂
p₀ = p_{f}
0 = m₁ v₁ + m₂v₂
m₁ v₁ = -m₂ v₂
p₁ = - p₂
this indicates that the moment value of the two particles is the same, but its direction is opposite
Two 10-cm-diameter charged rings face each other, 18.0 cmcm apart. Both rings are charged to 30.0 nCnC . What is the electric field strength
Answer:
E=7453.99 V/m
Explanation:
The electric field on the charged is given by
E= Kqx/(r^2 +x^2)^3/2
Where;
K= constant of Coulomb's law
q= magnitude of charge= 30.0×10^-9 C
r= radius of the rings= 5 cm or 0.05m
x= distance between the rings = 18cm = 0.18 m
Substituting values;
E= 9.0×10^9 × 30.0×10^-9 × 0.18 / [(0.05^2 + (0.18)^2]^3/2
E= 48.6/(2.5×10^-3 + 0.0324)^3/2
E= 48.6/(0.0025 + 0.0324)^3/2
E= 48.6/6.52×10^-3
E=7453.99 V/m
Two charged particles of equal magnitude (+Q and +Q) are fixed at opposite corners of a square that lies in a plane. A test charge +q is placed at the third corner of the square. What is the direction of force on the test charge due to other two charges?
Answer:
The test charge will take the south-west direction indicated in option 6.
Explanation:
The image is shown below.
Since all the charges are positively charged, they will all repel each other. If we consider the force on +q due to +Q and +Q, then we can proceed as follows
The +Q particle at the top left corner of the cube will exert a vertical downward force on +q in the -ve y-axis.
The +Q particle at the bottom right corner of the cube will exert a force on +q towards the horizontal left on the -ve x-axis.
Both of these forces will act at angle of 90°, and therefore, the resultant force will act at an angle of 45° to horizontal and vertical forces.
The result is that the +q charge will move in a south-west direction of the cube.
Calculate the change in internal energy of the following system: A balloon is cooled by removing 0.652 kJkJ of heat. It shrinks on cooling, and the atmosphere does 389 JJ of work on the balloon. Express your an
Question:
Calculate the change in internal energy of the following system: A balloon is cooled by removing 0.652 kJ of heat. It shrinks on cooling, and the atmosphere does 389 J of work on the balloon. Express your answer in Joules (J)
Answer:
-263J
Explanation:
Though its difficult and infact impossible to measure the internal energy of a system, the change in internal energy ΔE, can however be determined. This change when it is accompanied by work(W) and transfer of heat(Q) in or out of the system, can be calculated as follows;
ΔE = Q + W ----------------(i)
Q is negative if heat is lost. It is positive otherwise
W is negative if work is done by the system. It is positive otherwise.
From the question;
Q = -0.652kJ = -652J {the negative sign shows heat loss}
W = +389J {the positive sign shows work done on the system(balloon)}
Substitute these values into equation (i) as follows;
ΔE = -652 + 389
ΔE = -263J
Therefore the change in internal energy is -263J
PS: The negative sign shows that the process is exothermic. This means that the system (balloon) lost some energy to the environment.
An electron moves in the plane of this screen toward the top of the screen. A magnetic field is also in the plane of the screen and directed toward the right. What is the direction of the magnetic force on the electron?
Answer: the direction of the magnetic force on the electron will be moving out of the screen, perpendicular to the magnetic field.
Explanation:
The magnetic force F on a moving electron at right angle to a magnetic field is given by the formula:
F = BqVSinØ
If an electron moves in the plane of this screen toward the top of the screen. A magnetic field is also in the plane of the screen and directed toward the right. Then, the direction of the magnetic force on the electron will be perpendicular to the magnetic field
According to the Fleming's left - hand rule, the direction of the magnetic force on the electron will be moving out of the plane of the screen.
Let us suppose the magnitude of the original Coulomb force between the two charged spheres is FF. In this scenario, a third sphere touches the grey sphere and the red sphere multiple times, being grounded each touch. If the grey sphere is touched twice, and the red sphere is touched three times, what is the magnitude of the Coulomb force between the spheres now
Answer:
F ’= 1/32 F
We see that the value of the force is the initial force over 32
Explanation:
In this problem the sphere that is touching the others is connected to ground, after each touch,
Let's analyze the charge of the gray sphere, when you touch it for the first time, the charge is divided between the two spheres each having Q / 2, when the sphere separates and touches ground, its charge passes zero. When I touch the gray dial again, its charge is reduced by half
½ (Q / 2) = ¼ Q
For the red dial repeat the same scheme
with the first touch the charge is reduced to Q / 2
with the second touch e reduce to ½ (Q / 2) = ¼ Q
with the third toce it is reduced to ½ (¼ Q) = ⅛ Q
Now let's analyze what happens to the electric force
if the force is F for when the charge of each sphere is Q
F = k Q Q / r²
with the remaining charge strength is
F ’= k (¼ Q) (⅛ Q) / r²
F ’= 1/32 k Q Q / r²
F ’= 1/32 F
We see that the value of the force is the initial force over 32
what is quantic fisic
Answer:
it is the physics that explains how everything works. The best description we have of the. nature of the particles that make up matters and the forces with which they interact. It underlines how atoms work, and so why chemistry and biology work as they do