In a thin-walled double-pipe counter-flow heat exchanger, cold water (shell side) was heated from 15°C to 45°C and flow at the rate of 0.25kg/s. Hot water enter to the tube at 100°C at rate of 3kg/s was used to heat up the cold water. Demonstrate and calculate the following: The heat exchanger diagram (with clear indication of temperature and flow rate)

Answers

Answer 1

Thin-walled double-pipe counter-flow heat exchanger: A counter-flow heat exchanger, also known as a double-pipe heat exchanger, is a device that heats or cools a liquid or gas by transferring heat between it and another fluid. The two fluids pass one another in opposite directions in a double-pipe heat exchanger, making it an efficient heat transfer machine.

The configuration of this exchanger, which is made up of two concentric pipes, allows the tube to be thin-walled.In the diagram given below, the blue color represents the flow of cold water while the red color represents the flow of hot water. The water flow rates, as well as the temperatures at each inlet and outlet, are provided in the diagram. The shell side is cold water while the tube side is hot water. Since heat flows from hot to cold, the hot water from the inner pipe transfers heat to the cold water in the outer shell of the heat exchanger.

Heat exchanger diagramExplanation:Given data are as follows:Mass flow rate of cold water, m_1 = 0.25 kg/sTemperature of cold water at the inlet, T_1 = 15°CTemperature of cold water at the outlet, T_2 = 45°CMass flow rate of hot water, m_2 = 3 kg/sTemperature of hot water at the inlet, T_3 = 100°CThe rate of heat transfer,

[tex]Q = m_1C_{p1}(T_2 - T_1) = m_2C_{p2}(T_3 - T_4)[/tex]

where, C_p1 and C_p2 are the specific heat capacities of cold and hot water, respectively.Substituting the given values of [tex]m_1, C_p1, T_1, T_2, m_2, C_p2, and T_3[/tex], we get

[tex]Q = 0.25 × 4.18 × (45 - 15) × 1000= 31,350 Joules/s or 31.35 kJ/s[/tex]

Therefore,

[tex]m_2C_{p2}(T_3 - T_4) = Q = 31.35 kJ/s[/tex]

Substituting the given values of m_2, C_p2, T_3, and Q, we get

[tex]31.35 = 3 × 4.18 × (100 - T_4)0.25 = 3.75 - 0.0315(T_4)T_4 = 75°C[/tex]

The hot water at the outlet has a temperature of 75°C.

To know more about heat exchanger visit :

https://brainly.com/question/12973101

#SPJ11


Related Questions

A force F = Fxi + 8j + Fzk lb acts at a point (3, -10, 9) ft. it has a moment 34i + 50j + 40k lb · ft about the point (-2, 3, -3) ft. Find Fx and Fz.

Answers

To find the components Fx and Fz of the force F, we can use the moment equation. Hence, the values of Fx and Fz are approximately Fx = 79.76 lb and Fz = 27.6 lb, respectively.

The equation for the moment:

M = r x F

where M is the moment vector, r is the position vector from the point of reference to the point of application of the force, and F is the force vector.

Given:

Force F = Fx i + 8 j + Fz k lb

Moment M = 34 i + 50 j + 40 k lb · ft

Position vector r = (3, -10, 9) ft - (-2, 3, -3) ft = (5, -13, 12) ft

Using the equation for the moment, we can write:

M = r x F

Expanding the cross product:

34 i + 50 j + 40 k = (5 i - 13 j + 12 k) x (Fx i + 8 j + Fz k)

To find Fx and Fz, we can equate the components of the cross product:

Equating the i-components:

5Fz - 13(8) = 34

Equating the k-components:

5Fx - 13Fz = 40

Simplifying the equations:

5Fz - 104 = 34

5Fz = 138

Fz = 27.6 lb

5Fx - 13(27.6) = 40

5Fx - 358.8 = 40

5Fx = 398.8

Fx = 79.76 lb

Therefore, the values of Fx and Fz are approximately Fx = 79.76 lb and

Fz = 27.6 lb, respectively.

To learn more about moment equation, visit:

https://brainly.com/question/20292300

#SPJ11

A velocity compounded impulse turbine has two rows of moving blades with a row of fixed blades between them. The nozzle delivers steam at 660 m/s and at an ang utlet 17° with the plane of rotation of the wheel. The first row of moving blades has an outlet angle of 18° and the second row has an outlet angle of 36°. The row of fixed blades has an outlet angle of 22°. The mean radius of the blade wheel is 155 mm and it rotates at 4 000 r/min. The steam flow rate is 80 kg/min and its velocity is reduced by 10% over all the blades.
Use a scale of 1 mm = 5 m/s and construct velocity diagrams for the turbine and indicate the lengths of lines as well as the magnitude on the diagrams. Determine the following from the velocity diagrams:
The axial thrust on the shaft in N The total force applied on the blades in the direction of the wheel in N
The power developed by the turbine in kW The blading efficiency The average blade velocity in m/s

Answers

The axial thrust on the shaft is 286.4 N, the total force applied on the blades in the direction of the wheel is -7.874 N, the power developed by the turbine is 541.23 kW, the blading efficiency is 84.5%, and the average blade velocity is 673.08 m/s.

Velocity of steam at nozzle outlet, V1 = 660 m/s

Angle of outlet of steam from the nozzle, α1 = 17°

Blades outlet angle of first moving row of turbine, β2 = 18°

Blades outlet angle of second moving row of turbine, β2 = 36°

Blades outlet angle of the row of fixed blades, βf = 22°

Mean radius of the blade wheel, r = 155 mm = 0.155 m

Rotational speed of the blade wheel, N = 4000 rpm

Steam flow rate, m = 80 kg/min

Reduction in steam velocity over all the blades, i.e., (V1 − V2)/V1 = 10% = 0.1

Scale used, 1 mm = 5 m/s (for drawing velocity diagrams)

The length of the blade in the first and second rows of the turbine blades can be determined using the velocity diagram.

Consider, V is the absolute velocity of steam at inlet and V2 is the relative velocity of steam at inlet. Let w1 and w2 are the relative velocities of steam at outlet from the first and second rows of moving blades.

Hence, using the law of cosines, we get

V2² = w1² + V1² – 2w1V1 cos (α1 – β1)

For the first row of blades, β1 = 18°V2² = w1² + 660² – 2 × 660w1 cos (17° – 18°)

w1 = 680.62 m/s

The length of the velocity diagram is proportional to w1, i.e., 680.62/5 = 136.124 mm

Similarly, for the second row of moving blades, β1 = 36°V2² = w2² + 660² – 2 × 660w2 cos (17° – 36°)

w2 = 690.99 m/s

The length of the velocity diagram is proportional to w2, i.e., 690.99/5 = 138.198 mm

Let w1′ and w2′ be the relative velocities of steam at outlet from the first and second rows of blades, respectively.Using the law of cosines, we get

V2² = w1′² + V1² – 2w1′V1 cos (α1 – βf)

For the row of fixed blades, β1 = 22°

V2² = w1′² + 660² – 2 × 660w1′ cos (17° – 22°)

w1′ = 695.32 m/s

The length of the velocity diagram is proportional to w1′, i.e., 695.32/5 = 139.064 mm

The axial thrust on the shaft is given by difference between axial forces acting on the first and second moving row of blades.

Hence,Total axial thrust on the shaft = (m × (w1 sin β1 + w2 sin β2)) − (m × w1′ sin βf) = (80/60) × (680.62 sin 18° + 690.99 sin 36°) – (80/60) × 695.32 sin 22° = 286.4 N

The tangential force acting on each blade can be given by,f = (m (w1 − w1′)) / N

Length of the blade wheel = 2πr = 2 × 3.14 × 0.155 = 0.973 m

Total tangential force on the blade = f × length of blade wheel = ((80/60) × (680.62 − 695.32)) / 4000 × 0.973 = −7.874 N (negative sign implies the direction of force is opposite to the direction of wheel rotation)

Power developed by the turbine can be given by,P = m(w1V1 − w2V2) / 1000 = 80 × (680.62 × 660 − 690.99 × 656.05) / 1000 = 541.23 kW

The blade efficiency can be given by,ηb = (actual work done / work done if steam is entirely used in nozzle) = ((w1V1 − w2V2) / (w1V1 − V2)) = 84.5%

The average blade velocity can be determined by,πDN = 2πNr

Average blade velocity = Vavg = (2w1 + V1)/3 = (2 × 680.62 + 660)/3 = 673.08 m/s

Learn more about velocity at

https://brainly.com/question/33293748

#SPJ11

QUESTION 1 Which of the followings is true? For the generic FM carrier signal, the frequency deviation is defined as a function of the A. message because the instantaneous frequency is a function of the message frequency. B. message because it resembles the same principle of PM. C. message frequency. D. message. QUESTION 2 Which of the followings is true? The concept of "power efficiency may be useful for A. linear modulation. B. non-linear modulation. C. multiplexing. D. convoluted multiplexing. QUESTION 3 Which of the followings is true? A. Adding a pair of complex conjugates gives double the real part. B. Electrical components are typically not deployed under wireless systems as transmissions are always through the air channel. C. Adding a pair of complex conjugates gives the real part. D. Complex conjugating is a process of keeping the real part and changing the complex part. QUESTION 4 Which of the followings is true? A. For a ratio of two complex numbers, the Cartesian coordinates are typically useful. B. For a given series resister-capacitor circuit, the capacitor voltage is typically computed using its across current. C. For a given series resistor-capacitor circuit, the capacitor current is typically computed using its across voltage. D. For a ratio of two complex numbers, the polar coordinates are typically not useful.

Answers

For the generic FM carrier signal, the frequency deviation is defined as a function of the message frequency. The instantaneous frequency in a frequency modulation (FM) system is a function of the message frequency.

The frequency deviation is directly proportional to the message signal in FM. The frequency deviation is directly proportional to the amplitude of the message signal in phase modulation (PM). The instantaneous frequency of an FM signal is directly proportional to the amplitude of the modulating signal.

As a result, the frequency deviation is proportional to the message signal's amplitude

The concept of "power efficiency" may be useful for linear modulation. The power efficiency of a linear modulator refers to the ratio of the average power of the modulated signal to the average power of the modulating signal. The efficiency of power in a linear modulation system is given by the relationship Pout/Pin, where Pout is the power of the modulated signal, and Pin is the power of the modulating signal.

Adding a pair of complex conjugates gives the real part. Complex conjugation is a mathematical operation that involves keeping the real part and changing the sign of the complex part of a complex number. When two complex conjugates are added, the real part of the resulting sum is twice the real part of either of the two complex numbers, and the imaginary parts cancel each other out.

For a given series resistor-capacitor circuit, the capacitor voltage is typically computed using its across voltage. In a given series resistor-capacitor circuit, the voltage across the capacitor can be computed using the circuit's current and impedance. In contrast, the capacitor's current is computed using the voltage across it and the circuit's impedance.

The voltage across the capacitor in a series RC circuit is related to the current through the resistor and capacitor by the differential equation Vc(t)/R = C dVc(t)/dt.

To know more about message visit;

brainly.com/question/28267760

#SPJ11

Mark the correct answers / statements with a cross, or define the correct answers / statements, e.g. mentioning a.1). For each correct cross / definition you will receive 1.5 points, each cross which is not correct will subtract 1.5 points from the total score. The total score for the entire question cannot be negative.
a) A system with PT2-characteristic has a damping ratio D = 0.3.
O a.1) The system is critically damped. O a.2) The system is always stable.
O a.3) The system has two zeros.
O a.4) The imaginary part of the poles are nonzero.

Answers

The total score for the entire question cannot be negative. So the correct answers are a.1) The system is critically damped.a.2) The system is always stable.a.3) The system has two poles.a.4) The imaginary part of the poles is nonzero.

a) A system with PT2-characteristic has a damping ratio D = 0.3.

O a.1) The system is critically damped.

O a.2) The system is always stable.

O a.3) The system has two zeros.

O a.4) The imaginary part of the poles is nonzero.

b) The damping ratio of a second-order system indicates the ratio of the actual damping of the system to the critical damping. The values range between zero and one. Based on the given damping ratio of 0.3, the following is the correct answer:

a.1) The system is critically damped since the damping ratio is less than 1 but greater than zero.

a.2) The system is always stable, the poles of the system lie on the left-hand side of the s-plane.

a.3) The system has two poles, not two zeros.

a.4) The imaginary part of the poles is nonzero which means that the poles lie on the left-hand side of the s-plane without being on the imaginary axis.

To know more about critically damped please refer to:

https://brainly.com/question/13161950

#SPJ11

Given that v(t) = 120 sin(300t + 45°) V and i(t) = 10 cos(300t – 10°)A, find the followings
A. Whats the phasor of V(t)
B. Period of the i(t)
C. Phasor of i(t) in complex form

Answers

A. Phasor of V(t)Phasor is a complex number that represents a sinusoidal wave. The magnitude of a phasor represents the WAVE , while its angle represents the phase difference with respect to a reference waveform.

The phasor of V(t) is120 ∠ 45° Vmain answerThe phasor of V(t) is120 ∠ 45° VexplainationGiven,v(t) = 120 sin(300t + 45°) VThe peak amplitude of v(t) is 120 V and its angular frequency is 300 rad/s.The instantaneous voltage at any time is given by, v(t) = 120 sin(300t + 45°) VTo convert this equation into a phasor form, we represent it using complex exponentials as, V = 120 ∠ 45°We have, V = 120 ∠ 45° VTherefore, the phasor of V(t) is120 ∠ 45° V.B. Period of the i(t)Period of the current wave can be determined using its angular frequency. The angular frequency of a sinusoidal wave is defined as the rate at which the wave changes its phase. It is measured in radians per second (rad/s).The period of the current wave isT = 2π/ω

The period of the current wave is1/50 secondsexplainationGiven,i(t) = 10 cos(300t – 10°)AThe angular frequency of the wave is 300 rad/s.Therefore, the period of the wave is,T = 2π/ω = 2π/300 = 1/50 seconds.Therefore, the period of the current wave is1/50 seconds.C. Phasor of i(t) in complex formPhasor representation of current wave is defined as the complex amplitude of the wave. In this representation, the amplitude and phase shift are combined into a single complex number.The phasor of i(t) is10 ∠ -10° A. The phasor of i(t) is10 ∠ -10° A Given,i(t) = 10 cos(300t – 10°)AThe peak amplitude of the current wave is 10 A and its angular frequency is 300 rad/s.The instantaneous current at any time is given by, i(t) = 10 cos(300t – 10°)A.To convert this equation into a phasor form, we represent it using complex exponentials as, I = 10 ∠ -10° AWe have, I = 10 ∠ -10° ATherefore, the phasor of i(t) is10 ∠ -10° A in complex form.

To know more about wave visit:

https://brainly.com/question/27777981

#SPJ11

The manufacturer of a component that will be subjected to fatigue from -0 MPa to 50 MPa, specifies that it must be changed when it has been detected that the crack has advanced up to 40% of its critical value. The manufacturing process of the component leaves cracks on the surface of 0.1mm. The material has the following properties: KIC = 70MPam1/2 and crack growth is characterized by n=3.1 and C= 10E-11. Assume f=1.12.
How many life cycles did the component have left after it had been removed as directed by the manufacturer?
Indicate your answer without decimals.

Answers

Fatigue is the weakening of a material caused by cyclic loading, resulting in the formation and propagation of cracks.

Fatigue fracture failure is a type of failure that is caused by cyclic loading, which is the progressive growth of an initial crack until it reaches a critical size and a fracture occurs. In this question, we are given the following information.

The manufacturing process of the component leaves cracks on the surface of 0.1mm.The material has the following properties: [tex]KIC = 70 MPam1/2[/tex], and crack growth is characterized by n = 3.1 and C = 10E-11. Assume f = 1.12.Calculations:In this question.

To know more about propagation visit:

https://brainly.com/question/33454861

#SPJ11

2.3 Briefly explain what happens during the tensile testing of material, using cylinder specimen as and example. 2.4 Illustrate by means of sketch to show the typical progress on the tensile test.

Answers

During the tensile testing of a cylindrical specimen, an axial load is applied to the specimen, gradually increasing until it fractures.

The test helps determine the material's mechanical properties. Initially, the material undergoes elastic deformation, where it returns to its original shape after the load is removed. As the load increases, the material enters the plastic deformation region, where permanent deformation occurs without a significant increase in stress. The material may start to neck down, reducing its cross-sectional area. Eventually, the specimen reaches its maximum stress, known as the tensile strength, and fractures. A typical tensile test sketch shows the stress-strain curve, with the x-axis representing strain and the y-axis representing stress. The curve exhibits an elastic region, a yield point, plastic deformation, ultimate tensile strength, and fracture.

To learn more about tensile testing, click here:

https://brainly.com/question/13260444

#SPJ11

Example 20kw, 250V, 1000rpm shunt de motor how armature and field. resistances of 0,22 and 2402. When the HOA rated current at motor takes raded conditions. a) The rated input power, rated output power, and efficiency. Generated vo Hagl <) Induced torque. d) Total resistance arent to current. of 1,2 times Ox. 1200rpm. to limit the starting the full load
Example 20kw, 250V, 1000rpm shunt de motor how armature and field. resistances of 0,22 and 2402. When the HOA rated current at motor takes raded conditions. a) The rated input power, rated output power, and efficiency. Generated vo Hagl <) Induced torque. d) Total resistance arent to current. of 1,2 times Ox. 1200rpm. to limit the starting the full load

Answers

(a) The rated input power is 20 kW, the rated output power is 20 kW, and the efficiency is 100%.

(b) The generated voltage is 250 V.

(c) The induced torque depends on the motor's characteristics and operating conditions.

(d) The total resistance is not specified in the given information.

(a) The rated input power of the motor is given as 20 kW, which represents the electrical power supplied to the motor. Since the motor is a shunt DC motor, the rated output power is also 20 kW, as it is equal to the input power. Efficiency is calculated as the ratio of output power to input power, so in this case, the efficiency is 100%.

(b) The generated voltage of the motor is given as 250 V. This voltage is generated by the interaction of the magnetic field produced by the field winding and the rotational movement of the armature.

(c) The induced torque in the motor depends on various factors such as the armature current, magnetic field strength, and motor characteristics. The specific information regarding the induced torque is not provided in the given question.

(d) The total resistance mentioned in the question is not specified. It is important to note that the total resistance of a motor includes both the armature resistance and the field resistance. Without the given values for the total resistance or additional information, we cannot determine the relationship between resistance and current.

Learn more about power

brainly.com/question/29575208

#SPJ11

For the following iron-carbon alloys (0.76 wt%C) and associated microstructures
A. coarse pearlite B. spheroidite C. fine pearlite D. bainite E. martensite F. tempered martensite 1. Select the most ductile 2. Select the hardest 3. Select the one with the best combination of strength and ductility.

Answers

For the following iron-carbon alloys (0.76 wt%C) and associated microstructures:A. coarse pearlite B. spheroidite C. fine pearlite D. bainite E. martensite F. tempered martensite1. Select the most ductileWhen the alloy has a coarse pearlite structure, it is the most ductile.2. Select the hardestWhen the alloy has a martensite structure, it is the hardest.

3. Select the one with the best combination of strength and ductilityWhen the alloy has a fine pearlite structure, it has the best combination of strength and ductility.Explanation:Pearlite: it is the most basic form of steel microstructure that consists of alternating layers of alpha-ferrite and cementite, in which cementite exists in lamellar form.Bainite: Bainite microstructure is a transitional phase between austenite and pearlite.Spheroidite: It is formed by further heat treating pearlite or tempered martensite at a temperature just below the eutectoid temperature.

This leads to the development of roughly spherical cementite particles within a ferrite matrix.Martensite: A solid solution of carbon in iron that is metastable and supersaturated at room temperature. Martensite is created when austenite is quenched rapidly.Tempered martensite: Tempered martensite is martensite that has been subjected to a tempering process.

To know more about martensite visit :

https://brainly.com/question/31414307

#SPJ11

Exercises on fluid mechanics. Please, What assumptions/assumptions were used in the solution.
Explique:
- what represents boundary layer detachment and in what situations occurs?
- what is the relationship between the detachment of the boundary layer and the second derivative
of speed inside the boundary layer?
- In what situations does boundary layer detachment is desired and in which situations it should be avoided?

Answers

To answer your questions, let's consider the context of fluid mechanics and boundary layers:

Assumptions in the solution: In fluid mechanics, various assumptions are often made to simplify the analysis and mathematical modeling of fluid flow. These assumptions may include the fluid being incompressible, flow being steady and laminar, neglecting viscous dissipation, assuming a certain fluid behavior (e.g., Newtonian), and assuming the flow to be two-dimensional or axisymmetric, among others. The specific assumptions used in a solution depend on the problem at hand and the level of accuracy required.

Boundary layer detachment: Boundary layer detachment refers to the separation of the boundary layer from the surface of an object or a flow boundary. It occurs when the flow velocity and pressure conditions cause the boundary layer to transition from attached flow to separated flow. This detachment can result in the formation of a recirculation zone or flow separation region, characterized by reversed flow or eddies. Boundary layer detachment commonly occurs around objects with adverse pressure gradients, sharp corners, or significant flow disturbances.

Relationship between boundary layer detachment and second derivative of speed: The second derivative of velocity (acceleration) inside the boundary layer is directly related to the presence of adverse pressure gradients or adverse streamline curvature. These adverse conditions can lead to an increase in flow separation and boundary layer detachment. In regions where the second derivative of velocity becomes large and negative, it indicates a deceleration of the fluid flow, which can promote flow separation and detachment of the boundary layer.

Know more about fluid mechanics here:

https://brainly.com/question/12977983

#SPJ11

Question 3 DC Engineering Company has two units operating in two different cities A and B, where the manufacturing of engineering components takes place. Both the units employ young graduates as well as mid-career engineers. The company pays attractive salary to recruit competent workforce. The City A unit manager is very supportive and communicates effectively. At this unit, good efforts of all engineers are acknowledged and celebrated and thus employees can experience a sense of achievement. The manager is fair with his dealings and gives equal opportunities of advancement to all who contribute towards the organization and excel in their efforts. Employees are a part of the decision making and change process and are satisfied. The unit seldom experiences absenteeism or employee turnover. In contrast, the manager in City B, is highly authoritative, micromanages the employees and favors only a few. Employees often show concern regarding their career growth and remunerations and there is a high turnover rate. Consequently, the work environment is adverse and the relationship amongst co-workers and supervisor suffers greatly, and affecting the employees' productivity and motivation. (1) Explain the Maslow's Theory of Human Needs and use this theory to suggest how young graduates and mid-career engineers would respond to the leadership styles of the two managers. (7 marks) (ii) Explain Herzberg's two-factor theory and relate it with the working situation in both units of the company (5 marks) (iii)How can Herzberg's theory be used to boost the employees' productivity? (3 marks) (iv)How do Herzberg's hygiene factors correspond with Maslow's theory in the given situation? (5 marks) () How can we understand the effect of the given situation via Equity theory? (5 marks)

Answers

(i) Maslow's hierarchy of needs is a theory of human needs that helps to understand the various factors that influence the motivation of individuals.

According to Maslow, human beings have various needs, which he categorized into five levels: physiological needs, safety needs, social needs, esteem needs, and self-actualization needs. In this case, employees at the City A unit of DC Engineering Company would respond positively to their manager's leadership style because he satisfies the employees' needs for social recognition and self-esteem. In contrast, employees at the City B unit of the company are likely to respond negatively to their manager's leadership style because he is failing to meet their esteem and self-actualization needs.

(ii) Herzberg's two-factor theory is also known as the Motivator-Hygiene theory. Herzberg's theory suggests that there are two factors that affect employee motivation and job satisfaction: hygiene factors and motivator factors. Hygiene factors include working conditions, salary, job security, and company policies. Motivator factors, on the other hand, include achievement, recognition, growth, and responsibility. In this case, the manager at City A unit of DC Engineering Company provides an excellent working environment where hygiene factors are met, leading to job satisfaction. The manager acknowledges good efforts, and the employees have opportunities to advance and be part of the decision-making process. On the other hand, the manager at City B unit micromanages employees, and employees often show concern regarding their career growth and remunerations leading to an adverse working environment where hygiene factors are not met, leading to job dissatisfaction.

(iii) Herzberg's theory can be used to boost employees' productivity by creating an environment that satisfies both hygiene factors and motivator factors. Hygiene factors, such as providing job security, reasonable working conditions, and competitive salaries, are essential to ensure employees' job satisfaction. Motivator factors, such as recognition, growth, and responsibility, are important in making employees more productive.

(iv) Herzberg's hygiene factors correspond with Maslow's theory in the given situation because both theories are based on the concept that employee motivation and job satisfaction are influenced by meeting their basic needs. Herzberg's hygiene factors such as working conditions, salary, and job security correspond to Maslow's physiological and safety needs. If these needs are not met, employees become dissatisfied with their jobs. In contrast, Herzberg's motivator factors correspond to Maslow's social, esteem, and self-actualization needs. If these needs are met, employees become motivated and productive.

(v) Equity theory states that individuals compare their input and output to those of others to determine whether they are being treated fairly. In the given situation, employees in the City A unit are treated fairly and have an excellent working environment, which leads to job satisfaction and motivation. However, employees in the City B unit are not treated fairly, leading to dissatisfaction and a high turnover rate. Therefore, the effect of the given situation via equity theory is that employees in City B feel that their inputs and outputs are not being treated fairly compared to those of employees in City A, leading to dissatisfaction and low motivation.

To know more about Maslow's theory, visit:

https://brainly.com/question/33539726

#SPJ11

An air-cooled condenser has an h value of 30 W/m² −K based on the air-side area. The air-side heat transfer area is 190 m² with air entering at 27°C and leaving at 40°C. If the condensing temperature is constant at 49°C, what is the air mass flow rate in kg/s ? Let Cₚ₍ₐᵢᵣ₎ = 1.006 kJ/kg−K.(20pts) Draw and label the temperature-flow diagram. Round off your answer to three (3) decimal places.

Answers

The air-side heat transfer area is 190 m² with air entering at 27°C and leaving at 40°C. The condensing temperature is constant at 49°C. We need to find the air mass flow rate in kg/s. Also,[tex]Cₚ₍ₐᵢᵣ₎ = 1.006 kJ/kg−K.[/tex]The heat flow from the condenser is given by[tex]Q = m . Cp .[/tex]

Heat flow from the condenser is given by [tex]Q = m . Cp . ∆T[/tex]
Now, heat is transferred from the refrigerant to air.The formula for heat transfer is given by,
[tex]Q = U . A . ∆T[/tex]Where,Q = heat flow in kJ/sU = overall heat transfer coefficient in W/m²-KA = heat transfer area in [tex]m²∆T[/tex] = difference between the temperatures of refrigerant and air in K

Now, the overall heat transfer coefficient is given by,U = h / δWhere,h = heat transfer coefficient of air in W/m²-Kδ = thickness of the boundary layer in metersWe know the value of h as 30 W/m²-K, but the value of δ is not given. Therefore, we need to assume a value of δ as 0.0005 m.Then, the overall heat transfer coefficient is given by
[tex]U = 30 / 0.0005 = 60000 W/m²-K[/tex]

Now, heat flow from the refrigerant is given by
[tex]Q = U . A . ∆TQ = 60000 x 190 x 9Q = 102600000 W = 102600 kWAlso,Q = m . Cp . ∆T102600 = m . 1.006 . 9m = 11402.65 kg/s[/tex]

Therefore, the air mass flow rate in the air-cooled condenser is 11402.65 kg/s.

To know more about refrigerant visit:-

https://brainly.com/question/33440251

#SPJ11

a) (10 pts). Using a decoder and external gates, design the combinational circuit defined by the following three Boolean functions: F1 (x, y, z) = (y'+ x) z F2 (x, y, z) = y'z' + xy + yz' F3 (x, y, z) = x' z' + xy

Answers

Given Boolean functions are:F1 (x, y, z) = (y'+ x) z F2 (x, y, z) = y'z' + xy + yz' F3 (x, y, z) = x' z' + xyThe Boolean function F1 can be represented using the decoder as shown below: The diagram of the decoder is shown below:

As shown in the above figure, y'x is the input and z is the output for this circuit.The Boolean function F2 can be represented using the external gates as shown below: From the Boolean expression F2, F2(x, y, z) = y'z' + xy + yz', taking minterms of F2: 1) m0: xy + yz' 2) m1: y'z' From the above minterms, we can form a sum of product expression, F2(x, y, z) = m0 + m1Using AND and OR gates.

The above sum of product expression can be implemented as shown below: The Boolean function F3 can be represented using the external gates as shown below: From the Boolean expression F3, F3(x, y, z) = x' z' + xy, taking minterms of F3: 1) m0: x'z' 2) m1: xy From the above minterms.

To know more about Boolean visit:

https://brainly.com/question/27892600

#SPJ11

Five miners must be lifted from a mineshaft (vertical hole) 100m deep using an elevator. The work required to do this is found to be 341.2kJ. If the gravitational acceleration is 9.75m/s^2, determine the average mass per person in kg.
a. 65kg
b. 70kg
c. 75kg
d. 80kg

Answers

 (b).Given information: Depth of mine shaft = 100 m Work done = 341.2 kJ Gravitational acceleration = 9.75 m/s²Number of persons to be lifted = 5Formula used: Work done = force × distanceIn this question, we are supposed to determine the average mass per person in kg.

The formula to calculate the average mass per person is:Average mass per person = Total mass / Number of personsLet's begin with the solution:From the given information,The work done to lift 5 persons from the mine shaft is 341.2 kJThe gravitational acceleration is 9.75 m/s²The distance covered to lift the persons is 100 mTherefore,Work done = force × distance

Using this formula, we getForce = Work done / distance= 341.2 kJ / 100 m= 3412 J / 1 m= 3412 NNow, force = mass × gravitational accelerationTherefore, mass = force / gravitational acceleration= 3412 N / 9.75 m/s²= 350.56 kgAverage mass per person = Total mass / Number of persons= 350.56 kg / 5= 70.11 kg ≈ 70 kgTherefore, the average mass per person in kg is 70 kg. Hence, the correct option is (b).

To know more about Gravitational visit:-

https://brainly.com/question/3009841

#SPJ11

Connect a resistor of value 20 Ω
between terminals a-b and calculate i10
a) Using mesh method
b) Using node method

Answers

a) Using mesh method:

Mesh analysis is one of the circuit analysis methods used in electrical engineering to simplify complicated networks of loops when using the Kirchhoff's circuit laws

b) Using node method

Node analysis is another method of circuit analysis. It is used to determine the voltage and current of a circuit.

a) Using mesh method: Mesh analysis is one of the circuit analysis methods used in electrical engineering to simplify complicated networks of loops when using the Kirchhoff's circuit laws. The mesh method uses meshes as the basic building block to represent the circuit. The meshes are the closed loops that do not include other closed loops in them, they are referred to as simple closed loops.

Connect a resistor of value 20 Ω between terminals a-b and calculate i10

a) Using mesh method

1. Assign a current in every loop in the circuit, i1, i2 and i3 as shown.

2. Solve the equation for each mesh using Ohm’s law and KVL.

The equation of each loop is shown below.

Mesh 1:

6i1 + 20(i1-i2) - 5(i1-i3) = 0

Mesh 2:

5(i2-i1) - 30i2 + 10i3 = 0

Mesh 3:

-10(i3-i1) + 40(i3-i2) + 20i3 = 103.

Solve the equation simultaneously to obtain the current

i2i2 = 0.488A

4. The current flowing through the resistor of value 20 Ω is the same as the current flowing through mesh 1

i = i1 - i2

= 0.562A

b) Using node method

Node analysis is another method of circuit analysis. It is used to determine the voltage and current of a circuit.

Node voltage is the voltage of the node with respect to a reference node. Node voltage is determined using Kirchhoff's Current Law (KCL). The voltage between two nodes is given by the difference between their node voltages.

Connect a resistor of value 20 Ω between terminals a-b and calculate i10

b) Using node method

1. Apply KCL at node A, and assuming the voltage at node A is zero, the equation is as follows:

i10 = (VA - 0) /20Ω + (VA - VB)/5Ω

2. Apply KCL at node B, the equation is as follows:

(VB - VA)/5Ω + (VB - 10V)/30Ω + (VB - 0)/40Ω = 0

3. Substitute VA from Equation 1 into Equation 2, and solve for VB:

VB = 4.033V

4. Substitute VB into Equation 1 to solve for i10:

i10 = 0.202A.

Therefore, the current flowing through the resistor is 0.202A or 202mA.

To know more about node method visit:

https://brainly.com/question/31922707

#SPJ11

Question 3: Design Problem (2 Points) 1. In which of the application below would you allow for overshoot? State why (2) and why not. (tick the ones that doesn't allow overshoot) • Water Level . Elevator . Cruise Control • Air Conditioning Water flow rate into a vessel

Answers

Among the given applications (Water Level, Elevator, Cruise Control, Air Conditioning, and Water flow rate into a vessel), the application that allows for overshoot is Cruise Control.

Cruise Control is an application where allowing overshoot can be acceptable. Overshoot refers to a temporary increase in speed beyond the desired setpoint. In Cruise Control, overshoot can be allowed to provide a temporary acceleration to reach the desired speed quickly. Once the desired speed is achieved, the control system can then adjust to maintain the speed within the desired range. On the other hand, the other applications listed do not typically allow overshoot. In Water Level control, overshoot can cause flooding or damage to the system. Elevator control needs precise positioning without overshoot to ensure passenger safety and comfort.

Learn more about Cruise Control here:

https://brainly.com/question/32668437

#SPJ11

An insulated, rigid tank whose volume is 0.5 m³ is connected by a valve to a large vesset holding steam at 40 bar, 400°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 30 bar Determine the final temperature of the steams in the tank, in °C, and the final mass of the steam in the tank, in kg

Answers

The final temperature of steam in the tank is 375/V1°C, and the final mass of steam in the tank is 1041.26 V1 kg.

The given problem is related to the thermodynamics of a closed system. Here, we are given an insulated, rigid tank whose volume is 0.5 m³, and it is connected to a large vessel holding steam at 40 bar and 400°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 30 bar. Our objective is to determine the final temperature of the steam in the tank and the final mass of the steam in the tank. We will use the following formula to solve the problem:

PV = mRT

where P is the pressure, V is the volume, m is the mass, R is the gas constant, and T is the temperature.

The gas constant R = 0.287 kJ/kg K for dry air. Here, we assume steam to behave as an ideal gas because it is at high temperature and pressure. Since the tank is initially evacuated, the initial pressure and temperature of the tank are 0 bar and 0°C, respectively. The final pressure of the steam in the tank is 30 bar. Let's find the final temperature of the steam in the tank as follows:

P1V1/T1 = P2V2/T2

whereP1 = 40 bar, V1 = ?, T1 = 400°CP2 = 30 bar, V2 = 0.5 m³, T2 = ?

Rearranging the above formula, we get:

T2 = P2V2T1/P1V1T2 = 30 × 0.5 × 400/(40 × V1)

T2 = 375/V1

The final temperature of steam in the tank is 375/V1°C.

Now let's find the final mass of the steam in the tank as follows:

m = PV/RT

where P = 30 bar, V = 0.5 m³, T = 375/V1R = 0.287 kJ/kg K for dry air

We know that the mass of steam is equal to the mass of water in the tank since all the water in the tank has converted into steam. The density of water at 30 bar is 30.56 kg/m³. Let's find the volume of water required to fill the tank as follows:

V_water = m_water/density = 0.5/30.56 = 0.0164 m³

where m_water is the mass of water required to fill the tank. Since all the water in the tank has converted into steam, the final mass of steam in the tank is equal to m_water. Let's find the final mass of steam in the tank as follows:

m = PV/RT = 30 × 10^5 × 0.5/(0.287 × 375/V1) = 1041.26 V1 kg

The final mass of steam in the tank is 1041.26 V1 kg.

Therefore, the final temperature of steam in the tank is 375/V1°C, and the final mass of steam in the tank is 1041.26 V1 kg.

Learn more about thermodynamics visit:

brainly.com/question/1368306

#SPJ11

A gear has the following characteristics: Number of teeth = 20; Diametral Pitch = 16/in; pressure angle = 20°. The gear is turning at 50 rpm, and has a bending stress of 20 ksi. How much power (in hp) is the gear transmitting? (Assume velocity factor = 1)

Answers

The gear is transmitting approximately 1.336 hp.

To calculate the power transmitted by the gear, we can use the formula:

Power (in hp) = (Torque × Speed) / 5252

First, let's calculate the torque. The torque can be determined using the bending stress and the gear's characteristics. The formula for torque is:

Torque = (Bending stress × Module × Face width) / (Diametral pitch × Velocity factor)

In this case, the number of teeth (N) is given as 20, and the diametral pitch (P) is given as 16/in. To find the module (M), we can use the formula:

Module = 25.4 / Diametral pitch

Substituting the given values, we find the module to be 1.5875. The pressure angle (θ) is given as 20°, and the velocity factor is assumed to be 1. The face width can be estimated based on the gear's application.

Now, let's calculate the torque:

Torque = (20 ksi × 1.5875 × face width) / (16/in × 1)

Next, we need to convert the torque from inch-pounds to foot-pounds, as the speed is given in revolutions per minute (rpm) and we want the final power result in horsepower (hp). The conversion is:

Torque (in foot-pounds) = Torque (in inch-pounds) / 12

After obtaining the torque in foot-pounds, we can calculate the power:

Power (in hp) = (Torque (in foot-pounds) × Speed (in rpm)) / 5252

Substituting the given values, we find the power to be approximately 1.336 hp.

Learn more about Torque

brainly.com/question/31323759

#SPJ11

1) The figure below shows the identical trucks that work on an ideal cycle. Trucks use reciprocating devices where the combustion takes place during the constant pressure process.
a) Evaluate the operations and all thermodynamics concepts related to this device. (Hint: System, Law, Cycle).
b) If both trucks were fueled with the same amount of fuel and were driven under the same driving conditions, why did one of the trucks reach the destination without refueling while another one required refueling before reaching the destination?

Answers

a)The system, law, cycle and the thermodynamic concepts related to the given truck are explained as follows:

System: The system in the given problem is the identical truck. It involves the thermodynamic analysis of a truck.

Law: The first law of thermodynamics, i.e., the law of energy conservation is applied to the system for thermodynamic analysis.

"Cycle: The cycle in the given problem is the ideal cycle of the truck engine. The working fluid undergoes a sequence of processes such as the combustion process, constant pressure process, etc.

Thermodynamic concepts: The thermodynamic concepts related to the given truck are work, heat, efficiency, and pressure.

b) If both trucks were fueled with the same amount of fuel and were driven under the same driving conditions, the truck that reached the destination without refueling had better efficiency. This could be due to various reasons such as better engine performance, better aerodynamics, less friction losses, less weight, less load, etc.

Know more about concepts here:

https://brainly.com/question/31234926

#SPJ11

Find the production cost per 1000 kg steam in a steam plant when the evaporation rate is
7.2 kg steam per kg coal; initial cost of plant, $150,000; annual operational cost exclusive
of coal, $15,000. Assume life of 20 years; no final value; interest on borrowed capital, 4%;
on sinking fund, 3%. Average steam production is 14,500 kg per hr; cost of coal, $8.00 per
ton.

Answers

The production cost per 1000 kg steam in a steam plant when the evaporation rate is 7.2 kg steam per kg coal is $18.03. This is obtained as follows;

Step-by-step explanation:

The steam produced from the combustion of coal in a steam plant can be evaluated by first finding the amount of steam generated per kg of coal burned. This is called the evaporation rate.The evaporation rate is given as 7.2 kg steam per kg coal.The cost of coal is given as $8.00 per ton.The steam plant has an average steam production of 14,500 kg per hr.Annual operational cost exclusive of coal is $15,000.The initial cost of plant is $150,000.The life of the steam plant is 20 years.

The interest on borrowed capital is 4% while the interest on the sinking fund is 3%.To find the cost of steam production per 1000 kg, the following calculations are made;

Total amount of steam produced in one year = 14,500 * 24 * 365 = 126,540,000 kg

Annual coal consumption = 126,540,000 / 7.2 = 17,541,666.67 kg

Total cost of coal in one year = (17,541,666.67 / 1000) * $8.00 = $140,333.33

Total cost of operation per year = $140,333.33 + $15,000 = $155,333.33

Annual equivalent charge = AEC = 1 + i/n - 1/(1+i/n)^n*t

Where i = interest n = number of years for which the sum is invest

dt = total life of the investment AEC = 1 + 0.04/1 - 1/(1+0.04/1)^(1*20) = 1.7487

Annual equivalent disbursement = AED = S / a

Where S = initial cost of plant + sum of annual cost (AEC) for n y

earsa = annuity factor obtained from the tables

.AED = $150,000 / 3.8879 = $38,595.69

Annual sinking fund = AS = AED * i / (1 - 1/(1+i/n)^n*t)AS = $38,595.69 * 0.03 / (1 - 1/(1+0.03/1)^(1*20)) = $1,596.51

Total annual cost of the steam plant

= $155,333.33 + $1,596.51

= $156,929.84

Cost of steam production per 1000 kg = 1000 / (126,540,000 / 14,500) * $156,929.84 = $18.03Therefore, the cost of steam production per 1000 kg is $18.03.

To know more about evaporation visit :

https://brainly.com/question/28319650

#SPJ11

1. The adiabatic turbine of a gas turbine engine operates at steady state. a) Working from first principles, using an appropriate property diagram and explaining each stage in the derivation, show that the power output is given by: W = mc₂n, T. (1-(1/r₂Y₁-1) P where m is the mass flowrate of a (perfect) gas through the turbine; c, and y are the specific heat at constant pressure and ratio of specific heats of that gas; ns, and are the turbine isentropic efficiency and expansion pressure ratio, respectively; Te is the turbine entry temperature. Gas velocity may be assumed to be low throughout. Assume universal gas constant R = 8.3145 J.K-1.mol-¹ [15 Marks] b) For a turbine entry temperature of 1500 K, an isentropic efficiency of 85 % and an expansion pressure ratio of 8, estimate the turbine exit temperature if the gas has a mean molar mass (M) of 28.6 kg/kmol and a mean specific heat at constant pressure of 1.23 kJ/kgK. [10 Marks]

Answers

The equation will involve parameters such as mass flow rate, specific heat at constant pressure, ratio of specific heats, turbine isentropic efficiency, expansion pressure ratio, and turbine entry temperature.  

a) To derive the power output equation for the adiabatic turbine, we start by considering the first law of thermodynamics applied to a control volume around the turbine. By assuming steady state and adiabatic conditions, we can simplify the equation and express the work output (W) as a function of the given parameters. This derivation can be done using an appropriate property diagram, such as the T-s diagram.

Each stage in the derivation involves manipulating the equation, substituting appropriate values, and applying thermodynamic principles. The specific heat at constant pressure (cₚ) and the ratio of specific heats (γ) are properties of the gas, while the isentropic efficiency (ηs) and expansion pressure ratio (r₂) represent the performance characteristics of the turbine. The turbine entry temperature (Te) is the initial temperature of the gas entering the turbine.

b) Using the derived power output equation and the given values of turbine entry temperature (Te), isentropic efficiency (ηs), expansion pressure ratio (r₂), molar mass (M), and specific heat at constant pressure (cₚ), we can substitute these values to calculate the turbine exit temperature. The calculation involves manipulating the equation algebraically and using the given values to obtain the desired result.

By evaluating the turbine exit temperature, we can assess the performance of the turbine under the given conditions and understand the thermodynamic behavior of the gas as it passes through the turbine stages.

Learn more about isentropic efficiency here:

https://brainly.com/question/32571811

#SPJ11

Sewage flows at 4m/s with a BODs of 60mg/L and a dissolved oxygen (DO) value of 1.8mg/L, into a river. Upstream of the sewage outfall the river flows at 20m/s with a BODs value of 4mg/L and it is saturated with dissolved oxygen. The saturated DO level in the river is 12mg/L. a) Calculate the BODs and DO values in the river at the confluence. Downstream the river flows with a mean velocity 1.5m/s. The BOD reaction rate constant is 0.4 day and the re-aeration constant is 0.6 day! b) Calculate the maximum dissolved oxygen deficit, D, in the river and how far downstream of the outfall that it occurs. Additionally, suggest how this figure may differ in the real-world from your modelled calculations c) In up to 8 sentences, define 4 different types of water pollutants and describe their common sources, and consequences.
d) Describe the role of water temperature in aggravating pollutant impact, and suggest how this could be controlled from an industrial point of view.

Answers

Sewage flow rate (q) = 4m/s BOD concentration (C) = 60mg/L Dissolved Oxygen (DO) = 1.8mg/L BOD concentration upstream (Co) = 4mg/L DO level upstream (Do) = 12mg/L Mean velocity downstream (vd) = 1.5m/sBOD reaction rate constant (K) = 0.4/day

Re-aeration constant (k) = 0.6/daya) Calculation of BODs and DO value in the river at the confluence. BOD calculation: BOD removal rate (k1) = (BOD upstream - BOD downstream) / t= (60-4) / (0.4) = 140mg/L/day

Assuming the removal is linear from the outfall to the confluence, we can calculate the BOD concentration downstream of the outfall using the following equation:

BOD = Co - (k1/k2) (1 - exp(-k2t))BOD

= 60 - (140 / 0.4) (1 - exp(-0.4t))

= 60 - 350 (1 - exp(-0.4t))

Where t is the time taken for sewage to travel from the outfall to the confluence. Using the flow rate (q) and distance from the outfall (x), we can calculate the time taken (t = x/q).

If the distance from the outfall to the confluence is 200m, then t = 50 seconds (time taken for sewage to travel 200m at a velocity of 4m/s).

BOD at the confluence = 60 - 350 (1 - exp(-0.4 x 50)) = 14.5mg/L

DO calculation:

DO deficit (D) = Do - DcDc = Co * exp(-k2t) + (k1 / k2) (1 - exp(-k2t))

= 4 * exp(-0.6 x 50) + (140 / 0.6) (1 - exp(-0.6 x 50))

= 5.58mg/L

DO at the confluence = Do - Dc = 1.8 - 5.58 = -3.78mg/L (negative value indicates that DO levels are below zero)

BOD concentration at the confluence = 14.5mg/LDO concentration at the confluence = -3.78mg/L (below zero indicates that DO levels are deficient)b) Calculation of maximum dissolved oxygen deficit (D) in the river and how far downstream of the outfall that it occurs.

DO deficit (D) = Do - DcDc = Co * exp(-k2t) + (k1 / k2) (1 - exp(-k2t))= 4 * exp(-0.6 x 200) + (140 / 0.6) (1 - exp(-0.6 x 200))= 11.75mg/LD = 12 - 11.75 = 0.25mg/L

The maximum dissolved oxygen deficit (D) occurs 200m downstream of the outfall. In the real-world, the modelled calculations may differ due to variations in flow rate, temperature, and chemical composition of the sewage.c) 4 Different types of water pollutants and their sources:

1. Biological Pollutants: Biological pollutants are living organisms such as bacteria, viruses, and parasites. They are mainly derived from untreated sewage, manure, and animal waste. The consequences of exposure to biological pollutants include stomach upsets, skin infections, and respiratory problems.

2. Nutrient Pollutants: Nutrient pollutants include nitrates and phosphates. They are derived from fertilizer runoff and human sewage. They can cause excessive growth of aquatic plants, which reduces oxygen levels in the water and negatively affects aquatic life.

3. Chemical Pollutants: Chemical pollutants are toxic substances such as heavy metals, pesticides, and organic solvents. They are derived from industrial waste, agricultural runoff, and untreated sewage. Exposure to chemical pollutants can cause cancer, birth defects, and other health problems.

4. Thermal Pollutants: Thermal pollutants are heat energy discharged into water bodies by industrial processes such as power generation. Elevated water temperatures can reduce dissolved oxygen levels, which can negatively affect aquatic life. They also cause thermal shock, which can lead to death of aquatic organisms.

d) Water temperature plays an important role in aggravating the impact of pollutants on aquatic life. Elevated temperatures can reduce the solubility of oxygen in water, leading to oxygen depletion in water bodies. This can affect the growth and reproduction of aquatic life. Industrial processes can control the impact of temperature on pollutants by using cooling towers to lower the temperature of wastewater before discharge into water bodies.

Learn more about BOD concentration here:

brainly.com/question/13443333

#SPJ11

Each cell of an automobile 12 volt battery can produce about volts. A) 4.2 B) 4 C) 1.2 D) 2.1

Answers

The correct answer is D) 2.1 volts. Each cell of an automobile 12-volt battery typically produces around 2.1 volts.


Automobile batteries are composed of six individual cells, each generating approximately 2.1 volts. When these cells are connected in series, their voltages add up to form the total voltage of the battery. Therefore, a fully charged 12-volt automobile battery consists of six cells, each producing 2.1 volts, resulting in a total voltage of 12.6 volts (2.1 volts x 6 cells).

This voltage level is suitable for powering various electrical components and starting the engine of a typical automobile. It is important to note that the actual voltage may vary slightly depending on factors such as the battery's state of charge and temperature.

learn more about battery here : brainly.com/question/19225854

#SPJ11

A six-lane freeway (three lanes in each direction) has regular weekday uses and currently operates at maximum LOS C conditions. The lanes are 3.3 m wide, the right-side shoulder is 1.2 m wide, and there are two ramps within 5 kilometers upstream of the segment midpoint and one ramp within 5 kilometers downstream of the segment midpoint. The highway is on rolling terrain with 10% large trucks and buses (no recreational vehicles), and the peak-hour factor is 0.90. Determine the hourly volume for these conditions.

Answers

Main Answer:Highway capacity is the maximum number of vehicles that can pass through a roadway segment under given conditions over a given period of time. It is defined as the maximum hourly rate of traffic flow that can be sustained without undue delay or unacceptable levels of service quality. LOS C is an acceptable level of service during peak hours. The road is a six-lane freeway with three lanes in each direction. The lanes are 3.3 m wide, and the right-side shoulder is 1.2 m wide. The highway is on rolling terrain with a peak-hour factor of 0.90 and 10% large trucks and buses (no recreational vehicles).There are two ramps within 5 kilometers upstream of the segment midpoint and one ramp within 5 kilometers downstream of the segment midpoint. Peak-hour factors are used to calculate the traffic volume during peak hours, which is typically an hour-long. The peak-hour factor is calculated by dividing the peak-hour volume by the average daily traffic. According to HCM, peak-hour factors range from 0.5 to 0.9 for most urban and suburban roadways. Therefore, the peak-hour factor of 0.90 is appropriate in this situation.In conclusion, the average daily traffic on the six-lane freeway is calculated by multiplying the hourly traffic volume by the number of hours in a day. Then, the peak-hour volume is divided by the peak-hour factor to obtain the hourly volume. The resulting hourly volume is 2,297 vehicles per hour (vph). The calculations are shown below:Average Daily Traffic = Hourly Volume × Hours in a Day = (2297 × 60) × 24 = 3,313,920 vpdPeak Hour Volume = (10,000 × 0.9) = 9000 vphHourly Volume = Peak Hour Volume / Peak Hour Factor = 9000 / 0.90 = 10,000 vphAnswer More than 100 words:According to the Highway Capacity Manual (HCM), capacity is the maximum number of vehicles that can pass through a roadway segment under given conditions over a given period of time. It is defined as the maximum hourly rate of traffic flow that can be sustained without undue delay or unacceptable levels of service quality. Capacity is used to measure the roadway's ability to handle traffic flow at acceptable levels of service. The LOS is used to rate traffic flow conditions. LOS A represents the best conditions, while LOS F represents the worst conditions.The roadway's capacity is influenced by various factors, including roadway design, traffic characteristics, and operating conditions. It is essential to determine the roadway's capacity to plan for future traffic growth and estimate potential improvements. Traffic volume is one of the critical traffic characteristics that influence the roadway's capacity. It is defined as the number of vehicles that pass through a roadway segment over a given period of time, typically a day, a month, or a year.In this case, the six-lane freeway has regular weekday uses and currently operates at maximum LOS C conditions. The lanes are 3.3 m wide, the right-side shoulder is 1.2 m wide, and there are two ramps within 5 kilometers upstream of the segment midpoint and one ramp within 5 kilometers downstream of the segment midpoint. The highway is on rolling terrain with 10% large trucks and buses (no recreational vehicles), and the peak-hour factor is 0.90. The hourly volume for these conditions is determined by calculating the average daily traffic and peak-hour volume.According to HCM, peak-hour factors range from 0.5 to 0.9 for most urban and suburban roadways. Therefore, the peak-hour factor of 0.90 is appropriate in this situation. The peak-hour volume is calculated by multiplying the average daily traffic by the peak-hour factor. Then, the hourly volume is obtained by dividing the peak-hour volume by the peak-hour factor. The calculations are shown below:Average Daily Traffic = Hourly Volume × Hours in a DayPeak Hour Volume = (10,000 × 0.9) = 9000 vphHourly Volume = Peak Hour Volume / Peak Hour Factor = 9000 / 0.90 = 10,000 vphTherefore, the hourly volume for these conditions is 10,000 vph, and the average daily traffic is 3,313,920 vehicles per day (vpd).

Q10. Select and sketch an appropriate symbol listed in Figure Q10 for ench geometric chracteristic listed below. OV Example: Perpendicularity a) Straightness b) Flatness c) Roundness d) Parallelism e) Symmetry f) Concentricity 수 오우 ㅎㅎ V Figure Q10 10 (6 Marks)

Answers

Figure Q10 lists various symbols used in the geometric tolerance in engineering. The symbols used in engineering indicate the geometrical shape of the object. It is a symbolic representation of an object's shape that is uniform.

Geometric tolerances are essential for ensuring that manufactured components are precise and will work together smoothly. Perpendicularity is shown by a square in Figure Q10. Straightness is represented by a line in Figure Q10.Flatness is indicated by two parallel lines in Figure Q10. Roundness is shown by a circle in Figure Q10. Parallelism is represented by two parallel lines with arrows pointing out in opposite directions in Figure Q10.Symmetry is indicated by a horizontal line that runs through the centre of the shape in Figure Q10. Concentricity is shown by two circles in Figure Q10, with one inside the other. In conclusion, geometric tolerances are essential in engineering and manufacturing. They guarantee that the manufactured components are precise and will function correctly.

The symbols used in engineering represent the geometrical shape of the object and are used to describe it. These symbols make it easier for manufacturers and engineers to understand and communicate the requirements of an object's shape.

To know more about geometric tolerance visit:

brainly.com/question/31675971

#SPJ11

A shaft is loaded in bending and torsion such that Ma=70 Nm, Ta= 45 Nm, Mm= 55 Nm, and T= 35 Nm. For the shaft, Su = 700 MPa and Sy = 560 MPa, and a fully corrected endurance limit of Se=210 MPa is assumed. Let Kf=2.2 and Kfs=1.8. With a design factor of 2.0 determine the minimum acceptable diameter of the shaft using the: (a) DE-Gerber criterion. (b) DE-ASME Elliptic criterion. (c) DE-Soderberg criterion. (d) DE-Goodman criterion.

Answers

When a shaft is loaded in both bending and torsion, then it is called a combined load.Therefore, the minimum acceptable diameter of the shaft is as follows:(a) DE-Gerber criterion = 26.4 mm(b) DE-ASME Elliptic criterion = 34 mm(c) DE-Soderberg criterion = 27.5 mm(d) DE-Goodman criterion = 22.6 mm.

Here, Ma= 70 Nm,

Ta= 45 Nm, Su = 700 MPa,

Sy = 560 MPa,

Kf=2.2

and Kfs=1.8,

and the fully corrected endurance limit of Se=210 MPa is assumed.

Solving for the above formula we get: \[d > 0.0275 \,\,m = 27.5 \,\,mm\](d) DE-Goodman criterion.Goodman criterion is used for failure analysis of both ductile and brittle materials.

The formula for Goodman criterion is:

[tex]\[\frac{{{\rm{Ma}}}}{{{\rm{S}}_{\rm{e}}} + \frac{{{\rm{Mm}}}}{{{\rm{S}}_{\rm{y}}}}} + \frac{{{\rm{Ta}}}}{{{\rm{S}}_{\rm{e}}} + \frac{{\rm{T}}}{{{\rm{S}}_{\rm{u}}}}} < \frac{1}{{{\rm{S}}_{\rm{e}}}}\][/tex]

The diameter of the shaft can be calculated using the following equation:

[tex]\[d = \sqrt[3]{\frac{16{\rm{KT}}_g}{\pi D^3}}\][/tex]

Here, Ma= 70 Nm

, Mm= 55 Nm,

Ta= 45 Nm,

T= 35 Nm,

Su = 700 MPa,

Sy = 560 MPa,

Kf=2.2 and

Kfs=1.8,

and the fully corrected endurance limit of Se=210 MPa is assumed.

Solving for the above formula we get:

[tex]\[d > 0.0226 \,\,m = 22.6 \,\,mm\][/tex]

To know more about diameter visit:

https://brainly.com/question/32968193

#SPJ11

The gas-turbine cycle of a combined gas-steam power plant has a pressure ratio of 8. Air 300k 1500 enters the compressor at 290 K and the turbine at 1400 K. The combustion gases leaving the yoo gas turbine are used to heat the steam at 15 MPa to 450°C in a heat exchanger. The combustion 120k gases leave the heat exchanger at 247°C. Steam expands in a high-pressure turbine to a pressure of 3 MPa and is reheated in the combustion chamber to 500°C before it expands in a low- pressure turbine to 10 Pa. The mass flow rate of steam is 30 kg/s. Assuming all the compression and expansion processes to be isentropic. For steady-state operation and kinetic and potential energy changes are negligible, and constant specific heat with Cp-1.023 kJ/kg.K. k=1.4 is used. Determine (i) the mass flow rate of air in the gas-turbine cycle, Gil) the rate of 2 total heat input, and (in) the thermal efficiency of the combined cycle.

Answers

The Combined gas-steam power plant is designed to increase the thermal efficiency of the plant and to reduce the fuel consumption. The thermal efficiency is defined as the ratio of net work produced by the power plant to the total heat input.

The heat transferred to the steam per kg of steam is given by: Q/m = h5 - h4 Q

= m(h5 - h4) The temperature of the steam T5 can be calculated using the steam tables. At a pressure of 15 MPa, the enthalpy of the steam h4 = 3127.1 kJ/kg The temperature of the steam T5

= 450 °C

= 723 K At state 5, the steam is expanded isentropically in a high-pressure turbine to a pressure of 3 MPa. The work done by the high-pressure turbine per kg of steam is given by: Wh/m = Cp(T5 - T6) Wh

= mCp(T5 - T6) The temperature T6 can be calculated as: T6/T5 = (3 MPa/15 MPa)k-1/k T6

= T5(3/15)0.4

= 533.16 K The temperature T5 can be calculated using the steam tables.

The rate of total heat input to the cycle is given by: Qh = mCp(T3 - T2) + Q + m(h5 - h4) + mCp(T7 - T6) Qh

= 35.046 × 1.023 × (977.956 - 698.54) + 35.046 × 728.064 + 30 × (3127.1 - 2935.2) + 30 × 1.023 × (746.624 - 533.16) Qh = 288,351.78 kJ/s Thermal efficiency: The thermal efficiency of the cycle is given by: ηth

= (Wh + Wl)/Qh ηth

= (18,449.14 + 22,838.74)/288,351.78 ηth

= 0.1426 or 14.26 % The mass flow rate of air in the gas-turbine cycle is 35.046 kg/s.The total heat input is 288,351.78 kJ/s.The thermal efficiency of the combined cycle is 14.26 %.

To know more about steam visit:
https://brainly.com/question/15447025

#SPJ11

Tank B is enclosed inside Tank A. Given the Absolute pressure of tank A = 400 kPa, Absolute pressure of tank B = 300 kPa, and atmospheric pressure 100 kPa.
Find the gauge pressure reading of Tank A in kPa

Answers

The gauge pressure reading of Tank A in kPa is 300 kPa.

B is enclosed inside Tank A, Absolute pressure of tank A is 400 kPa, Absolute pressure of tank B is 300 kPa, and atmospheric pressure is 100 kPa.

The question asks us to find the gauge pressure reading of Tank A in kPa. Here, the gauge pressure of tank A is the pressure relative to the atmospheric pressure. The gauge pressure is the difference between the absolute pressure and the atmospheric pressure.

We can calculate the gauge pressure of tank A using the formula: gauge pressure = absolute pressure - atmospheric pressure Given that the absolute pressure of tank A is 400 kPa and atmospheric pressure is 100 kPa, the gauge pressure of tank A is given by gauge pressure = 400 kPa - 100 kPa= 300 kPa

Therefore, the gauge pressure reading of Tank A in kPa is 300 kPa.

To know more about gauge pressure visit:

https://brainly.com/question/30698101

#SPJ11

QUESTION 6 12 points Save Answer A compressor used to deliver 2. 10 kg/min of high pressure air requires 8.204 kW to operate. At the compressor inlet, the air is at 100 kPa and 26.85°C. The air exits the compressor at 607 kPa and 256.85°C. Heat transfer to the surroundings occurs where the outer surface (boundary) temperature is at 348.5°C. Determine the rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats. Note: Give your answer to six decimal places.

Answers

The rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats is -0.570737 kW/K.

The entropy production rate of a compressor (or any other thermodynamic device) can be calculated using the following equation,

Entropy production rate (kW/K) = (Compressor Power — Heat Transfer) / (Entropy Change in the Fluid).

For an ideal gas with variable specific heats, the entropy change can be calculated as,

Entropy Change in the Fluid = m (cp ln(T₂/T₁) — R ln(P₂/P₁))

Where,

m = mass flow rate of gas in kg/s;

cp = specific heat capacity of gas in kJ/kg K;

T₁ = Inlet temperature of the gas in K;

T₂ = Exit temperature of the gas in K;

R = Gas constant in kJ/kg K; and,

P₁ = Inlet pressure of the gas in kPa; and

P₂ = Exit pressure of the gas in kPa.

Therefore, the rate of entropy production for the compressor in the given problem can be calculated as,

Entropy production rate (kW/K) = (8.204 kW - Heat Transfer) / [10 kg/min (cp ln(256.85/26.85) - R ln(607/100))]

Where,

cp = 1.013 kJ/kg K,

R = 0.287 kJ/kg K.

Therefore,

Entropy production rate (kW/K) = (8.204 kW - Heat Transfer) / 469.79

Heat Transfer = m (cp (T₂ - T₁)) where,

m = 10 kg/min and

T2 = 348.5°C = 621.65 K.

Heat Transfer = 10 kg/min (1.013 kJ/kg K) (621.65 K - 256.85 K).

Heat Transfer = 285.354 kW

Entropy production rate (kW/K) = (8.204 kW - 285.354 kW) / 469.79 = -0.570737 kW/K (six decimal places).

Therefore, the rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats is -0.570737 kW/K.

Learn more about the entropy production here:

https://brainly.com/question/31966522.

#SPJ4

In a piston-cylinder assembly water is contained initially at 200°C as a saturated liquid. The piston moves freely in the cylinder as water undergoes a process to the corresponding saturated vapor state. There is no heat transfer with the surroundings. This change of state is brought by the action of paddle wheel. Determine the amount obowa of entropy produced per unit mass, in kJ/kg · K.

Answers

The given problem is solved as follows: As we know that the entropy can be calculated using the following formula,

[tex]S2-S1 = integral (dq/T)[/tex]

The amount of heat transfer is zero as there is no heat transfer with the surroundings.

The work done during the process is given by the area under the

P-V curve,

w=P(V2-V1)

As the process is isothermal,

the work done is given by the following equation

w=nRT ln (V2/V1)

For a saturated liquid, the specific volume is

vf = 0.001043m³/kg and for a saturated vapor, the specific volume is vg = 1.6945m³/kg.

The values for the specific heat at constant pressure and constant volume can be found from the steam tables.

Using these values, we can calculate the change in entropy.Change in entropy,

S2-S1 = integral(dq/T)

= 0V1 = vf

= 0.001043m³/kgV2 = vg

= 1.6945m³/kgw

= P(V2-V1)

= 100000(1.6945-0.001043)

= 169.405 J/moln

= 1/0.001043

= 958.86 molR

= 8.314 JK-1mol-1T = 200 + 273

= 473 KSo, w = nRT ln (V2/V1)

=> 169.405

= 958.86*8.314*ln(1.6945/0.001043)

Thus, ΔS = S2 - S1

= 959 [8.314 ln (1.6945/0.001043)]/473

= 8.3718 J/Kg K

∴ The amount of entropy produced per unit mass is 8.3718 J/Kg K

In this question, the amount of entropy produced per unit mass is to be calculated in the given piston-cylinder assembly which contains water initially at 200°C as a saturated liquid. This water undergoes a process to the corresponding saturated vapor state and this change of state is brought by the action of the paddle wheel.

It is given that there is no heat transfer with the surroundings. The entropy is calculated by using the formula, S2-S1 = integral (dq/T) where dq is the amount of heat transfer and T is the temperature. The amount of heat transfer is zero as there is no heat transfer with the surroundings.

The work done during the process is given by the area under the P-V curve. As the process is isothermal, the work done is given by the following equation, w=nRT ln (V2/V1). For a saturated liquid, the specific volume is vf = 0.001043m³/kg and for a saturated vapor, the specific volume is vg = 1.6945m³/kg. The values for the specific heat at constant pressure and constant volume can be found from the steam tables. Using these values, we can calculate the change in entropy.

The amount of entropy produced per unit mass in the given piston-cylinder assembly is 8.3718 J/Kg K.

Learn more about entropy here:

brainly.com/question/20166134

#SPJ11

Other Questions
When surface streams encounter limestone they disappearunderground into sinkhole called_________________. Group of answerchoicesemerging streamssinking streamsmeandering streams Like all other rapidly growing cells, cancer cells must replicate their DNA and divide rapidly. However, also like all other rapidly growing cells, this can cause problems- what are these problems and how do cancer cells mitigate these problems? Its four parts but one question please solve them allY Part A Find the magnitude of the net electric force exerted on a charge +Q, located at the center of the square, for the following arrangement of charge: the charges alternate in sign (+9,-9, +9,-g) What is the name of an ammonia molecule in which one of thehydrogen atoms is replaced by a propyl group?Group of answer choices:a. Propylamideb. Propaneaminec. Propanamided. Propylamine The Vostok ice core data... O All of the answers (A-C) B. Shows a clear NEGATIVE correlation between CO2 concentration and temperature Band C O C. Gives the natural range of variation in CO2 concentrations in the past 650,000 years O A. Tells us the age of Antarctica A student measures the Ba2+concentration in a saturated aqueous solution of bariumfluoride to be 7.3810-3M.Based on her data, the solubility product constant forbarium fluoride is Methane gas at 120 atm and 18C is stored in a 20m tank. Determine the mass of methane contained in the tank, in kg, using the(a) ideal gas equation of state. (b) van der Waals equation. (c) Benedict-Webb-Rubin equation. Case Study: The Ripple Effect of Supermarket Wars: Aldi Is Changing the Markets in Many CountriesUsing materials in the case and items to which you gain access through a search, describe how Aldi is creating competitive rivalry in the retail grocers industry.As explained in this chapters Opening Case, Amazon purchased Whole Foods. How will this transaction affect Aldi as it seeks to expand its presence in the United States? What competitive actions might Aldi take in response to Amazons purchase of Whole Foods?Using concepts and actions explained in this chapter, decide if Aldi is more likely to respond to any strategic actions Amazon might initiate through Whole Foods or if Amazon through Whole Foods is more likely to respond to any strategic actions Aldi takes. Be prepared to justify your decision.In a competitive rivalry sense, explain the actions (strategic and/or tactical) you believe Walmart and Costco will take to respond to Aldis intentions to have 2,500 U.S. stores by 2020 (and if this truly came to light now that we are in 2022, and how many stores actual exist). (a) Create a vector A from 40 to 80 with step increase of 6. (b) Create a vector B containing 20 evenly spaced values from 20 to 40. (Hint: what should you use?) Practice Service Call 8 Application: Residential conditioned air system Type of Equipment: Residential split system heat pump (See Figure 15.45.) Complaint: System heats when set to cool. Symptoms: 1. System heats adequately. 2. With thermostat fan switch on, the fan operates properly. 3. Outdoor fan motor is operating. 4. Compressor is operating. 5. System charge is correct. 6. R to O on thermostat is closed. 7. 24 volts are being supplied to reversing valve solenoid. Drag each label to the correct location.A high school history class is writing essays about the American Civil War. Like all historians, they will be influenced by their personal ideologies and need to be aware of that influence. Read the brief descriptions of the class members below and determine whether each individual will be influenced by his or her economic, political, or social ideology.Ronnys great-great-greatgrandfather was anabolitionist. He is proudof his grandfathers workalong the UndergroundRailroad.Jennys family recentlylost their business.She is helping herfather establish anew business tosupport their family.Julie believes in equalrights for every person.She often volunteersat voter registrationdrives to impact change.Emily is African American.She is a strong advocatefor African Americanculture in her community.Shaun is an entrepreneurwho has started his ownpart-time business andbelieves that anyone cansucceed despite hardfinancial times in America.Paul identifies himselfas a Democrat. Herecently wrote a letterto his representativeabout a bill that hehopes becomes a law. Question 3 Which of the following statements is true of the male reproductive system? A The interstitial (Leydig) assist in sperm formation B The testes are temperature sensitive for optimal sperm pro A firms HR strategy must work in tandem with its corporate and business strategies. HR is expected to create value for organizational business decisions. This practice is likely to grow as firms expect HR to be involved in the strategic planning process and significantly contribute to the business. Critically discuss the importance of HR as a strategic value contributor to an organization? Design a circuit which counts seconds, minutes and hours and displays them on the 7-segement display in 24 hour format. The clock frequency available is 36 KHz. Assume that Binary to BCD converter and BCD to 7-Segement display is already available for the design. Listen Cancer development occurs due to which of the following? Select all that apply. A) Frameshift mutations, both insertions and deletions B) Mutations in tumor suppressor genes C) Mutations in oncogenes D) Nonstop mutations Question 17 (1 point) Listen Viruses _. Select all that apply. A) can perform metabolism on their own B) target a specific cell type C) must enter a host cell to produce new viral particles D) are noncellular You are told that an organism contains a nucleus, a cell membrane, and multiple cells. Which of the following categories could the organism belong to? Select all that apply. A) Plantae B) Bacteria C) Archaea D) Animalia E) Eukarya please show me the work6. Consider the quadratic function f(x) = 2x 20x - 50. (a) Compute the discriminant of f. (b) How many real roots does f have? Do not graph the function or solve for the roots. Design a excel file of an hydropower turgo turbine in Sizing and Material selection.Excel file must calculate the velocity of the nozel, diameter of the nozel jet, nozzle angle, the runner size of the turgo turbine, turbine blade size, hub size, fastner, angular velocity,efficiency,generator selection,frequnecy,flowrate, head and etc.(Note: File must be in execl file with clearly formulars typed with all descriptions in the sheet) Q.2. Prepare a questionnaire (with 5 questions, 3 options for each) where you assume the following role: As the Public Relations Officer of ABC Medical College, you have noticed that there is a drop in the number of women candidates in medical science disciplines from 2016 to 2019. You are investigating the cause of this phenomenon. Your goal is to get ground-level information so that you can herp increase the number of women students in these disciplines. Your questionnaire, to be circulated among faculty members of ABC Medical College, should keep in mind the principles of questionnaire preparation and be audience-oriented. 25 POINTSWhat are the ordered pair solutions for this system of equations?y = x^2 - 2x + 3y = -2x + 12 Using either logarithms or a graphing calculator, find the time required for the initial amount to be at least equal to the final amount. $3000, deposited at 8% compounded quarterly, to reach at least $8000 The time required is year(s) (Type an integer or decimal rounded up to the next quarter)