In a research study of a one-tail hypothesis, data were collected from study participants and the test statistic was calculated to be t = 1.664. What is the critical value (a = 0.05, n₁ 12, n₂ = 1

Answers

Answer 1

In hypothesis testing, the critical value is a point on the test distribution that is compared to the test statistic to decide whether to reject the null hypothesis or not. It is also used to determine the region of rejection. In a one-tailed hypothesis test, the researcher is interested in only one direction of the difference (either positive or negative) between the means of two populations.

The critical value is obtained from the t-distribution table using the level of significance, degree of freedom, and the type of alternative hypothesis. Given that the level of significance (alpha) is 0.05, and the sample size for the first sample n₁ is 12, while the sample size for the second sample n₂ is 1, the critical value can be calculated as follows:

First, find the degrees of freedom (df) using the formula; df = n₁ + n₂ - 2 = 12 + 1 - 2 = 11From the t-distribution table, the critical value for a one-tailed hypothesis at α = 0.05 and df = 11 is 1.796.To decide whether to reject or not the null hypothesis, compare the test statistic value, t = 1.664, with the critical value, 1.796.

If the calculated test statistic is greater than the critical value, reject the null hypothesis; otherwise, fail to reject the null hypothesis. Since the calculated test statistic is less than the critical value, t = 1.664 < 1.796, fail to reject the null hypothesis. The decision is not statistically significant at the 0.05 level of significance.

To know about hypothesis visit:

https://brainly.com/question/29576929

#SPJ11


Related Questions

What do I do ? I’m stuck on these question because I don’t remember this from previous lessons.

Answers

Answer: 21 (choice C)

Reason:

The fancy looking "E" is the Greek uppercase letter sigma. It represents "summation". We'll be adding terms of the form [tex]3(2)^k[/tex] where k is an integer ranging from k = 0 to k = 2.

If k = 0, then [tex]3(2)^k = 3(2)^0 = 3[/tex]If k = 1, then [tex]3(2)^k = 3(2)^1 = 6[/tex]If k = 2, then [tex]3(2)^k = 3(2)^2 = 12[/tex]

Add up those results: 3+6+12 = 21

Therefore, [tex]\displaystyle \sum_{k=0}^{2} 3(2)^k = \boldsymbol{21}[/tex]

which points us to  choice C   as the final answer.

find the area of the surface. the part of the hyperbolic paraboloid z = y2 − x2 that lies between the cylinders x2 y2 = 1 and x2 y2 = 16

Answers

The area of the surface, the part of the hyperbolic paraboloid

z = y₂ − x₂ that lies between the cylinders

x₂ y₂ = 1 and

x₂ y₂ = 16 is 2π (3√21 - 3) square units.

The hyperbolic paraboloid is given by z = y₂ − x₂.

We need to find the area of the surface that lies between the cylinders x₂ y₂ = 1 and

x₂ y₂ = 16.

To find the area, we need to use the formula:

Surface area = ∫∫(1 + z'x₂ + z'y₂)1/2dA

Where z'x and z'y are the partial derivatives of z with respect to x and y, respectively.

We have, z'x = -2xz'y = 2y

We need to find dA in terms of x and y.

Let's consider the cylinder x₂y₂ = r₂ (r is a positive constant).

If we convert to polar coordinates, then x = r cos θ and y = r sin θ.

So, the surface lies between x₂y₂ = 1

and x₂y₂ = 16 is given by the region 1 ≤ r₂ ≤ 16.

Let's change to polar coordinates. So, we have dA = r dr dθ.

Now, we can integrate over the region to find the area:

Surface area = ∫(0 to 2π)∫(1 to 4)(1 + z'x₂ + z'y₂)1/2 r dr dθ

= ∫(0 to 2π)∫(1 to 4)(1 + 4x2 + 4y₂)1/2 r dr dθ

= 2π ∫(1 to 4)(1 + 4x₂ + 4y₂)1/2 r dr

= 2π [r(1 + 4x₂ + 4y₂)1/2/3] (1 to 4)

= 2π [(64 + 16 + 4)1/2/3 - (1 + 4 + 4)1/2/3]

= 2π (3√21 - 3) square units.

Hence, the area of the surface is 2π (3√21 - 3) square units.

To know more about polar coordinates, visit:

https://brainly.com/question/31904915

#SPJ11

(1) For each of the following statements, determine whether it is true or false. Justify your answer.
(a) (π² > 9) V (πT < 2)
(b) (π² > 9) ^ (π <2)
(c) (π² > 9) → (π > 3)
(d) If 3 ≥ 2, then 3 ≥ 1.
(e) If 1 ≥ 2, then 1 ≥ 1.
(f) (2+3 =4) → (God exists.)
(g) (2+3=4) → (God does not exist.)
(h) (sin(27) > 9) → (sin(27) < 0)
(i) (sin(27) > 9) V (sin(2π) < 0)
(j) (sin(2π) > 9) V¬(sin(27) ≤ 0)

Answers

(a) (π² > 9) V (πT < 2)   False

(b) (π² > 9) ^ (π <2)    True

(c) (π² > 9) → (π > 3)    True

(d) If 3 ≥ 2, then 3 ≥ 1.   True

(e) If 1 ≥ 2, then 1 ≥ 1.    True

(f) (2+3 =4) → (God exists.)  False

(g) (2+3=4) → (God does not exist.)    True

(h) (sin(27) > 9) → (sin(27) < 0)   False

(i) (sin(27) > 9) V (sin(2π) < 0)   False

(j) (sin(2π) > 9) V¬(sin(27) ≤ 0)   False

(a) False. The statement (π² > 9) V (πT < 2) is false.

(π² > 9) is true because π squared (approximately 9.87) is indeed greater than 9.(πT < 2) is false because π times any value will always be greater than 2. Since one of the conditions (πT < 2) is false, the whole statement is false.

(b) True. The statement (π² > 9) ^ (π < 2) is true.

(π² > 9) is true because π squared (approximately 9.87) is indeed greater than 9. (π < 2) is true because π (approximately 3.14) is less than 2.

Since both conditions are true, the whole statement is true.

(c) True. The statement (π² > 9) → (π > 3) is true.

(π² > 9) is true because π squared (approximately 9.87) is indeed greater than 9. (π > 3) is true because π (approximately 3.14) is greater than 3.

Since the premise (π² > 9) is true, and the conclusion (π > 3) is also true, the whole statement is true.

(d) True. The statement "If 3 ≥ 2, then 3 ≥ 1" is true.

Since both 3 and 2 are greater than or equal to 1, the premise (3 ≥ 2) is true. In this case, the conclusion (3 ≥ 1) is also true, since 3 is indeed greater than or equal to 1.

(e) True. The statement "If 1 ≥ 2, then 1 ≥ 1" is true.

The premise "1 ≥ 2" is false because 1 is not greater than or equal to 2. Since the premise is false, the whole statement is vacuously true, as any conclusion can be drawn from a false premise.

(f) False. The statement (2+3 =4) → (God exists) is false.

The premise "2+3 = 4" is false because 2 plus 3 is equal to 5, not 4. Since the premise is false, the implication does not hold true, and we cannot conclude anything about the existence of God based on this false premise.

(g) True. The statement (2+3=4) → (God does not exist) is true.

The premise "2+3 = 4" is false because 2 plus 3 is equal to 5, not 4. Since the premise is false, the implication holds true regardless of the truth value of the conclusion. Therefore, the statement is true.

(h) False. The statement (sin(27) > 9) → (sin(27) < 0) is false.

The premise (sin(27) > 9) is false because the maximum value of the sine function is 1, which is less than 9. Since the premise is false, the implication does not hold true.

(i) False. The statement (sin(27) > 9) V (sin(2π) < 0) is false.

Both (sin(27) > 9) and (sin(2π) < 0) are false statements. The sine function produces values between -1 and 1, so neither condition is satisfied. Since both conditions are false, the whole statement is false.

(j) False. The statement (sin(2π) > 9) V ¬(sin(27) ≤ 0) is false.

(sin(2π) > 9) is false because the sine of 2π is 0, which is not greater than 9. (sin(27) ≤ 0) is true because the sine of 27 degrees is positive and less than or equal to 0.

Therefore, the negation of (sin(27) ≤ 0) is false.

Since one of the conditions (sin(27) ≤ 0) is false, the whole statement is false.

To know more about squared prefer here:

https://brainly.com/question/14198272#

#SPJ11

the predetermined overhead allocation rate for a given production year is calculated ________.

Answers

The predetermined overhead allocation rate for a given production year is calculated by dividing the total estimated overhead costs by the estimated level of activity for the year.

The predetermined overhead allocation rate is the ratio of estimated overhead expenses to estimated production activity. It is a cost accounting concept used to allocate manufacturing overhead to the goods manufactured during a production period, and it is also known as the predetermined manufacturing overhead rate. The estimation is generally based on past production activity data.The predetermined overhead allocation rate for a given production year is calculated by dividing the total estimated overhead costs by the estimated level of activity for the year. This rate is then used to allocate overhead costs to the products produced during the year.

To know more about rate  visit:

https://brainly.com/question/15315513

#SPJ11

Question 1 Solve the following differential equation using the Method of Undetermined Coefficients. y²-9y=12e +e¹. (15 Marks)

Answers

To solve the given differential equation using the Method of Undetermined Coefficients, we'll first rewrite the equation in a standard form:

y² - 9y = 12e + e¹

The right side of the equation contains two terms: 12e and e¹. We'll treat each term separately.

For the term 12e, we assume a particular solution of the form:

y_p1 = A1e

where A1 is an undetermined coefficient.

Taking the derivative of y_p1 with respect to y, we have:

y_p1' = A1e

Substituting these into the differential equation, we get:

(A1e)² - 9(A1e) = 12e

Simplifying, we have:

A1²e² - 9A1e = 12e

This equation holds for all values of e if and only if the coefficients of the corresponding powers of e are equal. Therefore, we equate the coefficients:

A1² - 9A1 = 12

Solving this quadratic equation, we find two possible values for A1: A1 = -3 and A1 = 4.

For the term e¹, we assume a particular solution of the form:

y_p2 = A2e¹

where A2 is an undetermined coefficient.

Taking the derivative of y_p2 with respect to y, we have:

y_p2' = A2e¹

Substituting these into the differential equation, we get:

(A2e¹)² - 9(A2e¹) = e¹

Simplifying, we have:

A2²e² - 9A2e¹ = e¹

This equation holds for all values of e if and only if the coefficients of the corresponding powers of e are equal. Therefore, we equate the coefficients:

A2² - 9A2 = 1

Solving this quadratic equation, we find two possible values for A2: A2 = 3 and A2 = -1.

Therefore, the particular solutions are:

y_p1 = -3e and y_p2 = 3e¹

Hence, the general solution of the given differential equation is:

y = y_h + y_p

where y_h represents the homogeneous solution and y_p represents the particular solutions obtained. The homogeneous solution can be found by setting the right-hand side of the differential equation to zero and solving for y.

Learn more about Differential Equation here -: brainly.com/question/1164377

#SPJ11

The solution to the following system of linear equations: y= 2+ 3 y = 3x + 1 is (x, y) = O a. (2,7). O b. (-2,-5). O c. None of these. O d. (-2,-1). O e. (-1,-2). here to search O II

Answers

The correct option is (c) "none of these".Because the  the solution to the system of linear equations is (x, y) = (4/3, 5).

What are the values of x and y in the solution?

The given system of linear equations is:

y = 2 + 3........(1)

y = 3x + 1.......(2)

By putting equation (1) into equation (2):

y = 3x + 1

3x + 1 = 2 + 3

3x + 1 = 5

3x = 5-1

3x = 4

By Dividing both sides of the equation by 3:

x = 4/3

By putting this value of x into equation (2):

y = 3(4/3) + 1

y = 4 + 1

y = 5

Therefore, the solution to the system of linear equations is

(x, y) = (4/3, 5).

Learn more about Linear equations

brainly.com/question/32634451

#SPJ11

Find the steady-state probability vector (that is, a probability vector which is an eigenvector for the eigenvalue 1) for the Markov process with transition matrix A: || 12 12 1656 26

Answers

Given a transition matrix A with values as || 1/2 1/2 1/656 1/26The steady-state probability vector can be determined by calculating the eigenvalues and eigenvectors of A. For this purpose, let's first calculate the eigenvalues of A using the following equation,


|A-λI| = 0, where λ is the eigenvalue and I is the identity matrix.
Here, A is the given matrix as mentioned above. Therefore, we have to perform matrix subtraction as shown below:
|A-λI| = |-λ 1/2 1/2 1/656 1/26 0 1/2 -λ 1/656 1/26 0 1/2 1/656 -λ 1/2 1/26 1/2 1/656 1/2 1/2 -1 1/656 -25/26|
By using elementary row operations such as adding the second and third row to the first row, we get:
|-λ 0 0 1/328 1/13 0 1/2 -λ 1/656 1/26 0 1/2 1/656 -λ 1/2 1/26 1/2 1/656 0 0 -1 1/656 -25/26|
We can simplify this expression as:
(-λ) [(4λ^3) - (11881λ^2) - (3(6^12))] = 0
We can solve this equation and obtain the eigenvalues for the matrix A as λ1 is 1 and λ2, λ3, λ4 is -1/2.
Next, we need to find the eigenvectors for each eigenvalue. We begin by calculating the eigenvector corresponding to the eigenvalue λ1 = 1. We do this by solving the following equation:
(A - λ1 I) x = 0, where I is the identity matrix and x is the eigenvector.
This gives us the following equation:
|1/2 -1/2 -1/656 -1/26| |x1|

= |0|  |1/2 -1/2 -1/656 -1/26| |x2|   |0|  |1/2 1/2 1/656 -1/26| |x3|   |0|  |-1/2 -1/2 -1/656 27/26| |x4|   |0|
Solving the system of equations using row reduction, we obtain:
|x1| = |x2|,  

|x3| = 656x1,  

|x4| = -169x1
Substituting x2 = x1 into the second equation,

we get x3 = 656x1.
Substituting these values into the fourth equation, we obtain x4 = -169x1.
Now, we need to normalize the vector x so that its components sum to 1. This gives us:
x = (1/2, 1/2, 1/656, -1/169)
Thus, the steady-state probability vector for the Markov process with transition matrix A is:
(1/2, 1/2, 1/656, -1/169)
Finally, we normalize the vector x so that its components sum to 1.

To know more about matrix visit :

https://brainly.com/question/29132693

#SPJ11

The traffic flow rate (cars per hour) across an intersection is r ( t ) = 400 + 900 t − 150 t 2 , where t is in hours, and t =0 is 6am. How many cars pass through the intersection between 6 am and 11 am?

Answers

The problem involves calculating the number of cars passing through an intersection between 6 am and 11 am, given the traffic flow rate function.

The traffic flow rate function is given by r(t) = 400 + 900t - 150t^2, where t represents the time in hours and t = 0 corresponds to 6 am. To find the number of cars passing through the intersection between 6 am and 11 am, we need to calculate the definite integral of the traffic flow rate function from t = 0 to t = 5 (corresponding to 11 am). The integral represents the total number of cars passing through during the given time interval. Evaluating this integral will give us the desired result.

To know more about  intersection click here: brainly.com/question/12089275

#SPJ11

= 1. Let the random variable Y be distributed as Y = VX, where X has an exponential distribution with parameter 1. Find the density of Y.

Answers

The density of the random variable Y = VX, where X has an exponential distribution with parameter 1,

we can use the method of transformation of random variables.

First, let's find the cumulative distribution function (CDF) of Y. We have:

F_Y(y) = P(Y ≤ y)

           = P(VX ≤ y)

           = P(X ≤ y/V)

Since X follows an exponential distribution with parameter 1, the CDF of X is given by:

F_X(x) = 1 - [tex]e^{-x}[/tex] for x ≥ 0

Now, let's consider the CDF of Y for y ≥ 0:

F_Y(y) = P(X ≤ y/V)

           = 1 - [tex]e^{\\(-y/V)}[/tex] for y ≥ 0

To find the density of Y, we differentiate the CDF with respect to y:

f_Y(y) = d/dy [F_Y(y)]

          = d/dy [1 -[tex]e^{\\(-y/V)}[/tex] ]

          = (1/V) * [tex]e^{\\(-y/V)}\\[/tex]for y ≥ 0

Therefore, the density of Y, denoted as f_Y(y), is given by:

f_Y(y) = (1/V) * [tex]e^{\\(-y/V)}[/tex] for y ≥ 0

This is the density of the random variable Y = VX, where X follows an exponential distribution with parameter 1.

To know more about variable, visit:

https://brainly.com/question/28248724

#SPJ11

A soup can has a diameter of 2 inches and a height of 32 inches. 8 4 How many square inches of paper are required to make the label on the soup can?

Answers

To create the label for the soup can, we would require an estimated area of 64π square inches of paper.

To make the label on the soup can, we need to determine the amount of square inches of paper required. We need to find the surface area of the can, which consists of the lateral surface area of the cylinder.

The label on the soup can can be thought of as a rectangle that wraps around the surface of the can. To calculate the area of the label, we need to find the surface area of the can, which consists of the lateral surface area of the cylinder.

The formula for the lateral surface area of a cylinder is given by A = 2πrh, where r is the radius of the base and h is the height of the cylinder.

Given that the diameter of the can is 2 inches, the radius (r) is half of the diameter, which is 1 inch. The height (h) of the can is 32 inches.

Substituting the values into the formula, we have A = 2π(1)(32) = 64π square inches.

Therefore, to make the label on the soup can, we would need approximately 64π square inches of paper.

To know more about surface area refer here:

https://brainly.com/question/29298005#

#SPJ11

12. Ledolter and Hogg (see References) report the comparison of three workers with different amounts of experience who manufacture brake wheels for a magnetic brake. Worker A has four years of experience, worker B has seven years, and worker C has one year. The company is concerned about the product's quality, which is measured by the difference between the specified diameter and the actual diameter of the brake wheel.On a given day,the supervisor selects nine brake wheels at random from the output of each worker. The following data give the differences between the specified and actual diameters in hundredths of an inch: Worker A: 2.0 3.0 2.3 3.5 3.0 2.0 4.0 4.5 3.0 Worker B: 1.5 3.0 4.5 3.0 3.0 2.0 2.5 1.0 2.0 Worker C: 2.5 3.0 2.0 2.5 1.5 2.5 2.5 3.0 3.5 (a) Test whether there are statistically significant differences in the mean quality among the three different workers (b) Do box plots of the data confirm your answer in part (a)?

Answers

Yes, there are statistically significant differences in the mean quality among the three different workers.

A one-way analysis of variance (ANOVA) was conducted to test for significant differences in the mean quality among workers A, B, and C. The calculated F-statistic was compared to the critical F-value at a chosen significance level. If the F-statistic was greater than the critical value, the null hypothesis was rejected, indicating significant differences in mean quality among the workers. The ANOVA analysis considered the mean differences and variances of the three workers' data. In this case, the F-statistic was found to be significant, leading to the rejection of the null hypothesis and confirming the presence of statistically significant differences in mean quality among the workers.

Learn more about mean quality here : brainly.com/question/23882149

#SPJ11

The health care provider orders vancomycin 300 mg IVPB every 12 hours for an infection. The child weighs 35 lbs. The dose range for vancomycin is 15-25 mg/kg. Is this provider order a safe dose for this child? Round to the nearest tenth A Dose range mg to mg I For Blank 2 B. Order is safe?

Answers

The provider order is a safe dose for this child.

We have,

To determine if the provider order is a safe dose for the child, we need to calculate the child's weight in kilograms and then check if the ordered dose falls within the recommended dose range.

Given:

Child's weight: 35 lbs

Step 1: Convert the child's weight from pounds to kilograms.

1 lb is approximately equal to 0.4536 kg.

35 lbs x 0.4536 kg/lb = 15.876 kg (rounded to three decimal places)

Step 2: Calculate the dose range based on the child's weight.

Minimum dose: 15 mg/kg x 15.876 kg = 238.14 mg (rounded to two decimal places)

Maximum dose: 25 mg/kg x 15.876 kg = 396.90 mg (rounded to two decimal places)

Step 3: Compare the ordered dose to the calculated dose range.

Ordered dose: 300 mg

The ordered dose of 300 mg is within the calculated dose range of 238.14 mg to 396.90 mg.

Therefore,

The provider order is a safe dose for this child.

Learn more about expressions here:

https://brainly.com/question/3118662

#SPJ4

A model airplane is flying horizontally due north at 40 mi/hr when it encounters a horizontal crosswind blowing east at 40 mi/hr and a downdraft blowing vertically downward at 20 mi/hr a. Find the position vector that represents the velocity of the plane relative to the ground. b. Find the speed of the plane relative to the ground.

Answers

The position vector that represents the velocity of the plane relative to the ground is \begin{pmatrix}40\\40\\-20\end{pmatrix}.

The position vector of the velocity of the plane relative to the ground

We will resolve the velocity of the airplane into two vectors, one in the North direction and the other in the East direction.

Let's assume that the velocity of the airplane in the North direction is Vn and in the East direction is Ve.

Vn = 40 mphVe = 40 mphIn the vertical direction, the airplane is moving downward due to downdraft.

The velocity of the airplane in the vertical direction isVv = -20 mph (- sign because it is moving downward)

The velocity of the airplane with respect to the ground (v) is the resultant of these three vectors (Vn, Ve, and Vv)

According to the Pythagorean theorem;

v^2 = Vn^2 + Ve^2 + Vv^2v = sqrt(Vn^2 + Ve^2 + Vv^2)

Putting values, we get

v = sqrt(40^2 + 40^2 + (-20)^2)

= sqrt(3200) mph

v = 56.57 mph

Therefore, the position vector that represents the velocity of the plane relative to the ground is \begin{pmatrix}40\\40\\-20\end{pmatrix}.

Know more about the vector here:

https://brainly.com/question/27854247

#SPJ11

Assume that you have a sample of n, -7, with the sample mean X, 41, and a sample standard deviation of S, -4, and you have an independent sample of ₂-12 from another population with a sample mean of X₂-34, and the sample standard deviation S₂ 8. Construct a 95% confidence interval estimate of the population mean difference between u, and p. Assume that the two population variances are equal SP₂ (Round to two decimal places as needed.)

Answers

The 95% confidence interval estimate of the population mean the difference between μ1 and μ2 with the provided values is (4.34, 9.66) (rounded to two decimal places as needed).

To find the 95% confidence interval estimate of the population mean the difference between μ1 and μ2 with the provided values, use the formula below: 95% confidence interval estimate:

(X1 - X2) ± t(α/2, n-1) (Sp²/ n₁ + Sp²/ n₂)½

Where X1 is the sample mean of population 1, X2 is the sample mean of population 2, Sp² is the pooled variance, n1 is the sample size of population 1, n2 is the sample size of population 2, and t(α/2, n-1) is the t-distribution value with n-1 degrees of freedom and an area of α/2 to the right of it.

So, we have; n1 = 7, X1 = 41, and S1 = 4, n2 = 12, X2 = 34, and S2 = 8

Firstly, we'll compute the pooled variance:

SP² = [(n₁ - 1) S₁² + (n₂ - 1) S₂²] / (n₁ + n₂ - 2) = [(7 - 1)4² + (12 - 1)8²] / (7 + 12 - 2) = 75.50

Secondly, we'll have the value of t(α/2, n-1):

Using a t-distribution table with 17 degrees of freedom (7 + 12 - 2), and a level of significance of 0.05,

t(0.025, 17) = 2.110.

The 95% confidence interval estimate is:

(X1 - X2) ± t(α/2, n-1) (Sp²/ n₁ + Sp²/ n₂)½= (41 - 34) ± 2.110(75.50/7 + 75.50/12)½

= 7 ± 2.6565

= (7 - 2.6565, 7 + 2.6565)

= (4.3435, 9.6565)

You can learn more about confidence intervals at: brainly.com/question/32546207

#SPJ11

In each part, express the vector as a linear combination of
A = [1 -1] , B =[ 0 1], C = [ 0 1 ], D= [ 2 0 ]
[0 2] [ 0 1] [ 0 0 ] [ 1 -1 ]
a. [1 2] b. [3 1]
[2 4] [1 2]

Answers

The coefficients for the given vectors is: [1 2] can be expressed as 2B + 2C. [2 4] can be expressed as 4B + 4C. [3 1] can be expressed as A + 2B + D.

In order to express the given vectors as linear combinations of the given vectors, we need to find the coefficients that will result in the given vector when we add the scaled components of the given vectors.

Let's find out the coefficients for the given vectors as shown below;[1 2] = 2B + 2C[2 4]

= 4B + 4C[3 1]

= A + 2B + D

Therefore, the answer is: [1 2] can be expressed as 2B + 2C. [2 4] can be expressed as 4B + 4C. [3 1] can be expressed as A + 2B + D.

To know more about vectors, refer

https://brainly.com/question/15519257

#SPJ11


2.
4 2 2 points We expect most of the data in a data set to fall within 2 standard deviations of the mean of the data set. True False

Answers

True, we expect most of the data in a data set to fall within 2 standard deviations of the mean of the data set.

The statement is true because of the empirical rule, also known as the 68-95-99.7 rule. According to this rule, for data that follows a normal distribution, approximately 68% of the data falls within one standard deviation of the mean, approximately 95% falls within two standard deviations, and approximately 99.7% falls within three standard deviations.

This means that if a data set follows a normal distribution, we can expect the majority of the data (around 95%) to fall within two standard deviations of the mean. This concept is widely used in statistics to understand the spread and distribution of data.

However, it's important to note that this rule specifically applies to data that is normally distributed. In cases where the data is not normally distributed or exhibits significant skewness or outliers, the rule may not hold true. In such cases, additional statistical techniques and considerations may be required to understand the distribution of the data.

Learn more about mean here:

brainly.com/question/32056327

#SPJ11

What is the area of the triangle whose three vertices are at the xy coordinates: (4, 3), (4, 16), and (22,3)? Please round your answer to the nearest whole number (integer). I Question 18 5 pts Given the function: x(t) = 5 t 3+ 5t² - 7t +10. What is the value of the square root of x (i.e., √) at t = 3? Please round your answer to one decimal place and put it in the answer box.

Answers

prob 13.0

To find the area of the triangle with the given coordinates, we can use the formula for the area of a triangle:

Area = (1/2) * base * height

The base of the triangle can be calculated as the difference between the x-coordinates of two vertices, and the height can be calculated as the difference between the y-coordinate of the third vertex and the y-coordinate of one of the other vertices.

Let's calculate the base and height:

Base = 22 - 4 = 18
Height = 16 - 3 = 13

Now, we can calculate the area:

Area = (1/2) * 18 * 13 = 117

Rounding the answer to the nearest whole number, the area of the triangle is approximately 117.

For the second part of the question:

Given the function x(t) = 5t³ + 5t² - 7t + 10, we need to find the value of √x at t = 3.

First, let's calculate x at t = 3:
x(3) = 5(3)³ + 5(3)² - 7(3) + 10
= 135 + 45 - 21 + 10
= 169

Now, let's find the square root of x(3):

√x(3) = √169 = 13

Rounding the answer to one decimal place, the square root of x at t = 3 is approximately 13.0.

The area of the triangle with vertices at (4, 3), (4, 16), and (22, 3) can be calculated using the formula for the area of a triangle. By substituting the coordinates into the formula, we can find the area of the triangle.

To calculate the area of the triangle, we use the formula:

Area = 1/2 * |x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|

Substituting the coordinates into the formula, we have:

Area = 1/2 * |4(16 - 3) + 4(3 - 3) + 22(3 - 16)|

Simplifying the expression inside the absolute value, we get:

Area = 1/2 * |52 - 0 - 286|

Area = 1/2 * |-234|

Taking the absolute value, we have:

Area = 1/2 * 234

Area = 117

Therefore, the area of the triangle is 117 square units.

For the second question, we substitute t = 3 into the function x(t) = 5t³ + 5t² - 7t + 10:

x(3) = 5(3)³ + 5(3)² - 7(3) + 10

x(3) = 5(27) + 5(9) - 21 + 10

x(3) = 135 + 45 - 21 + 10

x(3) = 169

Finally, we calculate the square root of x(3):

√169 = 13.0

Therefore, the value of the square root of x at t = 3 is approximately 13.0, rounded to one decimal place.

To learn more about triangle click here:

brainly.com/question/2773823

#SPJ11

Find the value(s) of s so that the matrix os 0 1 1 o 1 is invertible. Hint: Use a property of S determinants. os 7 O s S det = 0 1 S SOT 3+0+0=5 + ots+0=5

Answers

Given that the matrix is A= [0  1 1; 0 1 s], we need to find the value(s) of s so that the matrix is invertible. The determinant of the matrix A is given by |A| = 0(1-s) - 1(0-s) + 1(0) = s.

So the matrix A is invertible if and only if s is not equal to zero. If s=0, the determinant of matrix A is equal to 0 which implies that the matrix A is not invertible.

Hence the value of s for which matrix A is invertible is s not equal to 0.In other words, the matrix A is invertible if s ≠ 0. Therefore, the value(s) of s so that the matrix A is invertible is any real number except 0. Thus, the matrix A = [0 1 1; 0 1 s] is invertible for any value of s except 0. 

To know more about matrix visit :

https://brainly.com/question/29132693

#SPJ11

Use the following data set to answer parts a-c 21, 14.5, 15.3, 30, 17.6 Find the sample a) mean b) Find the median c) Find the sample standard deviation (s)

Answers

(a)The sample mean of the data set is 19.68

(b) The median of the data set is 17.6.

(c) The standard deviation of the data set is 6.3.

What is the sample mean of the date set?

(a)The sample mean of the data set is calculated as follows;

The given data set;

[21, 14.5, 15.3, 30, 17.6]

Mean = (21 + 14.5 + 15.3 + 30 + 17.6) / 5

Mean = 98.4 / 5

Mean = 19.68

(b) The median of the data set is determined by arranging the data from the least to highest.

median = [14.5, 15.3, 17.6, 21, 30] = 17.6

(c) The standard deviation of the data set is calculated as follows;

∑(x - mean)² = (14.5 - 19.68)² + (15.3 - 19.68)² + (17.6 - 19.68)² + (21 - 19.68)² + (30 - 19.68)²

∑(x - mean)² = 158.588

n - 1 = 5 - 1 = 4

S.D = √ (∑(x - mean)² / (n-1) )

S.D = √ (158.588 / 4 )

S.D = 6.3

Learn more about standard deviation here: https://brainly.com/question/447169

#SPJ4

(20%) You are given the following costs of producing 2 products in 2 countries (see the table): Costs (hours of labour) Meat (1 ton) Cheese (1 ton) 30 10 Country A Country B 5 5 On the basis of the data

Answers

To maximize efficiency, Country B should specialize in Meat production, and Country A should specialize in Cheese production.

To determine the optimal production allocation between the two products (Meat and Cheese) and the two countries (Country A and Country B), we can use the concept of comparative advantage.

Comparative advantage refers to the ability of a country to produce a particular good or service at a lower opportunity cost compared to another country. The opportunity cost is measured in terms of the number of hours of labor required to produce each unit of a product.

To find the country with a comparative advantage in each product, we compare the opportunity costs between the two countries.

For Meat:

The opportunity cost of producing 1 ton of Meat in Country A is 30 hours of labor.

The opportunity cost of producing 1 ton of Meat in Country B is 10 hours of labor.

Since the opportunity cost of producing Meat is lower in Country B (10 hours) compared to Country A (30 hours), Country B has a comparative advantage in Meat production.

For Cheese:

The opportunity cost of producing 1 ton of Cheese in Country A is 5 hours of labor.

The opportunity cost of producing 1 ton of Cheese in Country B is 5 hours of labor.

Both countries have the same opportunity cost for Cheese production, so neither country has a comparative advantage in Cheese production.

Based on comparative advantage, Country B is better suited for producing Meat, while both countries are equally efficient in producing Cheese.

To maximize efficiency, Country B should specialize in Meat production, and Country A should specialize in Cheese production. This specialization allows each country to focus on producing the product in which they have a comparative advantage, leading to overall lower production costs and increased efficiency.

To know more about Product related question visit:

https://brainly.com/question/31815585

#SPJ11

Replace the polar equations with equivalent Cartesian equations. Then describe or identify the graph.
(i) r sin = ln r + ln cos 0.
(ii) r = 2cos 0 +2sin 0. (iii) r = cot csc 0

Answers

(i) The Cartesian equation for r sin = ln r + ln cos 0 is y = ln(sqrt(x^2 + y^2)) + ln(sqrt(1 - x^2)). The graph represents a curve that spirals towards the origin, with the vertical asymptote at x = -1 and x = 1.

(ii) The Cartesian equation for r = 2cos 0 + 2sin 0 is x^2 + y^2 - 2x - 2y = 0. The graph represents a circle with center (1, 1) and radius √2.

(iii) The Cartesian equation for r = cot csc 0 is x^2 + y^2 - x = 0. The graph represents a circle with center (1/2, 0) and radius 1/2.

(i) To convert the polar equation r sin = ln r + ln cos 0 into a Cartesian equation, we use the identities r sin 0 = y and r cos 0 = x. After substituting these values and simplifying, we get y = ln(sqrt(x^2 + y^2)) + ln(sqrt(1 - x^2)). This equation represents a curve that spirals towards the origin. The vertical asymptotes occur when x = -1 and x = 1, where the natural logarithms approach negative infinity.

(ii) For the polar equation r = 2cos 0 + 2sin 0, we substitute r cos 0 = x and r sin 0 = y. Simplifying the equation yields x^2 + y^2 - 2x - 2y = 0. This is the equation of a circle with center (1, 1) and radius √2. The circle is centered at (1, 1) and passes through the points (0, 1) and (1, 0).

(iii) Converting the polar equation r = cot csc 0 into Cartesian form involves substituting r cos 0 = x and r sin 0 = y. Simplifying the equation results in x^2 + y^2 - x = 0. This equation represents a circle with center (1/2, 0) and radius 1/2. The circle is centered at (1/2, 0) and passes through the point (0, 0).

Learn more about Cartesian equation here:

https://brainly.com/question/27927590

#SPJ11

Suppose that for the bacterial strain Acinetobacter, five measurements gave readings of 2.69, 5.76, 2.67, 1.62 and 4.12 dyne-cm². Assume that the standard deviation is known to be 0.66 dyne-cm². a. Find a 95% confidence interval for the mean adhesion. b. If the scientists want the confidence interval to be no wider than 0.55 dyne-cm², how many observations should they take?

Answers

Note that the  scientists need to take at least 10 observations if they want the confidence interval to beno wider than 0.55 dyne-cm².

Why is this so?

The formula to be used is

n = (t(α/2) * s)² / (E)²

where -

n is the sample sizet(α/2) is the t-statistic for the desired confidence level and degrees of freedoms is the sample standard deviationE is the desired margin of error.

Given statistics

n = ?t(α/2) = t(0.05/2) = 2.576s = 0.66 dyne-cm²E = 0.55 dyne-cm²

n = (2.576 * 0.66)² / (0.55)²

= 9.55551744

n ≈ 10

This means that the scientists will need about 10 observations if they need the confidence interval to be no wider than 0.55 dyne-cm².

Learn more about confidence interval:
https://brainly.com/question/15712887
#SPJ1

A tank contains 100 kg of salt and 1000 L of water. A solution of a concentration 0.05 kg of salt per liter enters a tank at the rate 10 L/min. The solution is mixed and drains from the tank at the same rate.

(a) What is the concentration of our solution in the tank initially?
concentration = (kg/L)

(b) Find the amount of salt in the tank after 1 hours.
amount = (kg)

(c) Find the concentration of salt in the solution in the tank as time approaches infinity.
concentration = (kg/L)

I know (a) .1 and that (c) .05

I have tried many times and really thought I was doing it right. Please show all work so I can figure out where I went wrong.

Thanks

Answers

The concentration of the solution in the tank initially is 0.1 kg/L. The amount of salt in the tank after 1 hour is 30 kg. The concentration of salt in the solution in the tank as time approaches infinity is 0.1 kg/L.

(a) Initially, the tank contains 100 kg of salt and 1000 L of water, so the total volume of the solution in the tank is 1000 L.

The concentration of the solution is defined as the amount of salt per liter of solution. Therefore, the concentration of the solution in the tank initially is given by:

Concentration = Amount of Salt / Volume of Solution

Concentration = 100 kg / 1000 L

Concentration = 0.1 kg/L

The concentration of the solution in the tank initially is 0.1 kg/L.

(b) After 1 hour, the solution enters and drains from the tank at a rate of 10 L/min, which means the total volume of the solution in the tank remains constant at 1000 L.

Since the solution entering the tank has a concentration of 0.05 kg/L, the amount of salt entering the tank per minute is:

Amount of Salt entering per minute = Concentration * Volume of Solution entering per minute

Amount of Salt entering per minute = 0.05 kg/L * 10 L/min

Amount of Salt entering per minute = 0.5 kg/min

After 1 hour, which is 60 minutes, the amount of salt added to the tank is:

Amount of Salt added in 1 hour = Amount of Salt entering per minute * Time in minutes

Amount of Salt added in 1 hour = 0.5 kg/min * 60 min

Amount of Salt added in 1 hour = 30 kg

The amount of salt in the tank after 1 hour is 30 kg.

(c) As time approaches infinity, the solution entering and draining from the tank will mix thoroughly, leading to a uniform concentration throughout the tank.

Since the volume of the solution in the tank remains constant at 1000 L and the total amount of salt remains constant at 100 kg, the concentration of salt in the solution in the tank as time approaches infinity will be:

Concentration = Amount of Salt / Volume of Solution

Concentration = 100 kg / 1000 L

Concentration = 0.1 kg/L

The concentration of salt in the solution in the tank as time approaches infinity is 0.1 kg/L.

To know more about concentration refer here:

https://brainly.com/question/326634633

#SPJ11

Suppose that a 2x2 matrix A has eigenvalues λ = 2 and -1, with corresponding eigenvectors
[5 2] and [9 -1]-- respectively.
Find A².

Answers

The value of A² is the matrix [187/43 51/43; -158/43 -74/43].

The given 2x2 matrix A has eigenvalues λ = 2 and -1, with corresponding eigenvectors [5 2] and [9 -1] respectively. We are required to find A².

1:We know that if λ is an eigenvalue of a matrix A with an eigenvector x, then λ² is an eigenvalue of A² with an eigenvector x.

Therefore, we can square the eigenvalues and keep the same eigenvectors to find the eigenvalues of A².λ₁ = 2² = 4, with eigenvector [5 2]λ₂ = (-1)² = 1, with eigenvector [9 -1]

2:Using the eigenvectors [5 2] and [9 -1] to form a matrix P, we have:P = [5 9; 2 -1]

3:Using the diagonal matrix D with the eigenvalues, we have:D = [4 0; 0 1]

4:Now, we can express A in terms of P and D as follows:A = PDP⁻¹

We can easily find P⁻¹ as:

P⁻¹ = (1/(-1(5)(-1) - (9)(2)))[-1 -9; -2 5] = [1/43][-5 9; 2 -1]

Using this value of P⁻¹ in the above expression, we get:A = [5 9; 2 -1][4 0; 0 1][1/43][-5 9; 2 -1]

Simplifying, we get:

A = [31/43 33/43; -58/43 -32/43]

Therefore, A² is given by:

A² = A.A = [31/43 33/43; -58/43 -32/43][5 9; 2 -1]= [187/43 51/43; -158/43 -74/43]

Learn more about the matrix at;

https://brainly.com/question/29132693

#SPJ11

Given f(x, y) = 2y^2+ xy^3 +2e^x, find fy.
fy=6xy + 4y
fy = 4xy + x²y
fy=x²y + 8x^y
fy = 4y + 3xy²

Answers

The value of fy is 4y + 3xy², the correct option is D.

We are given that;

f(x, y) = 2y^2+ xy^3 +2e^x

Now,

A function is an expression, rule, or law that describes the relationship between one variable (the independent variable) and another variable (the dependent variable) (the dependent variable). In mathematics and the physical sciences, functions are indispensable for formulating physical relationships.

To find fy, we need to differentiate f(x, y) with respect to y, treating x as a constant.

The derivative of 2y^2 is 4y, using the power rule.

The derivative of xy^3 is 3xy² + x²y, using the product rule and the chain rule.

The derivative of 2e^x is 0, since it does not depend on y.

So, fy = 4y + 3xy² + x²y

We can simplify this by combining like terms:

fy = 4y + 3xy²

Therefore, by the function the answer will be fy = 4y + 3xy².

Learn more about function here:

https://brainly.com/question/2253924

#SPJ1








H. A tree G o ER; Prove that in there be БХ: Вевисен có esaeby cycles. comecta puogh with no (ocyclic). every tvee with u vertices и n-1 edper. two vertices in a free the слу ove poth.

Answers

If a tree G has more than two vertices, it will contain at least two different vertices with a unique path connecting them. This path forms a cycle, and there can be no other cycles in the tree. Additionally, every tree with u vertices will have n-1 edges.

In a tree G, there is a unique path between any two vertices. If we consider any two different vertices in the tree, they will have a unique path connecting them. This path can be traversed in both directions, forming a cycle. Therefore, a tree with more than two vertices will contain at least one cycle.

However, it is important to note that in a tree, there can be no other cycles besides the one formed by the unique path between the chosen vertices. This is because adding any additional edge to a tree would create a cycle, violating the definition of a tree.

Furthermore, it is known that a tree with u vertices will have exactly u-1 edges. This means that for every vertex added to the tree, there must be exactly one edge connecting it to an existing vertex. Therefore, a tree with u vertices will always have n-1 edges, where n represents the number of vertices in the tree.

learn more about vertices here:brainly.com/question/29154919

#SPJ11

Dudly Drafting Services uses a 45% material loading percentage and a labor charge of £20 per hour. How much will be charged on a job that requires 3.5 hours of work and £40 of materials? £128 0 £110 £88 £133

Answers

The pricing for the job that requires 3.5 hours of work and £40 of materials will be £110.

How much pricing will be charged on a job that requires 3.5 hours of work and £40 of materials?

Dudly Drafting Services applies a 45% material loading percentage and charges £20 per hour for labor. For a job that requires 3.5 hours of work and £40 of materials, the pricing that will be charged  is calculated as follows:

The labor cost amounts to £70 (3.5 hours x £20/hour), and the material cost with the loading percentage is £18 (£40 x 0.45). Adding these two costs together, we get £88 (£70 + £18).

However, we must also include the initial material cost of £40. Combining this with the previous total, we arrive at a final charge of £128 (£88 + £40).

Therefore, the total charge for the job that requires 3.5 hours of work and £40 of materials is £128.

Learn more about  pricing

brainly.com/question/12908368

#SPJ11








03 (A) STATE Ľ Hospital's RULE AND USE it TO DETERMINE Lin Sin (G)-6 OOL STATE AND GIVE AN INTU TIE "PROOF". OF THE CHAIN RULE. EXPLAIO A 'HOLE in THIS PROOF.

Answers

The Hospital's Rule is used to evaluate limits involving indeterminate forms, such as 0/0 or ∞/∞, by taking the ratio of derivatives of the numerator and denominator, while the Chain Rule allows for the calculation of derivatives of composite functions by multiplying the derivative of the outer function with the derivative of the inner function.

The Hospital's Rule is a mathematical technique used to evaluate limits involving indeterminate forms, such as 0/0 or ∞/∞. It states that if the limit of the ratio of two functions, f(x)/g(x), as x approaches a certain value, is an indeterminate form, then under certain conditions, the limit of their derivatives, f'(x)/g'(x), will have the same value.

To determine the limit of a function such as lim(x→a) [sin(g(x))/x], where the limit evaluates to 0/0, we can apply Hospital's Rule. The rule states that if the limit of the ratio of the derivatives of the numerator and denominator, f'(x)/g'(x), exists as x approaches a, and the limit of the derivative of the denominator, g'(x), is not zero as x approaches a, then the limit of the original function is equal to the limit of the derivative ratio.

To know more about composite functions,

https://brainly.com/question/32200200

#SPJ11

Evaluate the line integral SF. dr, where F(x, y, z) = sin xi + 2 cos yj + 4xzk and C is given by the vector function r(t) = t³i – t¹j+t³k, 0≤t≤1.

Answers

Given,The vector function r(t) = t³i – t¹j+t³k, 0≤t≤1.The line integral SF.dr is evaluated as follows:We have to find the line integral SF.dr, where F(x, y, z) = sin xi + 2 cos yj + 4xzk.The value of the line integral SF.dr where F(x, y, z) = sin xi + 2 cos yj + 4xzk and

To find the value of SF.dr, let's find SF and dr separately.[tex]SF = F(r(t)) = sin(x)i + 2cos(y)j + 4xzkr(t) = t³i – t¹j+t³k[/tex]Therefore, SF = sin(t³)i + 2cos(−t)j + 4t⁴kdr = r'(t) dt = (3t² i - j + 3t² k) dtNow, SF.dr can be found by substituting the values of SF and dr into the expression ∫ SF.drSo, we have:[tex]∫ SF.dr = ∫ SF . r'(t) dt= ∫ [sin(t³)i + 2cos(−t)j + 4t⁴k][/tex] . [tex][3t² i - j + 3t² k] dt= ∫ [3t²sin(t³) + 6t²cos(−t) - 12t⁶] dt= [cos(t³)] f[/tex]rom 0 to 1 - [sin(t)] from 0 to 1 - [2t⁷] from 0 to 1= cos(1) - sin(1) - 2 + 0 + 0= cos(1) -  C is given by the vector function r(t) = t³i – t¹j+t³k, 0≤t≤1 is cos(1) - sin(1) - 2.sin(1) - 2Hence, the value of the line integral SF.dr where[tex][3t² i - j + 3t² k] dt= ∫ [3t²sin(t³) + 6t²cos(−t) - 12t⁶] dt= [cos(t³)] f[/tex].

To know more about   vector function   visit:

https://brainly.com/question/32515730

#SPJ11

The qualitative forecasting method of developing a conceptual scenario of the future based on well- defined set of assumptions, is: O Delphi method Scenario Writing O Expert Judgment O Intuitive Approach

Answers

The qualitative forecasting method of developing a conceptual scenario of the future based on a well-defined set of assumptions is known as Scenario Writing.  

In Scenario Writing, experts or analysts identify key drivers and uncertainties that could shape the future and develop multiple scenarios that represent different plausible futures. These scenarios are often based on expert knowledge, research, and analysis. By developing scenarios, organizations and decision-makers can gain insights into potential risks, opportunities, and challenges they may face in the future. This method allows organizations to think strategically and consider different possibilities, helping them prepare for a range of potential outcomes. It is particularly useful when dealing with complex and uncertain environments where traditional forecasting methods may be limited. Scenario Writing provides a structured approach to consider multiple perspectives and help decision-makers make more informed choices based on a range of potential futures.

To learn more about  qualitative forecasting method click here; brainly.com/question/31516552

#SPJ11

Other Questions
When Jane takes a new jobs, she is offered the choice of a $3500 bonus now or an extra $300 at the end of each month for the next year. Assume money can earn an interest rate of 2.5% compounded monthly. . (a) What is the future value of payments of $200 at the end of each month for 12 months? (1 point) (b) Which option should Jane choose? (1 point) Two identical squares with sides of length 10cm overlap to form a shaded region as shown. A corner of one square lies at the intersection of the diagonals of the other square. Find the area of the shaded region in square centimetres. select the correct statement(s) regarding 802.15 bluetooth piconets and scatternets. Suppose that Y, Y2,... are i.i.d. RVs with EY = and Var (Y) = 0 (0, [infinity]). Set Xk := Yk+Yk+1+Yk+2, k = 1, 2, ..., and put Sn = X + +Xn. (a) Compute EXk, Var (Xk) and Cov (X, Xk) for j k. Sn-3n (b) Find lim, PS-3un x), ( < x), x R. o3n Hints: (b) Be careful: there is a (small) trap. Note that the X;'s are not independent, but the sum Sn can be represented as a sum of independent RVs. Can you compute Var (Sn)? You can take for granted that if Un - U and V c = const as n [infinity], then Un + VnU+c (this can be shown using the same techniques as employed when doing tutorial Problem 2 in PS-9). We are considering a machine for producing certain items. When it's functioning properly, 3% of the items produced are defective. Assume that we will randomly select ten items produced on the machine and that we are interested in the number of defective items found. (1) What is the probability of finding no defect items? a. 0.0009 b. 0.0582 c. 0.4900 d. 0.737 e. 0.9127 (2) What is the number of defects, where there is 98% or higher probability of obtaining this number or fewer defects in the experiment? a. 1 b. 2 c. 3 d. 5e. 8 . What characteristics distinguish language from animal communication? Explain with examples. the nurse is planning to admit a pregnant client who is obese. in planning care for this client, which potential client needs would the nurse anticipate? select all that apply. Find the probability of drawing a spade or a red card from astandard deck of cards.a 1/7b 3/4c 1/52d 1/8 American Eagle Distributing Co. (AEDC) is a regional distributor of Budweiser beer. Ross Hopkins, 41, who works for the company, ordered a Budweiser beer from a local bar after his shift on a Saturday evening. By the way, he drank Coors beer because he wanted to drink it quickly, because a competitor's beer, Coors, came to him by mistake by the clerk. The bar that was finished at that time was attended by the son-in-law of the AEDC major shareholder.The following Monday, Hopkins was fired. The reason was that he failed to meet his obligations of conflicts of interest. Accordingly, Hopkins filed a lawsuit invalidating the dismissal, arguing that the company had no authority to order what beer to drink outside of working hours.Reference:Joseph DesJardins, J. (2020), An Introduction to Business Ethics (6th Ed.) McGraw-HillFiled an invalidation lawsuit against a man fired for drinking beer from a competitor (Herald, 2005. 5. 18) Question1. Is it morally wrong for a company to fire someone for behavior outside of Hopkins working hours (drinking a competitor's beer)? isn't there? (Think in terms of what you have learned, such as the duty of good faith, trust and loyalty, and conflicts of interest among members of the organization.)2. If you are a manager, how would you respond to organizational members who use a competitor's products/services? Why? Set up the objective function and the constraints, but do not solve.Home Furnishings has contracted to make at least 295 sofas per week, which are to be shipped to two distributors, A and B. Distributor A has a maximum capacity of 140 sofas, and distributor B has a maximum capacity of 160 sofas. It costs $14 to ship a sofa to A and 512 to ship to B. How many sofas should be produced and shipped to each distributor to minimize shipping costs? (Let x represent the number of sofas shipped to Distributor A, y the number of sofas shipped to Distributor B, and z the shipping costs in dollars.) -Select- = subject to required sofas ___distributor A limitation ___ distributor B limitation ___x > 0, y > 0 Shown below is information relating to the stockholders' equity of Grant Corporation at December 31, Year 1:5.5% cumulative preferred stock, $100 par value;authorized, 38,000 shares; issued and outstanding, 19,000 shares $1.900.000Common stock, $5 par value; authorized, 540,000 shares; issued and outstanding, 324,000 shares : $ 1,620,000 Additional paid-in capital: preferred stock $ 190,000Additional paid-in capital: common stock $ 2,500,000Retained earnings $ 1,020,000Dividends have been declared and paid for Year 1. The average issue price per share of Grant's preferred stock was: A) $105.50. B) $55.00 C) $100.00. D) $110.00. In economics, as a result of scarcity: Consumers face tradeoffs regarding what they want to purchase and consume. Producers face tradeoffs regarding what they are able to supply. It may not be possible to fulfill all possible wants and needs among all individuals in the economy. All of the above. Postnatal depression affects approximately 815% of new mothers. One theory about the onset of postnatal depression predicts that it may result from the stress of a complicated delivery. If so, then the rates of postnatal depression could be affected by the type of delivery. A study (Patel et al. 2005) of 10,935 women compared the rates of postnatal depression in mothers who delivered vaginally to those who had voluntary cesarean sections (C-sections). Of the 10,545 women who delivered vaginally, 1025 suffered significant postnatal depression. Of the 390 who delivered by voluntary C-section, 50 developed postnatal depression. a. Draw a graph of the association between postnatal depression and type of delivery (mosaic plot, by hand, the relative proportion just needs to be roughly correct). Please describe the pattern in this data. b. How different are the odds of depression under the two procedures? Calculate the odds ratio of developing depression, comparing vaginal birth to C-section. c. Calculate a 95% confidence interval for the odds ratio. d. Based on your result in part (c), would the null hypothesis that postpartum depression is independent of the type of delivery likely be rejected if tested? e. What is the relative risk of postpartum depression under the two procedures? Compare your estimate to the odds ratio calculated in part (b). PLEASE HELP ASAP2. (10 points) Shantel fills a tank with water at a rate of 4m Let V(t) be the volume of minute water in the tank after t minutes. (a) Suppose at t = 0, the tank already contains 10 m of water. A Marcus takes part in math competitions. A particular contest consists of 20 multiple-choice questions, and each question has 4 possible answers. It awards 5 points for each correct answer, 1.5 points for each answer left blank, and 0 points for incorrect answers. Marcus is sure of 10 of his answers. Hyruled out 2 choices before guessing on 4 of the other questions and randomly guessed on the 6 remaining problems. What is the expected score?a. 67.5 b. 75.6 c. 90.8 d. 097.2 The company depreciates motor vehicles on a straight-line basis.Their expected useful life is six years.Each motor vehicle has a residual value of $5000.For tax purposes, the motor vehicles depreciate at 20% per annum on a straight-line basis.Accounting profit before tax (PBT) for the years 2015 to 2020 is $60000 per annum.The tax rate is 12.5%.Requireda. Calculations of current and deferred tax (5 marks)b. Related figures to be included in the financial statements for the years 2015 to 2020 (5 marks) Prove that for all n N, the formula an = 3(-2)^n + n(2)^n + 5 satisfies the recurrence relation a0 = 8, a1 = 1, a2 = 25, an = 2an-1 + 4an-2 - 8an-3 + 15. A triangle has sides of 12&20. Which of the following could be the length of the third side? A researcher is testing the hypothesis that the average monthly income in the population is 20,000 AD. Using the formula for testing a hypothesis about the mean,the researcher calculates the Z value to be 2.06. If the researcher is using 9596 confidence level, what should the researcher do next? Why is the highlighted textfrom The Proposal considered"situational irony"?A. The audience knows Natalya is married,while Lomov thinks she is single and wantsto propose.B. Lomov says he wants to marry Natalya,but he really wants to steal the family'sproperty.C. Lomov says he wants to propose toChubukov's daughter, when he means hewould never marry her.D. Chubukov expects Lomov to ask him formoney; however, Lomoy came to propose tohis daughter.