In a pickup game of dorm shuffleboard, students crazed by final exams use a broom to propel a calculus book along the dorm hallway. If the 4.7 kg book is pushed from rest through a distance of 0.85 m by the horizontal 42 N force from the broom and then has a speed of 1.0 m/s, what is the coefficient of kinetic friction between the book and floor

Answers

Answer 1

Answer:

μ_k = 0.851

Explanation:

We are given;

Mass of book; m_book = 4.7 kg

Horizontal force; F_horiz = 42 N

Distance; d = 0.85 m

Speed; v = 1 m/s

First of all let's find the acceleration using Newton's equation of motion;

v² = u² + 2ad

u is initial velocity and it's 0 m/s in this case.

Thus;

1² = (2 × 0.85)a

1 = 1.7a

a = 1/1.7

a = 0.5882 m/s²

Now, resolving forces along the vertical direction, we have;

W - N = 0

Thus,W = N

Where W is weight = mg and N is normal force

Thus; N = mg = 4.7 × 9.81 = 46.107 N

Now, resolving forces along the horizontal direction, we have;

F_horiz - ((μ_k)N) = ma

Where μ_k is coefficient of kinetic friction.

Thus;

42 - 46.107(μ_k) = 4.7 × 0.5882

42 - 46.107(μ_k) = 2.76454

μ_k = (42 - 2.76454)/46.107

μ_k = 0.851


Related Questions

If it takes you 5 minutes to dry your hair using a 1200-W hairdryer plugged into a 120-V power outlet, how many Coulombs of charge pass through your hair dryer

Answers

Answer:

The charge pass through your hair dryer is 3000 C.

Explanation:

Given that,

Power = 1200 W

Voltage = 120 V

Flow time = 5 min

We need to calculate the current

Using formula of power

[tex]P=VI[/tex]

[tex]I=\dfrac{P}{V}[/tex]

Put the value into the formula

[tex]I=\dfrac{1200}{120}[/tex]

[tex]I=10\ A[/tex]

We need to calculate the charge pass through your hair dryer

Using formula of current

[tex]I=\dfrac{Q}{t}[/tex]

[tex]Q=It[/tex]

Put the value into the formula

[tex]Q=10\times5\times60[/tex]

[tex]Q=3000\ C[/tex]

Hence, The charge pass through your hair dryer is 3000 C.

what is the force produced on a body of 30kg mass when a body moving with the velocity of 26km/hr is acceleted to gain the velocity of 54 km/hr in 4 sec​

Answers

Answer:

F = 58.35 [N]

Explanation:

To solve this problem we must use Newton's second law, which tells us that force is equal to the product of mass by acceleration. But first we must use the following equation of kinematics.

We have to convert speeds from kilometers per hour to meters per second

[tex]\frac{26km}{hr}*\frac{1000m}{1km}*\frac{1hr}{3600s}=\frac{7.22m}{s} \\\frac{54km}{hr}*\frac{1000m}{1km}*\frac{1hr}{3600s}=15\frac{m}{s}[/tex]

[tex]v_{f}=v_{o}+(a*t) \\[/tex]

where:

Vf = final velocity = 15 [m/s]

Vi = initial velocity = 7.22 [m/s]

a = acceleration [m/s^2]

t = time = 4 [s]

Note: the positive sign of the above equation is because the car increases its speed

15 = 7.22 + (a*4)

a = 1.945 [m/s^2]

Now we can use the Newton's second law:

F = m*a

F = 30*1.945

F = 58.35 [N]

During a thunderstorm the electric field at a certain point in the earth's atmosphere is 1.07 105 N/C, directed upward. Find the acceleration of a small piece of ice of mass 1.08 10-4 g, carrying a charge of 1.05 10-11 C.

Answers

Answer:

The acceleration of a small piece of ice is 10.40 m/s².

Explanation:

The electric force is given by:

[tex]F = Eq[/tex]

Where:    

E is the electric field = 1.07x10⁵ N/C

q is the charge = 1.05x10⁻¹¹ C          

The electric force is equal to Newton's second law:

[tex] Eq = ma [/tex]

Where:            

m is the mass = 1.08x10⁻⁴ g = 1.08x10⁻⁷ kg

a is the acceleration

Hence, the acceleration is:

[tex] a = \frac{Eq}{m} = \frac{1.07 \cdot 10^{5} N/C*1.05 \cdot 10^{-11} C}{1.08 \cdot 10^{-7} kg} = 10.40 m/s^{2} [/tex]

Therefore, the acceleration of a small piece of ice is 10.40 m/s².

I hope it helps you!                    

If the shoe has less mass, it will experience _______________ (more, less, the same) friction as it would with more mass.

Answers

More I’m pretty sure but no promises

I am a cell. I am long and thin. I reach all the way from the brain
to the tip of a finger. I have a special coat of fat that helps me do
my job. My job is to send electrical signals from one part of the
body to another.

Answers

Answer:

Neurons

Explanation:

We humans have a nervous system that coordinates our behavior and transmits signals between different parts of our body.

Now, this nervous system contains a lot of nerve cells which we call Neurons. These Neurons have a cell like body and their job is to transmit signals from one part of our body to another.

Thus, the cell is called Neurons.

A plane travelling at 100 m/s accelerates at 5 m/s² for a distance of 125 m. What is the final velocity of the plane?

Answers

Analyzing the question:                                                                                        

We are given:

initial velocity (u) = 100 m/s

final velocity (v) = v m/s

distance (s) = 125 m

acceleration (a) = 5 m/s²

Solving for Final Velocity (v):                                                                              

from the third equation of motion:

v² - u² = 2as

v² - (100)² = 2(5)(125)

v² - 10000 = 1250

v² = 1250 + 10000

v² = 11250

v = 106.06 m/s

the peripheral nervous system is responsible for both sending and receiving signals to and from the brain

Answers

Answer:

its true trust me

Explanation:

Answer: true

Explanation: edge

Question 1-1: In each case, lifting or pushing, why must you exert a force to keep the object moving at a constant velocity?

Answers

Answer:

We must apply a force to keep the object moving at a constant velocity due to gravitational force or weight (in case of lifting), and due to frictional force (in case of pushing).

Explanation:

LIFTING:

When an object is lifted, we first need to overcome the force exerted on it by the field of gravity. Due to this force, which is also called the weight of object, we must apply a force on the object to keep it moving at constant speed, otherwise the gravity force will cause the object to slow down and eventually fall back on ground.

PUSHING:

When pushing an object the person must apply the force to first overcome the frictional force. The frictional force acts in opposite direction of motion. Thus, to move the object at constant speed we must apply force to it.

Hence, we must apply a force to keep the object moving at a constant velocity due to gravitational force or weight (in case of lifting), and due to frictional force (in case of pushing).

7. A 1,500-N force is applied to a 1,000-kg car. What is the car's acceleration?

Answers

Answer:

1.5m/s^2

Explanation:

Answer:

1.5 m/s2. accerelation =force ÷mass

How much voltage (in terms of the power source voltage bV) will the capacitor have when it has started at zero volts potential difference, it is connected to the power supply and resistor and onehalf the characteristic time has passed (i.e. t= T(tau)/2)?

Answers

Answer:

The voltage is   [tex]V =   0.993V_b[/tex]

Explanation:

From the question we are told that

   The time that has passed is  [tex]t = \frac{\tau}{2}[/tex]

 Here [tex]\tau[/tex] is know as the time constant

    The voltage of the  power source is   [tex]V_b[/tex]

Generally the voltage equation for charging a capacitor is mathematically represented as

       [tex]V =  V_b  [1 - e^{- \frac{t}{\tau} }][/tex]

=>   [tex]V =  V_b  [1 - e^{- \frac{\frac{\tau}{2}}{\tau} }][/tex]

=>   [tex]V =  V_b  [1 - e^{- \frac{\tau}{2\tau} }][/tex]

=>   [tex]V =  V_b  [1 - e^{- \frac{1}{2} }][/tex]

=>   [tex]V =   0.993V_b[/tex]    

A soccer player kicking a ball; the ball soaring through the air and landing on the ground

Answers

Yesssssssssssssssssssss

While making some observations at the top of the 66 m tall Astronomy tower, Ron
accidently knocks a 0.5 kg stone over the edge. How long will a student at the bottom
have to get out of the way before being hit?

Answers

Analysing the question:

Since the stone was dropped, there was no initial velocity applied on it and hence it's initial velocity of the stone is 0 m/s

We are given:

height of the tower (h) = 66 m

mass of the stone (m) = 0.5 kg

initial velocity of the stone (u) = 0 m/s

time taken by the stone to reach the ground (t) = t seconds

acceleration due to gravity = 10 m/s²

** Neglecting air resistance**

Finding the time taken by the stone to reach the ground:

from the second equation of motion

h = ut + 1/2at²

replacing the variables

66 = (0)(t) + 1/2 (10)(t)²

66 = 5t²

t² = 13.2

t = 3.6 seconds

I initially wanted to subtract the height of the student from the height of the tower since the time i calculated is the time taken by the stone to reach the ground and that means that the stone has already hit the student before 3.6 seconds

but since we were NOT given the height of a student, the person who posed this question wants the time taken by the stone to reach the ground and that is what we solved

help me get the answer in Physical Science.

Answers

Answer:

lithium

Explanation:

I took physical science 2 years ago and passed with an A

Question C) needs to be answered, please help (physics)

Answers

(a) Differentiate the position vector to get the velocity vector:

r(t) = (3.00 m/s) t i - (4.00 m/s²) t² j + (2.00 m) k

v(t) = dr/dt = (3.00 m/s) i - (8.00 m/s²) t j

(b) The velocity at t = 2.00 s is

v (2.00 s) = (3.00 m/s) i - (16.0 m/s) j

(c) Compute the electron's position at t = 2.00 s:

r (2.00 s) = (6.00 m) i - (16.0 m) j + (2.00 m) k

The electron's distance from the origin at t = 2.00 is the magnitude of this vector:

||r (2.00 s)|| = √((6.00 m)² + (-16.0 m)² + (2.00 m)²) = 2 √74 m ≈ 17.2 m

(d) In the x-y plane, the velocity vector at t = 2.00 s makes an angle θ with the positive x-axis such that

tan(θ) = (-16.0 m/s) / (3.00 m/s)   ==>   θ ≈ -79.4º

or an angle of about 360º + θ281º in the counter-clockwise direction.

When a parachute opens, the air exerts a large drag force on it. This upward force is initially greater than the weight of the sky diver and, thus, slows him down. Suppose the weight of the sky diver is 915 N and the drag force has a magnitude of 1061 N. The mass of the sky diver is 93.4 kg. Take upward to be the positive direction. What is his acceleration, including sign

Answers

Explanation:

According to newton's second law of motion.

[tex]\sum Fx = ma\\\\\sum Fx = 1061 - 915\\\\\sum Fx = 146N[/tex]

m is the mas of the sky diver = 93.4kg

a is the acceleration of the skydiver

From the formula above;

[tex]a = \frac{\sum Fx}{m}\\ \\a = \frac{146}{93.4}\\\\a = 1.563m/s^2[/tex]

Hence the acceleration of the sky diver is 1.563m/s²

It takes 525 J of work to compress a spring 25 cm. What is the force constant of the spring (in kN/m)?

Answers

Answer:

1.680kN/m

Explanation:

Work done by the spring is expressed as shown:

[tex]W = \frac{1}{2}ke^2[/tex] where:

k is the spring constant

e is the extension

Given

W = 525Joules

extension = 25cm = 0.25m

Substitute into the formula:

[tex]525 = \frac{1}{2}k(0.25)^{2} \\525 = \frac{0.0625k}{2}\\ 525 = 0.03125k\\k = \frac{525}{0.3125}\\k = 1680N/m\\k = 1.680kN/m[/tex]

Hence the force constant of the spring is 1.680kN/m

. Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point? What is your displacement vector? What is the direction of your displacement? Assume the +x-axis is to the east.

Answers

Answer:

Explanation:

The total distance is how far you walk from the starting point.

Distance through west = 18.0m

Distance through north = 25.0m

Total distance covered = 18.0+25.0m

Total distance covered = 43.0m

This means that I am 43.0m from the starting point

Displacement is the distance covered in a specified direction. The displacement will be gotten using the Pythagoras theorem as shown:

[tex]d^2 = 25^2 + 18^2\\d^2 = 625+324\\d^2 = 949\\d = \sqrt{949}\\ d = 30.81m[/tex]

The direction of your displacement is 30.81m

Direction is gotten according to the formula;

[tex]\theta = tan ^{-1}{\frac{y}{x} }\\\theta = tan ^{-1}{\frac{25}{-18} }\\\theta = tan ^{-1}-1.3889}\\\theta = -60.27^0\\\theta = 180-60.27\\\theta = 119.7^0[/tex]

Note that the direction to the west is negative, that is why the x is -18.0m

The distance from the starting point is 43 m, the displacement vector is 30.81 m and the direction of the displacement is 119.7 degrees.

Given-

Distance travel through the west is 18 m.

Distance travel through the north is 25 m.

Distance from starting point-

To know the total distance, add both the covered distance. Thus total distance x is,

[tex]x=18+25[/tex]

[tex]x=43[/tex]

Hence, the distance from the starting point is 43 m.

The displacement vector-

Displacement is calculated as the shortest distance between starting and final point. This shortest distance can be calculated using the Pythagoras theorem which states that in a right-angled triangle, the square of the hypotenuse [tex]d[/tex] is equal to the sum of the squares of the other two sides. Therefore,

[tex]d^2=18^2+25^2[/tex]

[tex]d^2=324+625[/tex]

[tex]d^2=949[/tex]

[tex]d=\sqrt{949}[/tex]

[tex]d=30.81[/tex]

The displacement vector is 30.81 m.

The Direction of displacement-

The direction of displacement [tex]\theta[/tex] with these two sides can be calculated with the formula,

[tex]\theta=tan^{-1}\dfrac{25}{-18}[/tex]

Here due to the west direction(opposite side), the sign is taken negatively.

[tex]\theta=tan^{-1}(-1.389)[/tex]

[tex]\theta=-60.27^o[/tex]

For the other quarter,

[tex]\theta=180-60.27=119.7^o[/tex]

Hence, the distance from the starting point is 43 m, the displacement vector is 30.81 m and the direction of the displacement is 119.7 degrees.

For more about the displacement, follow the link below-

https://brainly.com/question/10919017

An FM radio station, 20 miles away, broadcast at a 93.4 MHz frequency(a) What is the wavelength of the radio wave associated with this signal ?(b) How long does it take for the signal to reach your radio from the station ?

Answers

Answer:

(a) Wavelength = 3.21 m (b) Time = [tex]1.07\times 10^{-4}\ s[/tex]

Explanation:

Given that,

The frequency of FM radio station, f = 93.4 MHz

(a) We need to find the wavelength of the radio wave associated with this signal. The relation between wavelength and frequency is given by :

[tex]c=f\lambda\\\\\lambda=\dfrac{c}{f}\\\\\lambda=\dfrac{3\times 10^8}{93.4\times 10^6}\\\\\lambda=3.21\ m[/tex]

(b) It is given that, an FM radio station, 20 miles away. Let t is time taken for signal to reach your radio from the station. So,

[tex]t=\dfrac{d}{c}\\\\t=\dfrac{20\times 1609.34}{3\times 10^8}\\\\t=1.07\times 10^{-4}\ s[/tex]

Hence, this is the required solution.

What (rather remarkable!) equation relates the speed of light to other fundamental electromagnetic constants?

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The equation is   [tex]c = \frac{1}{\sqrt{ \mu_o *  \epsilon_o} }[/tex]

The value of  c is [tex]c = 2.998 *10^{8} \  m/s  [/tex]

Explanation:

From the question we are told that

   Generally the equation that  relates the speed of light to other fundamental electromagnetic constants is

     [tex]c = \frac{1}{\sqrt{ \mu_o *  \epsilon_o} }[/tex]

Here  c is the speed of light

[tex]\mu_o[/tex] is the permeability of free space with value

    [tex]\mu_o = 4\pi *10^{-7} \ N/A^2[/tex]

and  [tex]\epsilon_o[/tex] is the permittivity of free space  with value  

      [tex]\epsilon_o  =  8.85*10^{-12} \ C/V \cdot m[/tex]

So

      [tex]c = \frac{1}{\sqrt{ 4\pi *10^{-7}  *  8.85*10^{-12}} }[/tex]

=>   [tex]c = 2.998 *10^{8} \  m/s  [/tex]

A coin rests on a record 0.15 m from its center. The record turns on a turntable that rotates at variable speed. The coefficient of static friction between the coin and the record is 0.30.

Required:
What is the maximum coin speed at which it does not slip?

Answers

Answer:

0.66m/s

Explanation:

We are expected to solve for the velocity with no slip condition

we know that the expression that relate coefficient of friction and velocity is given as

μs = v^2/rg

Given

coefficient of friction μs = 0.3

radius r= 0.15

assume g=9.81m/s^2

substituting into the expression we have

0.3= v^2/0.15*9.81

v^2=0.3*0.15*9.81

v^2=0.44145

v=√0.44145

v=0.66

therefore the velocity is 0.66m/s

21. Prediction: If you were to measure the current at points A, B and C, how do you think the values would compare? Why? 22. Prediction: If you were to measure the potential differences across these bulbs (what the voltmeter measures) how do you think the values will compare to each other and to the potential difference across the battery pack or the power supply? Why?

Answers

Answer:

hello your question is incomplete attached below is the complete question

21) The current at points B and C would be the same ( identical bulbs) while the current at Point A will be greater than the currents at point B and C. i.e. twice the current at either point B or point C

22) The potential difference across the bulbs will be the same and this is because the bulbs are connected in parallel to the the power source ( battery)

hence the voltage in the battery will be equal to the voltage across each bulb

Explanation:

The current at points B and C would be the same ( identical bulbs) while the current at Point A will be greater than the currents at point B and C. i.e. twice the current at either point B or point C

The potential difference across the bulbs will be the same and this is because the bulbs are connected in parallel to the the power source ( battery)

hence the voltage in the battery will be equal to the voltage across each bulb

Based on the information in the table, which elements are most likely in the same periods of the periodic table?

Answers

Answer:

Just to help, periods on the periodic table are those running horizontally from left to right

Answer:

The answer is A.Boron and carbon are likely together in one period because they have very close atomic numbers, while gallium and germanium are likely together in another period because they have very close atomic numbers.

Explanation:

just took test

Why does the brightness of a bulb not change noticeably when you use longer copper wires to connect it to the battery?

a. All the current is used up in the bulb, so the connecting wires don't matter.
b. Very little energy is dissipated in the thick connecting wires.
c. Electric field in the connecting wires is zero, so emf = E_bulb * L_bulb.
d. Current in the connecting wires is smaller than current in the bulb.
e. The electric field in connecting wires is very small, so emf almost = E_ bulb * L_bulb.

Answers

Answer:

Options B & E are correct

Explanation:

Looking at all the options, B & E are the correct ones.

Option B is correct because the thicker the wire per unit length, the lesser resistance it will posses and the lesser the energy that will be dissipated by the wire and in return more energy will be dissipated by the bulb.

Option E is also correct because the resistance of the copper wires is low enough to ensure that there's not much drop in voltage across the copper wires. Thus, there will not be any noticeable differences in the voltage across the bulb.

Option A is not correct because the current is not used up and thus the charge is conserved, and it will circulate just through the circuit.

Option C is not correct because although the Electric field along the wire is not zero, it is very small.

Option D is not correct because the wires and the light bulb are connected in series and as such, the current in both the wires and the light bulb will be identical.

The brightness of a bulb that not change noticeably when you use longer copper wires to connect it to the battery is :

b. Very little energy is dissipated in the thick connecting wires.

e. The electric field in connecting wires is very small, so emf almost = E_ bulb * L_bulb.

"Energy"

The brightness of a bulb that not change noticeably when you use longer copper wires to connect it to the battery is very little energy is dissipated in the thick connecting wires and the electric field in connecting wires is very small, so emf almost = E_ bulb * L_bulb.

The thicker the wire per unit length, the lesser resistance it'll posses and the lesser the vitality that will be scattered by the wire and in return more vitality will be disseminated by the bulb.

The resistance of the copper wires is low sufficient to guarantee that there's not much drop in voltage over the copper wires. Hence, there will not be any noticeable contrasts within the voltage over the bulb.

Thus, the correct answer is B and E.

Learn more about "Circuit":

https://brainly.com/question/15767094?referrer=searchResults

For both resonance curves and Fourier spectra, amplitude is plotted vs frequency, but these two types of plots are not the same. Describe how they are different.

Answers

Answer:

he peaks are the natural frequencies that coincide with the excitation frequencies and in the second case they are the natural frequencies that make up the wave.

Explanation:

In a resonance experiment, the amplitude of the system is plotted as a function of the frequency, finding maximums for the values ​​where some natural frequency of the system coincides with the excitation frequency.

In a Fourier transform spectrum, the amplitude of the frequencies present is the signal, whereby each peak corresponds to a natural frequency of the system.

From this explanation we can see that in the first case the peaks are the natural frequencies that coincide with the excitation frequencies and in the second case they are the natural frequencies that make up the wave.

You release a ball from rest at the top of a ramp. 6 s later it is moving at 4.0
m/s. What is the acceleration? (in meters per second squared) *
Your answer

Answers

[tex]a = \frac{vf - vi}{t} [/tex]

here initial velocity vi=0 as ball release from rest

the final velocity is vf=4.0

time is t=6

so putting all these values in above equation

[tex]a = \frac{ 4.0- 0}{6} [/tex]

[tex]a = 0.6667m \s {}^{2} [/tex]

PLEASE HELP
A sharpshooter fires a 0.22 caliber rifle horizontally at 100 m/s at a target 75m away. How far does the
bullet drop by the time it reaches the target?

Answers

This question involves the concept of semi-projectile motion. It can be solved using the equations of motion in the horizontal and the vertical motion.

The bullet drops "2.76 m" by the time it reaches the target.

First, we will analyze the horizontal motion. We assume no air resistance, so the horizontal motion will be uniform. Hence, using the equation of uniform motion here to find the total time to reach the target:

[tex]s = vt\\\\t = \frac{s}{v}[/tex]

where,

s = distance = 75 m

v = velocity = 100 m/s

t = time = ?

Therefore,

[tex]t = \frac{75\ m}{100\ m/s}[/tex]

t = 0.75 s

Now, we will analyze the vertical motion of the bullet. We will use the second equation of motion in the vertical direction to find the height dropped by the bullet.

[tex]h = v_it+\frac{1}{2}gt^2[/tex]

where,  

h = height dropped = ?  

vi = initial vertical speed = 0 m/s

t = time interval = 0.75 s  

g = acceleration due to gravity = 9.81 m/s²

therefore,

[tex]h = (0\ m/s)(0.75\ s)+\frac{1}{2}(9.81\ m/s^2)(0.75\ s)^2[/tex]

h = 2.76 m

Learn more about equations of motion here:  

brainly.com/question/20594939?referrer=searchResults

The attached picture shows the equations of motion in the horizontal and vertical directions.

If you weigh 660 N on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 20.0 km? Take the mass of the sun to be 1.99×10^30, the gravitational constant to be G = 6.67×10^−11Nm^2/kg^2, and the acceleration due to gravity at the earth's surface to be g = 9.810 m/s^2.p

Answers

Answer:

8.93*10^13 N.

Explanation:

Assuming that in this case, the weight is just the the force exerted on you by the mass of the star, due to gravity, we can apply the Universal Law of Gravitation:

       [tex]F_{g}= \frac{G*m_{1}*m_{s}}{r_{s}^{2} }[/tex]

where, m1 = mass of  the man = 660 N / 9.81 m/s^2 = 67.3 kg, ms = mass of the star = 1.99*10^30 kg, G= Universal Constant of Gravitation, and rs= radius of the star = 10.0 km. = 10^4 m.Replacing by the values, we get:

       [tex]F_{g}= \frac{6.67e-11Nm^2/kg^2*1.99e30 kg*67.3 kg}{10e4m^2} = 8.93e13 N[/tex]

Fg = 8.93*10^13 N.

a jogger travels at 4 m/s for 100 s what is the distance covered

Answers

400m

Explanation:

given,

v= 4m/s

t= 100s

d= ?

since, v = d / t

therefore, d = v * t (velocity multiplied by time)

=> d = 4 * 100

= 400m.

You are working out on a rowing machine. Each time you pull the rowing bar (which simulates the oars) toward you, it moves a distance of 1.1 m in a time of 1.8 s. The readout on the display indicates that the average power you are producing is 90 W. What is the magnitude of the force that you exert on the handle?

Answers

Answer:

147.27N

Explanation:

Power = workdone/time

Power = Force*distance/time

Given

Power = 90Watts

Distance = 1.1m

Time = 1.8secs

Force = ?

Substitute the given parameters into the formula:

[tex]90 = \frac{1.1d}{1.8}\\cross \ multiply\\ 90 \times 1.8 = 1.1F\\162 = 1.1F\\1.1F = 162\\F = \frac{162}{1.1} \\F = 147.27N[/tex]

Hence the magnitude of the force that you exert on the handle is 147.27N

A small compass is held horizontally, the center of its needle has a distance of 0.270 m directly north
of a long wire that is perpendicular to the Earth's surface. When there is no current in the wire, the
compass needle points due north, which is the direction of the horizontal component of the Earth's
magnetic field at that location. This component is parallel to the Earth's surface. When the current in
the wire is 26.3 A, the needle points 22.9∘ east of north.
(a) Does the current in the wire flow toward or away from the Earth's surface? ( 2 marks)
(b) What is the magnitude of the horizontal component of the Earth's magnetic field at the location of
the compass? (3 marks)

Answers

Answer:

Explanation:

The needle is showing north south direction . when current starts flowing in the wire which is held vertical to the ground , it deflects towards east .

a )

Therefore a magnetic field towards east has been created . It is possible only if current flows towards the surface in the vertical wire .

b )

magnetic field created at the magnetic needle B = 10⁻⁷ x  2I / d where I is current and d is distance .

B = 10⁻⁷ x  2 x 26.3  / .27

= 194.81 x 10⁻⁷ T

angle of deflection of solenoid = 22.9°

Tan 22.9 = B /H

.422 = 194.81 x 10⁻⁷ / H

H = 461.63 x 10⁻⁷ T

= .46 x 10⁻⁴ T .

A) The current in the wire flows towards the Earth's surface

B) The magnitude of the horizontal component of the Earth's magnetic field is :   0.46 x 10⁻⁴ T

A) The compass needle held horizontally points in a North-south direction of the earth and also deflects eastwards when current is allowed to flow through it. The deflection of the needle indicates the presence/generation of a magnetic field on the earth surface. which is facilitated by the flow of the current in the wire towards the Earth's surface

B) Determine The magnitude of the horizontal component of the Earth's magnetic field

B ( magnetic field ) = 10⁻⁷ * 2I / d ---- ( 1 )

where : l = 26.3 A,   d = 0.27 m

Back to equation ( 1 )

B = 10⁻⁷ * 2 * 26.3 / 0.27

  = 194.81 * 10⁻⁷ T

Final step : Calculate the magnitude of horizontal component  ( H )

Tan ∅ = B / H ---- ( 2 )

where : ∅ ( angle of deflection ) = 22.9°

∴ H = B / Tan ( 22.9° )

      = (  194.81 * 10⁻⁷ ) / 0.422

      = 0.46 x 10⁻⁴ T

Hence we can conclude that The current in the wire flows towards the Earth's surface and  The magnitude of the horizontal component of the Earth's magnetic field is :   0.46 x 10⁻⁴ T

Learn more about Earth magnetic field : https://brainly.com/question/115445

Other Questions
Elaine bought 3 4/5 pounds of apples for $1.99 per pound, 3/4 pound of pears for $2.25 per pound, and 3 2/3 pounds bananas for $1.75 per pound.1. What did Elanie spend on bananas2. What did Elanie spend on pears3.What did Elaine spend on Apples? EMERGENCY! PLEASE ANSWER ASAP! Warren paid $23.85 and received no change. He is a member and rented 2 lanes. how many pairs of shoes did he rent?MEMBERS COST: $2.95 What is missing from the Bill of Rights? What rights deserve protection or what limits on authority could be usefully added to protect Americans today? Compose a proposed new Amendment to add to the Constitution. If the domain of the sqaure root function f(x) is x I7. A person playing basketball changes what energy, from food into what energy, and what energy as they sweat? Please help with this problem thank you.-8 + n = 62 What is n? What is the length of a segment with endpoints at F(6, 4) and G(14, 19)? Round to the nearest whole number. discuss the advantage of geographic profiling in a criminal investigation include a definition of the phrase "least effort" in your disscutioni Do people care about the Pandemic or Not? If yes, why are the cases of the Virus are increasing instead of decreasing? Write atleast 10 Sentences. 18. Mi hermana quiere la camiseta. Determine the pH of a 0.461 M C6H5CO2H M solution if the Ka of C6H5CO2H is 6.5 x 10-5. Determine the pH of a 0.461 M C6H5CO2H M solution if the Ka of C6H5CO2H is 6.5 x 10-5. 11.74 9.48 5.48 4.52 2.26 Who was the author of the mystery document? What does an adjective, such as the word sweet, do in a sentence?O A. Changes or adds to a verb, adverb, or adjectiveB. Joins a noun or a phrase to the rest of a sentenceC. Makes a complete sentenceD. Changes or describes a noun I will.mark.brainliest The meter is the standard unit for:weightheightmasslength What is an equation of the line that passes through the points (5,4) and (2,-2) An increase in mass will1. Increase acceleration. 2. Decrease Force. 3. Decrease acceleration 4. Have no effect on acceleration. Pls help due today 21/4 times the quantity 51/2 minus kNeed help writing a expression for this phrase draw a neat labelled diagram of clinical thermometer