The magnetic quantum number (ml) can have 15 values in the given condition where a given electron in a hydrogen atom has l = 7
The magnetic quantum number (ml) determines the direction of the angular momentum vector. It indicates the orientation of the orbital in space.
Magnetic quantum number has the following values for a given electron in a hydrogen atom:
ml = - l, - l + 1, - l + 2,...., 0,....l - 2, l - 1, l
The range of magnetic quantum number (ml) is from –l to +l. As given, l = 7
Therefore,
ml = -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7
In this case, the magnetic quantum number (ml) can have 15 values.
Learn more about magnetic quantum number: https://brainly.com/question/21760208
#SPJ11
Learning Goal: The Hydrogen Spectrum Electrons in hydrogen atoms are in the n=4 state (orbit). They can jump up to higher orbits or down to lower orbits. The numerical value of the Rydberg constant (determined from measurements of wavelengths) is R=1.097×107 m−1. Planck's constant is h=6.626×10−34 J⋅s, the speed of light in a vacuum is c=3×108 m/s. What is the LONGEST EMITTED wavelength? Express your answer in nanometers (nm),1 nm=10−9 m. Keep 1 digit after the decimal point. emitted λlongest = nm Part B What is the energy of the Emitted photon with the LONGEST wavelength? The photon energy should always be reported as positive. Express your answer in eV,1eV=1.6⋆10−19 J. Keep 4 digits after the decimal point. What is the SHORTEST ABSORBED wavelength? Express your answer in nanometers (nm),1 nm=10−9 m. Keep 1 digit after the decimal point.
Part A: To find the longest emitted wavelength, we will use the formula:1/λ = R [ (1/n12) - (1/n22) ]Where, R = Rydberg constantn1 = 4n2 = ∞ (for longest wavelength) Substituting the values,1/λ = (1.097 × 107 m⁻¹) [ (1/42) - (1/∞2) ]On solving,λ = 820.4 nm.
Therefore, the longest emitted wavelength is 820.4 nm. Part Bathed energy of the emitted photon with the longest wavelength can be found using the formulae = hoc/λ Where, h = Planck's constant = Speed of lightλ = Longest emitted wavelength Substituting the values = (6.626 × 10⁻³⁴ J s) (3 × 10⁸ m/s) / (820.4 × 10⁻⁹ m)E = 2.411 x 10⁻¹⁹ J.
Converting the energy to eV,E = 2.411 x 10⁻¹⁹ J x (1 eV / 1.6 x 10⁻¹⁹ J)E = 1.506 eV (approx.)Therefore, the energy of the emitted photon with the longest wavelength is 1.506 eV.
To know more about energy visit:
https://brainly.com/question/1932868
#SPJ11
Consider a hydrogen atom placed in a region where is a weak external elec- tric field. Calculate the first correction to the ground state energy. The field is in the direction of the positive z axis ε = εk of so that the perturbation to the Hamiltonian is H' = eε x r = eεz where e is the charge of the electron.
To calculate the first correction to the ground state energy of a hydrogen atom in a weak external electric-field, we need to consider the perturbation to the Hamiltonian caused by the electric field.
The perturbation Hamiltonian is given by H' = eεz, where e is the charge of the electron and ε is the electric field strength. In first-order perturbation theory, the correction to the ground state energy (E₁) can be calculated using the formula:
E₁ = ⟨Ψ₀|H'|Ψ₀⟩
Here, Ψ₀ represents the unperturbed ground state wavefunction of the hydrogen atom.
In the case of the given perturbation H' = eεz, we can write the ground state wavefunction as Ψ₀ = ψ₁s(r), where ψ₁s(r) is the radial part of the ground state wavefunction.
Substituting these values into the equation, we have:
E₁ = ⟨ψ₁s(r)|eεz|ψ₁s(r)⟩
Since the electric field is in the z-direction, the perturbation only affects the z-component of the position operator, which is r = z.
Therefore, the first correction to the ground state energy can be calculated as:
E₁ = eε ⟨ψ₁s(r)|z|ψ₁s(r)⟩
To obtain the final result, the specific form of the ground state wavefunction ψ₁s(r) needs to be known, as it involves the solution of the Schrödinger equation for the hydrogen atom. Once the wavefunction is known, it can be substituted into the equation to evaluate the correction to the ground state energy caused by the weak external electric field.
To learn more about electric-field , click here : https://brainly.com/question/30544719
#SPJ11
In the figure, two concentric circular loops of wire carrying current in the same direction lie in the same plane. Loop 1 has radius 1.30 cm and carries 4.40 mA. Loop 2 has radius 2.30 cm and carries 6.00 mA. Loop 2 is to be rotated about a diameter while the net magnetic field B→B→ set up by the two loops at their common center is measured. Through what angle must loop 2 be rotated so that the magnitude of the net field is 93.0 nT? >1 2
Loop 2 must be rotated by approximately 10.3 degrees in order to achieve a net magnetic field magnitude of 93.0 nT at the common center of the loops.
To determine the angle of rotation, we need to consider the magnetic fields produced by each loop at their common center. The magnetic field produced by a current-carrying loop at its center is given by the formula:
B = (μ0 * I * A) / (2 * R)
where μ0 is the permeability of free space (4π × 10^-7 T•m/A), I is the current, A is the area of the loop, and R is the radius of the loop.
The net magnetic field at the common center is the vector sum of the magnetic fields produced by each loop. We can calculate the net magnetic field magnitude using the formula:
Bnet = √(B1^2 + B2^2 + 2 * B1 * B2 * cosθ)
where B1 and B2 are the magnitudes of the magnetic fields produced by loops 1 and 2, respectively, and θ is the angle of rotation of loop 2.
Substituting the given values, we have:
Bnet = √((4π × 10^-7 T•m/A * 4.40 × 10^-3 A * π * (0.013 m)^2 / (2 * 0.013 m))^2 + (4π × 10^-7 T•m/A * 6.00 × 10^-3 A * π * (0.023 m)^2 / (2 * 0.023 m))^2 + 2 * 4π × 10^-7 T•m/A * 4.40 × 10^-3 A * 6.00 × 10^-3 A * π * (0.013 m) * π * (0.023 m) * cosθ)
Simplifying the equation and solving for θ, we find:
θ ≈ acos((Bnet^2 - B1^2 - B2^2) / (2 * B1 * B2))
Substituting the given values and the net magnetic field magnitude of 93.0 nT (93.0 × 10^-9 T), we can calculate the angle of rotation:
θ ≈ acos((93.0 × 10^-9 T^2 - (4π × 10^-7 T•m/A * 4.40 × 10^-3 A * π * (0.013 m)^2 / (2 * 0.013 m))^2 - (4π × 10^-7 T•m/A * 6.00 × 10^-3 A * π * (0.023 m)^2 / (2 * 0.023 m))^2) / (2 * (4π × 10^-7 T•m/A * 4.40 × 10^-3 A * π * (0.013 m) * 4π × 10^-7 T•m/A * 6.00 × 10^-3 A * π * (0.023 m)))
Calculating the value, we find:
θ ≈ 10.3 degrees
Therefore, loop 2 must be rotated by approximately 10.3 degrees in order to achieve a net magnetic field magnitude of 93.0 nT at the common center of the loops.
Learn more about magnetic field here; brainly.com/question/30331791
#SPJ11
Please Help
A simple ac circuit is composed of an inductor connected across the terminals of an ac power source. If the frequency of the source is halved, what happens to the reactance of the inductor? It is unch
When the frequency of an AC power source is halved in a simple AC circuit with an inductor, the reactance of the inductor increases.
The reactance of an inductor is directly proportional to the frequency of the AC power source. Reactance is the opposition that an inductor presents to the flow of alternating current. It is determined by the formula Xl = 2πfL, where Xl is the inductive reactance, f is the frequency, and L is the inductance.
When the frequency is halved, the value of f in the formula decreases. As a result, the inductive reactance increases. This means that the inductor offers greater opposition to the flow of current, causing the current to be impeded.
Halving the frequency of the AC power source effectively reduces the rate at which the magnetic field in the inductor changes, leading to an increase in the inductive reactance. It is important to consider this relationship between frequency and reactance when designing and analyzing AC circuits with inductors.
In conclusion, when the frequency of an AC power source is halved in a simple AC circuit with an inductor, the reactance of the inductor increases, resulting in greater opposition to the flow of current.
To know more about Frequency visit-
brainly.com/question/14320803
#SPJ11
1. (1 p) An object has a kinetic energy of 275 J and a linear momentum of 25 kg m/s. Determine the speed and mass of the object.
An object has a kinetic energy of 275 J and a linear momentum of 25 kg m/s. The speed and mass of the object is 1.136 m/s and 22 kg respectively.
To determine the speed and mass of the object, we can use the formulas for kinetic energy and linear momentum.
Kinetic Energy (KE) = (1/2) × mass (m) × velocity squared (v²)
Linear Momentum (p) = mass (m) × velocity (v)
Kinetic Energy (KE) = 275 J
Linear Momentum (p) = 25 kg m/s
From the equation for kinetic energy, we can solve for velocity (v):
KE = (1/2) × m × v²
2 × KE = m × v²
2 × 275 J = m × v²
550 J = m × v²
From the equation for linear momentum, we have:
p = m × v
v = p / m
Plugging in the given values of linear momentum and kinetic energy, we have:
25 kg m/s = m × v
25 kg m/s = m × (550 J / m)
m = 550 J / 25 kg m/s
m = 22 kg
Now that we have the mass, we can substitute it back into the equation for velocity:
v = p / m
v = 25 kg m/s / 22 kg
v = 1.136 m/s
Therefore, the speed of the object is approximately 1.136 m/s, and the mass of the object is 22 kg.
To know more about kinetic energy here
https://brainly.com/question/999862
#SPJ4
In the following three scenarios, an object is located on one side of a converging lens. In each case, you must determine if the lens forms an image of this object. If it does, you also must determine the following.whether the image is real or virtual
whether the image is upright or inverted
the image's location, q
the image's magnification, M
The focal length is
f = 60.0 cm
for this lens.
Set both q and M to zero if no image exists.
Note: If q appears to be infinite, the image does not exist (but nevertheless set q to 0 when entering your answers to that particular scenario).
(a)
The object lies at position 60.0 cm. (Enter the value for q in cm.)
q= cmM=
Select all that apply to part (a).
realvirtualuprightinvertedno image
(b)
The object lies at position 7.06 cm. (Enter the value for q in cm.)
q= cmM=
Select all that apply to part (b).
realvirtualuprightinvertedno image
(c)
The object lies at position 300 cm. (Enter the value for q in cm.)
q= cmM=
Select all that apply to part (c).
realvirtualuprightinvertedno image
The image is real, it is inverted. Here's how you can determine whether a lens forms an image of an object, whether the image is real or virtual, upright or inverted, the image's location (q), and the image's magnification (M).
In the following scenarios, an object is placed on one side of a converging lens. Here are the solutions:
(a) The object is located at a distance of 60.0 cm from the lens. Given that f = 60.0 cm, the lens's focal length is equal to the distance between the lens and the object. As a result, the image's location (q) is equal to 60.0 cm. The magnification (M) is determined by the following formula:
M = - q / p
= f / (p - f)
In this case, p = 60.0 cm, so:
M = - 60.0 / 60.0 = -1
Thus, the image is real, inverted, and the same size as the object. So the answers for part (a) are:q = -60.0 cmM = -1real, inverted
.(b) The object is located 7.06 cm away from the lens. For a converging lens, the distance between the lens and the object must be greater than the focal length for a real image to be created. As a result, a virtual image is created in this scenario. Using the lens equation, we can calculate the image's location and magnification.
q = - f . p / (p - f)
q = - (60 . 7.06) / (7.06 - 60)
q = 4.03cm
The magnification is calculated as:
M = - q / p
= f / (p - f)
M = - 4.03 / 7.06 - 60
= 0.422
As the image is upright and magnified, it is virtual. Thus, the answers for part (b) are:
q = 4.03 cm
M = 0.422 virtual, upright.
(c) The object is located at a distance of 300 cm from the lens. Since the object is farther away than the focal length, a real image is formed. Using the lens equation, we can calculate the image's location and magnification.
q = - f . p / (p - f)
q = - (60 . 300) / (300 - 60)
q = - 50 cm
The magnification is calculated as:
M = - q / p
= f / (p - f)M
= - (-50) / 300 - 60
= 0.714
As the image is real, it is inverted. Thus, the answers for part (c) are:
q = -50 cmM = 0.714real, inverted.
To know more about lens visit:
https://brainly.com/question/29834071
#SPJ11
Consider a series RLC circuit having the parameters R=200Ω L=663mH , and C=26.5µF. The applied voltage has an amplitude of 50.0V and a frequency of 60.0Hz. Find (d) the maximum voltage ΔVL across the inductor and its phase relative to the current.
The maximum voltage [tex]ΔVL[/tex]across the inductor is approximately 19.76V, and its phase relative to the current is 90 degrees.
To find the maximum voltage [tex]ΔVL[/tex]across the inductor and its phase relative to the current, we can use the formulas for the impedance of an RLC circuit.
First, we need to calculate the angular frequency ([tex]ω[/tex]) using the given frequency (f):
[tex]ω = 2πf = 2π * 60 Hz = 120π rad/s[/tex]
Next, we can calculate the inductive reactance (XL) and the capacitive reactance (XC) using the formulas:
[tex]XL = ωL = 120π * 663mH = 79.04Ω[/tex]
[tex]XC = 1 / (ωC) = 1 / (120π * 26.5µF) ≈ 0.1Ω[/tex]
Now, we can calculate the total impedance (Z) using the formulas:
[tex]Z = √(R^2 + (XL - XC)^2) ≈ 200Ω[/tex]
The maximum voltage across the inductor can be calculated using Ohm's Law:
[tex]ΔVL = I * XL[/tex]
We need to find the current (I) first. Since the applied voltage has an amplitude of 50.0V, the current amplitude can be calculated using Ohm's Law:
[tex]I = V / Z ≈ 50.0V / 200Ω = 0.25A[/tex]
Substituting the values, we get:
[tex]ΔVL = 0.25A * 79.04Ω ≈ 19.76V[/tex]
The phase difference between the voltage across the inductor and the current can be found by comparing the phase angles of XL and XC. Since XL > XC, the voltage across the inductor leads the current by 90 degrees.
To know more about inductor visit:
https://brainly.com/question/31503384
#SPJ11
The density of glycerin is 20 g/cm³ at 20 °C. Find the density of glycerin at 60 °C. The volume coefficient of glycerin is 5.1 x 10-4 °C-¹. A) 19.6 g/cm³ B 21.2 g/cm³ C 20.12 g/cm³ D 20 g/cm³
The correct option is D) 20 g/cm³.
The volume coefficient of glycerin is 5.1 x 10-4 °C-¹.
The temperature difference is 40°C (60°C - 20°C).
We can use the formula for calculating thermal expansion to calculate the new volume of glycerin.ΔV = V₀αΔT
Where, ΔV is the change in volume V₀ is the initial volume α is the volume coefficient ΔT is the temperature difference
V₀ = m/ρ₀
where m is the mass of the glycerin and ρ₀ is the density of glycerin at 20°C.
Now, we can substitute the values into the formula for calculating ΔV.ΔV = (m/ρ₀) α ΔT
Now, we can calculate the new volume of glycerin at 60°C.V₁ = V₀ + ΔV
Where V₁ is the new volume at 60°C, and V₀ is the initial volume at 20°C.ρ = m/V₁
Now, we can calculate the density of glycerin at 60°C.
ρ = m/V₁ρ = m/(V₀ + ΔV)
ρ = m/[m/ρ₀ + (m/ρ₀) α ΔT]ρ = 1/[1/ρ₀ + α ΔT]
ρ = 1/[1/20 + (5.1 x 10-4)(40)]
ρ = 1/[1/20 + 0.0204]
ρ = 1/[0.0504]
ρ = 19.84 g/cm³
Therefore, the density of glycerin at 60°C is 19.84 g/cm³, which rounds off to 19.8 g/cm³ (approximately).
Hence, the correct option is D) 20 g/cm³.
Learn more about volume coefficient here https://brainly.com/question/31598476
#SPJ11
Determine the magnitude and direction of the electric field at a
point in the middle of two point charges of 4μC and −3.2μC
separated by 4cm?
The electric field is 14.4 N/C. To determine the magnitude and direction of the electric field at a point in the middle of two point charges, we can use the principle of superposition.
The electric field at the point will be the vector sum of the electric fields created by each charge individually.
Charge 1 (q1) = 4 μC = 4 × 10^-6 C
Charge 2 (q2) = -3.2 μC = -3.2 × 10^-6 C
Distance between the charges (d) = 4 cm = 0.04 m
The electric field created by a point charge at a distance r is given by Coulomb's Law:
E = k * (|q| / r^2)
E is the electric field,
k is the electrostatic constant (k ≈ 9 × 10^9 N m^2/C^2),
|q| is the magnitude of the charge, and
r is the distance from the charge.
Electric field created by q1:
E1 = k * (|q1| / r^2)
= (9 × 10^9 N m^2/C^2) * (4 × 10^-6 C / (0.02 m)^2)
= 9 × 10^9 N m^2/C^2 * 4 × 10^-6 C / 0.0025 m^2
= 9 × 10^9 N / C * 4 × 10^-6 / 0.0025
= 14.4 N/C
The electric field created by q1 is directed away from it, radially outward.
Learn more about magnitude here : brainly.com/question/28714281
#SPJ11
An RL circuit is composed of a 12 V battery, a 6.0 H inductor and a 0.050 Ohm resistor. The switch is closed at t=0 The time constant is 2.0 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V. The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is zero. The time constant is 2.0 minutes and after the switch has been closed a long time the voltage across the inductor is zero
The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V.
The RL circuit described has a time constant of 1.2 minutes, and after the switch has been closed for a long time, the voltage across the inductor is 12 V.
The time constant (τ) of an RL circuit is determined by the product of the resistance (R) and the inductance (L) and is given by the formula τ = L/R. In this case, the time constant is 1.2 minutes.
When the switch is closed, current begins to flow through the circuit. As time progresses, the current increases and approaches its maximum value, which is determined by the battery voltage and the circuit's total resistance.
In an RL circuit, the voltage across the inductor (V_L) can be calculated using the formula V_L = V_0 * (1 - e^(-t/τ)), where V_0 is the initial voltage across the inductor, t is the time, and e is the base of the natural logarithm.
Given that the voltage across the inductor after a long time is 12 V, we can set V_L equal to 12 V and solve for t to determine the time it takes for the voltage to reach this value. The equation becomes 12 = 12 * (1 - e^(-t/τ)).
By solving this equation, we find that t is equal to approximately 3.57 minutes. Therefore, after the switch has been closed for a long time, the voltage across the inductor in this RL circuit reaches 12 V after approximately 3.57 minutes.
Learn more about resistance from the given link
https://brainly.com/question/29427458
#SPJ11
An object oscillates with an angular frequency ω = 5 rad/s. At t = 0, the object is at x0 = 6.5 cm. It is moving with velocity vx0 = 14 cm/s in the positive x-direction. The position of the object can be described through the equation x(t) = A cos(ωt + φ).
A) What is the the phase constant φ of the oscillation in radians? (Caution: If you are using the trig functions in the palette below, be careful to adjust the setting between degrees and radians as needed.)
B) Write an equation for the amplitude A of the oscillation in terms of x0 and φ. Use the phase shift as a system parameter.
C) Calculate the value of the amplitude A of the oscillation in cm.
An object oscillates with an angular frequency [tex]ω = 5 rad/s. At t = 0[/tex], the object is at [tex]x0 = 6.5 cm.[/tex]It is moving with velocity vx0 = 14 cm/s in the positive x-direction.
The position of the object can be described through the equation x(t) = A cos(ωt + φ).The phase constant φ of the oscillation in radiansThe formula used for the displacement equation is,[tex]x(t) = A cos(ωt + φ)[/tex]Given that, ω = 5 rad/s, x0 = 6.5 cm, and vx0 = 14 cm/sSince the velocity is given.
Therefore it is assumed that the particle is moving with simple harmonic motion starting from x0. Hence the phase constant φ can be obtained from the displacement equation by substituting the initial values,[tex]x0 = A cos (φ)6.5 = A cos (φ)On solving,φ = cos-1 (x0 / A)[/tex]The equation for the amplitude .
To know more about velocity visit:
https://brainly.com/question/24259848
#SPJ11
A 28 g ball of clay traveling east at 3.2 m/s collides with a 32 g ball of clay traveling north at 2.8 m/s
The two balls will move together at a velocity of 2.987 m/s at an angle between east and north after the collision.
When the 28 g ball of clay traveling east at 3.2 m/s collides with the 32 g ball of clay traveling north at 2.8 m/s, the two balls will stick together due to the conservation of momentum.
To solve this problem, we can use the principle of conservation of momentum, which states that the total momentum before the collision is equal to the total momentum after the collision.
The momentum of an object is given by the product of its mass and velocity. Therefore, the momentum of the 28 g ball of clay before the collision is (28 g) * (3.2 m/s) = 89.6 g·m/s east, and the momentum of the 32 g ball of clay before the collision is (32 g) * (2.8 m/s) = 89.6 g·m/s north.
After the collision, the two balls stick together, so their total mass is 28 g + 32 g = 60 g. The momentum of the combined mass can be calculated by adding the momenta of the individual balls before the collision.
Therefore, the total momentum after the collision is 89.6 g·m/s east + 89.6 g·m/s north = 179.2 g·m/s at an angle between east and north.
To calculate the velocity of the combined balls after the collision, divide the total momentum by the total mass: (179.2 g·m/s) / (60 g) = 2.987 m/s.
To know more about velocity visit:-
https://brainly.com/question/30559316
#SPJ11
A 3.0 kg falling rock has a kinetic energy equal to 2,430 J. What is its speed?
The speed of the falling rock can be determined by using the equation for kinetic energy: KE = 0.5 * m * v^2, the speed of the falling rock is approximately 40.25 m/s.
The kinetic energy of the rock is 2,430 J and the mass is 3.0 kg, we can rearrange the equation to solve for the speed:
v^2 = (2 * KE) / m
Substituting the given values:
v^2 = (2 * 2,430 J) / 3.0 kg
v^2 ≈ 1,620 J / kg
Taking the square root of both sides, we find:
v ≈ √(1,620 J / kg)
v ≈ 40.25 m/s
Therefore, the speed of the falling rock is approximately 40.25 m/s.
Learn more about mass here:
brainly.com/question/11954533
#SPJ11
The
speed of a car is found by dividing the distance traveled by the
time required to travel that distance. Consider a car that traveled
18.0 miles in 0.969 hours. What's the speed of car in km / h
(k
The speed of the car is approximately 29.02 km/h, given that it traveled 18.0 miles in 0.969 hours.
To convert the speed of the car from miles per hour to kilometers per hour, we need to use the conversion factor that 1 mile is equal to 1.60934 kilometers.
Given:
Distance traveled = 18.0 milesTime taken = 0.969 hoursTo calculate the speed of the car, we divide the distance traveled by the time taken:
Speed (in miles per hour) = Distance / Time
Speed (in miles per hour) = 18.0 miles / 0.969 hours
Now, we can convert the speed from miles per hour to kilometers per hour by multiplying it by the conversion factor:
Speed (in kilometers per hour) = Speed (in miles per hour) × 1.60934
Let's calculate the speed in kilometers per hour:
Speed (in kilometers per hour) = (18.0 miles / 0.969 hours) × 1.60934
Speed (in kilometers per hour) = 29.02 km/h
Therefore, the speed of the car is approximately 29.02 km/h.
The complete question should be:
The speed of a car is found by dividing the distance traveled by the time required to travel that distance. Consider a car that traveled 18.0 miles in 0.969 hours. What's the speed of car in km / h (kilometer per hour)?
To learn more about speed, Visit:
https://brainly.com/question/13262646
#SPJ11
Explain each of the following cases of magnification. magnification (M) M>1, M<1 and M=1 explain how you can find the image of a faraway object using a convex lens. Where will the image be formed?
What lens is used in a magnifying lens? Explain the working of a magnifying lens.
Magnification (M) refers to the degree of enlargement or reduction of an image compared to the original object. When M > 1, the image is magnified; when M < 1, the image is reduced; and when M = 1, the image has the same size as the object.
To find the image of a faraway object using a convex lens, a converging lens is typically used. The image will be formed on the opposite side of the lens from the object, and its location can be determined using the lens equation and the magnification formula.
A magnifying lens is a convex lens with a shorter focal length. It works by creating a virtual, magnified image of the object that appears larger when viewed through the lens.
1. M > 1 (Magnification): When the magnification (M) is greater than 1, the image is magnified. This means that the size of the image is larger than the size of the object. It is commonly observed in devices like magnifying glasses or telescopes, where objects appear bigger and closer.
2. M < 1 (Reduction): When the magnification (M) is less than 1, the image is reduced. In this case, the size of the image is smaller than the size of the object. This type of magnification is used in devices like microscopes, where small objects need to be viewed in detail.
3. M = 1 (Unity Magnification): When the magnification (M) is equal to 1, the image has the same size as the object. This occurs when the image and the object are at the same distance from the lens. It is often seen in simple lens systems used in photography or basic optical systems.
To find the image of a faraway object using a convex lens, a converging lens is used. The image will be formed on the opposite side of the lens from the object. The location of the image can be determined using the lens equation:
1/f = 1/d₀ + 1/dᵢ
where f is the focal length of the lens, d₀ is the object distance, and dᵢ is the image distance. By rearranging the equation, we can solve for dᵢ:
1/dᵢ = 1/f - 1/d₀
The magnification (M) can be calculated using the formula:
M = -dᵢ / d₀
A magnifying lens is a convex lens with a shorter focal length. It works by creating a virtual, magnified image of the object that appears larger when viewed through the lens. This is achieved by placing the object closer to the lens than its focal length.
To learn more about Magnification click here brainly.com/question/21370207
#SPJ11
choose corect one
13. The photoelectric effect is (a) due to the quantum property of light (b) due to the classical theory of light (c) independent of reflecting material (d) due to protons. 14. In quantum theory (a) t
The correct answer for the photoelectric effect is (a) due to the quantum property of light.
The photoelectric effect refers to the phenomenon where electrons are emitted from a material when it is exposed to light or electromagnetic radiation. It was first explained by Albert Einstein in 1905, for which he received the Nobel Prize in Physics
According to the quantum theory of light, light is composed of discrete packets of energy called photons. When photons of sufficient energy interact with a material, they can transfer their energy to the electrons in the material. If the energy of the photons is above a certain threshold, called the work function of the material, the electrons can be completely ejected from the material, resulting in the photoelectric effect.
The classical theory of light, on the other hand, which treats light as a wave, cannot fully explain the observed characteristics of the photoelectric effect. It cannot account for the fact that the emission of electrons depends on the intensity of the light, as well as the frequency of the photons.
The photoelectric effect is also dependent on the properties of the material being illuminated. Different materials have different work functions, which determine the minimum energy required for electron emission. Therefore, the photoelectric effect is not independent of the reflecting material.
So, option A is the correct answer.
To know more about photoelectric effect click on below link :
https://brainly.com/question/9260704#
#SPJ11
Please show working out.
2. A mass of a liquid of density \( \rho \) is thoroughly mixed with an equal mass of another liquid of density \( 2 \rho \). No change of the total volume occurs. What is the density of the liquid mi
When equal masses of a liquid with density ρ and another liquid with density 2ρ are mixed, the resulting liquid mixture has a density of 4/3ρ. Thus, option A, 4/3ρ, is the correct answer.
To determine the density of the liquid mixture, we need to consider the mass and volume of the liquids involved. Let's assume that the mass of each liquid is m and the density of the first liquid is ρ.
Since the mass of the first liquid is equal to the mass of the second liquid (m), the total mass of the mixture is 2m.
The volume of each liquid can be calculated using the density formula: density = mass/volume. Rearranging the formula, we have volume = mass/density.
For the first liquid, its volume is m/ρ.
For the second liquid, since its density is 2ρ, its volume is m/(2ρ).
When we mix the two liquids, the total volume remains unchanged. Therefore, the volume of the mixture is equal to the sum of the volumes of the individual liquids.
Volume of mixture = volume of first liquid + volume of second liquid
Volume of mixture = m/ρ + m/(2ρ)
Volume of mixture = (2m + m)/(2ρ)
Volume of mixture = 3m/(2ρ)
Now, to calculate the density of the mixture, we divide the total mass (2m) by the volume of the mixture (3m/(2ρ)).
Density of mixture = (2m) / (3m/(2ρ))
Density of mixture = 4ρ/3m
Since we know that the mass of the liquids cancels out, the density of the mixture simplifies to:
Density of mixture = 4ρ/3
Therefore, the density of the liquid mixture is 4/3ρ, which corresponds to option A.
To know more about the liquid mixture refer here,
https://brainly.com/question/30101907#
#SPJ11
Complete question :
A mass of a liquid of density ρ is thoroughly mixed with an equal mass of another liquid of density 2ρ. No change of the total volume occurs. What is the density of the liquid mixture? A. 4/3ρ B. 3/2ρ C. 5/3ρ D. 3ρ
nursing interventions for a child with an infectious
disease?
why is the tympanic membrane important to
visualize?
Nursing care for a child with an infectious disease involves implementing isolation measures, monitoring vital signs, administering medications, providing comfort, and promoting hygiene practices. Visualizing the tympanic membrane is crucial to identify middle ear infections associated with certain diseases.
Pathogenic microorganisms, including viruses, bacteria, fungi, and parasites, are responsible for causing infectious diseases. Pediatric infectious diseases are frequently encountered by nurses, and as a result, nursing interventions are critical in improving the care of children with infectious diseases.
Nursing interventions for a child with an infectious disease
Here are a few nursing interventions for a child with an infectious disease that a nurse might suggest:
Implement isolation precautions: A nurse should implement isolation precautions, such as wearing personal protective equipment, washing their hands, and not having personal contact with the infected child, to reduce the spread of infectious diseases.
Observe the child's vital signs: A nurse should keep track of the child's vital signs, such as pulse rate, blood pressure, respiratory rate, and temperature, to track their condition and administer proper treatment.Administer antibiotics: Depending on the type of infectious disease, the nurse may administer the appropriate antibiotic medication to the child.
Administer prescribed medication: The nurse should give the child any medications that the physician has prescribed, such as antipyretics, to reduce fever or analgesics for pain relief.
Provide comfort measures: The nurse should offer comfort measures, such as providing appropriate toys and games, coloring books, and other activities that help the child's development and diversion from their illness.
Tympanic membrane: Tympanic membrane is also known as the eardrum. It is a thin membrane that separates the ear canal from the middle ear. The tympanic membrane is critical to visualize since it allows a nurse to see if there are any signs of infection in the middle ear, which may occur as a result of an infectious disease. Furthermore, visualizing the tympanic membrane might assist the nurse in determining if the child has any hearing loss or issues with their hearing ability.
Learn more about tympanic membrane at: https://brainly.com/question/15739997
#SPJ11
What is the dose in rem for each of the following? (a) a 4.39 rad x-ray rem (b) 0.250 rad of fast neutron exposure to the eye rem (c) 0.160 rad of exposure rem
The dose in rem for each of the following is:(a) 4.39 rem(b) 5.0 rem(c) 0.160 rem. The rem is the traditional unit of dose equivalent.
It is the product of the absorbed dose, which is the amount of energy deposited in a tissue or object by radiation, and the quality factor, which accounts for the biological effects of the specific type of radiation.A rem is equal to 0.01 sieverts, the unit of measure in the International System of Units (SI). The relationship between the two is based on the biological effect of radiation on tissue. Therefore:
Rem = rad × quality factor
(a) For a 4.39 rad x-ray, the dose in rem is equal to 4.39 rad × 1 rem/rad = 4.39 rem
(b) For 0.250 rad of fast neutron exposure to the eye, the dose in rem is 0.250 rad × 20 rem/rad = 5.0 rem
(c) For 0.160 rad of exposure, the dose in rem is equal to 0.160 rad × 1 rem/rad = 0.160 rem
The dose in rem for each of the following is:(a) 4.39 rem(b) 5.0 rem(c) 0.160 rem.
To know more about International System of Units visit-
brainly.com/question/30404877
#SPJ11
A charge and discharge RC circuit is composed of a resistance and a capacitance = 0.1.
d) Identify true or false to the following statements
i) The time constant () of charge and discharge of the capacitor are equal (
ii) The charging and discharging voltage of the capacitor in a time are different (
iii) A capacitor stores electric charge ( )
iv) It is said that the current flows through the capacitor if it is fully charged ( )
i) True. The time constant (τ) of charge and discharge is determined by the product of resistance and capacitance, which is equal in this case.
ii) False. The charging and discharging voltages of the capacitor in an RC circuit are different; during charging, the voltage increases, and during discharging, it decreases.
iii) True. A capacitor stores electric charge by accumulating it on its plates when a voltage is applied.
iv) False. Once a capacitor is fully charged, no current flows through it. It acts as an open circuit, blocking the flow of current.
i) True. The time constant (τ) of a charge and discharge RC circuit is determined by the product of the resistance (R) and capacitance (C), τ = RC. Since the resistance and capacitance values are the same in this case (0.1), the time constant for charging and discharging will be equal.
ii) False. The charging and discharging voltages of the capacitor in a RC circuit are different. During charging, the voltage across the capacitor gradually increases from 0 to the input voltage, while during discharging, the voltage decreases from the initial voltage to 0.
iii) True. A capacitor is an electronic component that stores electric charge. When a voltage is applied across its terminals, the capacitor accumulates charge on its plates, creating an electric field between them.
iv) False. Once a capacitor is fully charged, ideally no current flows through it. In an ideal capacitor, current flows only during the charging and discharging process. Once the capacitor reaches its maximum voltage, the current becomes zero, and the capacitor acts as an open circuit, blocking the flow of current.
Read more on capacitors here: https://brainly.com/question/30529897
#SPJ11
Show work when possible! thank you! :)
1. What equation will you use to calculate the acceleration of gravity in your experiment?
2. A ball is dropped from a height of 3.68 m and takes 0.866173 s to reach the floor. Calculate the
free fall acceleration.
3. Two metal balls are dropped from the same height. One ball is two times larger and heavier
than the other ball. How do you expect the free fall acceleration of the larger ball compares to
the acceleration of the smaller one?
1. To calculate the acceleration of gravity in the experiment, the equation used is:
g = 2h / t²
2. The free fall acceleration can be calculated as 8.76 m/s².
3. The free fall acceleration of the larger ball is expected to be the same as the acceleration of the smaller ball.
1. The equation used to calculate the acceleration of gravity in the experiment is derived from the kinematic equation for motion under constant acceleration: h = 0.5gt², where h is the height, g is the acceleration of gravity, and t is the time taken to fall.
By rearranging the equation, we can solve for g: g = 2h / t².
2. - Height (h) = 3.68 m
- Time taken (t) = 0.866173 s
Substituting these values into the equation: g = 2 * 3.68 / (0.866173)².
Simplifying the expression: g = 8.76 m/s².
Therefore, the free fall acceleration is calculated as 8.76 m/s².
3. The acceleration of an object in free fall is solely determined by the gravitational field strength and is independent of the object's mass. Therefore, the larger ball, being two times larger and heavier than the smaller ball, will experience the same acceleration due to gravity.
This principle is known as the equivalence principle, which states that the inertial mass and gravitational mass of an object are equivalent. Consequently, both balls will have the same free fall acceleration, regardless of their size or weight.
To know more about acceleration refer here:
https://brainly.com/question/30660316#
#SPJ11
A 50 kg student bounces up from a trampoline with a speed of 3.4 m/s. Determine the work done on the student by the force of gravity when she is 5.3 m above the trampoline.
The work done on the student by the force of gravity when she is 5.3 m above the trampoline is approximately 2574 Joules.
To determine the work done on the student by the force of gravity, we need to calculate the change in potential-energy. The gravitational potential energy (PE) of an object near the surface of the Earth is given by the formula:
PE = m * g * h
where m is the mass of the object, g is the acceleration due to gravity, and h is the height above the reference level.
In this case, the student's mass is 50 kg and the height above the trampoline is 5.3 m. We can calculate the initial potential energy (PEi) when the student is on the trampoline and the final potential energy (PEf) when the student is 5.3 m above the trampoline.
PEi = m * g * h_initial
PEf = m * g * h_final
The work done by the force of gravity is the change in potential energy, which can be calculated as:
Work = PEf - PEi
Let's calculate the work done on the student by the force of gravity:
PEi = 50 kg * 9.8 m/s² * 0 m (height on the trampoline)
PEf = 50 kg * 9.8 m/s² * 5.3 m (height 5.3 m above the trampoline)
PEi = 0 J
PEf = 50 kg * 9.8 m/s² * 5.3 m
PEf ≈ 2574 J
Work = PEf - PEi
Work ≈ 2574 J - 0 J
Work ≈ 2574 J
Therefore, the work done on the student by the force of gravity when she is 5.3 m above the trampoline is approximately 2574 Joules.
To learn more about work , click here : https://brainly.com/question/18094932
#SPJ11
At a point a distance r=1.10 m from the origin on the positive x-axis, find the magnitude and direction of the magnetic field. (a) magnitude of the magnetic field (in T ) T (b) direction of the magnetic field +x-direction −x-direction +y-direction −y-direction +z-direction -z-direction At a point the same distance from the origin on the negative y-axis, find the magnitude and direction of the magnetic field. (c) magnitude of the magnetic field (in T ) At a point a distance r=1.10 m from the origin on the positive x-axis, find the magnitude and direction of the magnetic field. (a) magnitude of the magnetic field (in T ) T (b) direction of the magnetic field +x-direction −x-direction +y-direction −y-direction +z-direction −z-direction At a point the same distance from the origin on the negative y-axis, find the magnitude and direction of the magnetic field. (c) magnitude of the magnetic field (in T) T (d) direction of the magnetic field +x-direction
(a) The magnitude of the magnetic field at a point a distance r=1.10 m from the origin on the positive x-axis is 0.063 T.
(b) The direction of the magnetic field is +x-direction.
(c) The magnitude of the magnetic field at a point the same distance from the origin on the negative y-axis is 0.063 T.
(d) The direction of the magnetic field is −y-direction.
The magnetic field at a point due to a current-carrying wire is given by the Biot-Savart law:
B = µo I / 2πr sinθ
where µo is the permeability of free space, I is the current in the wire, r is the distance from the wire to the point, and θ is the angle between the wire and the line connecting the wire to the point.
In this case, the current is flowing in the +x-direction, the point is on the positive x-axis, and the distance from the wire to the point is r=1.10 m. Therefore, the angle θ is 0 degrees.
B = µo I / 2πr sinθ = 4π × 10-7 T⋅m/A × 1 A / 2π × 1.10 m × sin(0°) = 0.063 T
Therefore, the magnitude of the magnetic field at the point is 0.063 T. The direction of the magnetic field is +x-direction, because the current is flowing in the +x-direction and the angle θ is 0 degrees.
The same calculation can be done for the point on the negative y-axis. The only difference is that the angle θ is now 90 degrees. Therefore, the magnitude of the magnetic field at the point is still 0.063 T, but the direction is now −y-direction.
To learn more about magnetic field here brainly.com/question/23096032
#SPJ11
Show that the first Covarient derivative of metric tensor th
The first covariant derivative of the metric tensor is a mathematical operation that describes the change of the metric tensor along a given direction. It is denoted as ∇μgνρ and can be calculated using the Christoffel symbols and the partial derivatives of the metric tensor.
The metric tensor in general relativity describes the geometry of spacetime. The first covariant derivative of the metric tensor, denoted as ∇μgνρ, represents the change of the metric tensor components along a particular direction specified by the index μ. It is used in various calculations involving curvature and geodesic equations.
To calculate the first covariant derivative, we can use the Christoffel symbols, which are related to the metric tensor and its partial derivatives. The Christoffel symbols can be expressed as:
Γλμν = (1/2) gλσ (∂μgσν + ∂νgμσ - ∂σgμν)
Then, the first covariant derivative of the metric tensor is given by:
∇μgνρ = ∂μgνρ - Γλμν gλρ - Γλμρ gνλ
By substituting the appropriate Christoffel symbols and metric tensor components into the equation, we can calculate the first covariant derivative. This operation is essential in understanding the curvature of spacetime and solving field equations in general relativity.
To learn more about tensor click here brainly.com/question/31184754
#SPJ11
Δ 1 12 Consider two parallel wires where 11 is 16.1 amps, and 12 is 29.3 amps. The location A is in the plane of the two wires and is 30.0 mm from the left wire and 13.9 mm from the right wire. Given the direction of current in each wire, what is the B-field at the location A in micro Teslas? (If the B-field points toward you, make it positive; if it points away from you, make it negative. Give answer as an integer with correct sign. Do not enter unit.)
The magnetic field (B-field) at location A is -3 micro Teslas.
To calculate the magnetic field at location A, we'll use the formula for the magnetic field created by a current-carrying wire. The formula states that the magnetic field is directly proportional to the current and inversely proportional to the distance from the wire.
For the left wire, the distance from A is 30.0 mm (or 0.03 meters), and the current is 16.1 amps. For the right wire, the distance from A is 13.9 mm (or 0.0139 meters), and the current is 29.3 amps.
Using the formula, we can calculate the magnetic field created by each wire individually. The B-field for the left wire is (μ₀ * I₁) / (2π * r₁), where μ₀ is the magnetic constant (4π × 10^(-7) T m/A), I₁ is the current in the left wire (16.1 A), and r₁ is the distance from A to the left wire (0.03 m). Similarly, the B-field for the right wire is (μ₀ * I₂) / (2π * r₂), where I₂ is the current in the right wire (29.3 A) and r₂ is the distance from A to the right wire (0.0139 m).
Calculating the magnetic fields for each wire, we find that the B-field created by the left wire is approximately -13.5 micro Teslas (pointing away from us), and the B-field created by the right wire is approximately +9.5 micro Teslas (pointing towards us). Since the B-field is a vector quantity, we need to consider the direction as well. Since the wires are parallel and carry currents in opposite directions, the B-fields will have opposite signs.
To find the net magnetic field at location A, we add the magnetic fields from both wires. (-13.5 + 9.5) ≈ -4 micro Teslas. Hence, the B-field at location A is approximately -4 micro Teslas, pointing away from us.
To learn more about magnetic field click here:
brainly.com/question/14848188
#SPJ11
Next set the source velocity to 0.00 ms and the observer velocity to 5.00 m/s.
Set the source frequency to 650 Hz.
Set the speed of sound to 750 m/s.
a. What is the frequency of the sound perceived by the observer?
b. What is the wavelength of the sound perceived by the observer?
c. What is the wavelength of the sound source?
(a)The frequency of the sound perceived by the observer in this scenario is 628.13 Hz. (b)The wavelength of the sound perceived by the observer is 1.20 meters. (c) the wavelength of the sound source remains at its original value, which is 1.15 meters.
When the source velocity is set to 0.00 m/s and the observer velocity is 5.00 m/s, the observed frequency of the sound changes due to the Doppler effect. The formula to calculate the observed frequency is given by:
observed frequency = source frequency (speed of sound + observer velocity) / (speed of sound + source velocity)
Plugging in the given values, we get:
observed frequency = 650 Hz (750 m/s + 5.00 m/s) / (750 m/s + 0.00 m/s) = 628.13 Hz
This means that the observer perceives a sound with a frequency of approximately 628.13 Hz.
The wavelength of the sound perceived by the observer can be calculated using the formula:
wavelength = (speed of sound + source velocity) / observed frequency
Plugging in the values, we get:
wavelength = (750 m/s + 0.00 m/s) / 628.13 Hz = 1.20 meters
So, the observer perceives a sound with a wavelength of approximately 1.20 meters.
The wavelength of the sound source remains unchanged and can be calculated using the formula:
wavelength = (speed of sound + observer velocity) / source frequency
Plugging in the values, we get:
wavelength = (750 m/s + 5.00 m/s) / 650 Hz ≈ 1.15 meters
Hence, the wavelength of the sound source remains approximately 1.15 meters.
Learn more about wavelength click here:
brainly.com/question/31143857
#SPJ11
For Pauli's matrices, prove that 1.1 [o,,oy] =210₂ (2) 1.2 0,0,0₂=1 1.3 by direct multiplication that the matrices anticommute. (2) (Use any two matrices) [7] (3)
Here is the solution to the given problem:1.1: For Pauli's matrices, it is given as;σx = [0 1; 1 0]σy = [0 -i; i 0]σz = [1 0; 0 -1]Let's first compute 1.1 [σx, σy],We have;1.1 [σx, σy] = σxσy - σyσx = [0 1; 1 0][0 -i; i 0] - [0 -i; i 0][0 1; 1 0]= [i 0; 0 -i] - [-i 0; 0 i]= [2i 0; 0 -2i]= 2[0 i; -i 0]= 210₂, which is proved.1.2:
It is given that;0, 0, 0₂ = 1This statement is not true and it is not required for proving anything. So, this point is not necessary.1.3: For 1.3, we are required to prove that the matrices anticommute. So, let's select any two matrices, say σx and σy. Then;σxσy = [0 1; 1 0][0 -i; i 0] = [i 0; 0 -i]σyσx = [0 -i; i 0][0 1; 1 0] = [-i 0; 0 i]We can see that σxσy ≠ σyσx. Therefore, matrices σx and σy anticomputer with each other.
To know more about matrices visit:
https://brainly.com/question/30646566
#SPJ11
What must be the electric field between two parallel plates
there is a potential difference of 0.850V when they are placed
1.33m apart?
1.13N/C
0.639N/C
1.56N/C
0.480N/C
The electric field between the two parallel plates when there is a potential difference of 0.850 V and the plates are placed 1.33 m apart is 0.639 N/C.
To calculate the electric field between two parallel plates, we can use the formula:
E=V/d
Where,
E is the electric field,
V is the potential difference between the plates, and
d is the distance between the plates.
According to the question, the potential difference between the two parallel plates is 0.850 V, and the distance between them is 1.33 m. We can substitute these values in the formula above to find the electric field:E = V/d= 0.850 V / 1.33 m= 0.639 N/C
Since the units of the answer are in N/C, we can conclude that the electric field between the two parallel plates when there is a potential difference of 0.850 V and the plates are placed 1.33 m apart is 0.639 N/C. Therefore, the correct option is 0.639N/C.
To know more about electric field:
https://brainly.com/question/12324569
#SPJ11
A charge of +77 µC is placed on the x-axis at x = 0. A second charge of -40 µC is placed on the x-axis at x = 50 cm. What is the magnitude of the electrostatic force on a third charge of 4.0 µC placed on the x-axis at x = 41 cm? Give your answer in whole numbers.
The magnitude of the electrostatic force on the third charge is 81 N.
The electrostatic force between two charges can be calculated using Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.
Calculate the distance between the third charge and the first charge.
The distance between the third charge (x = 41 cm) and the first charge (x = 0) can be calculated as:
Distance = [tex]x_3 - x_1[/tex] = 41 cm - 0 cm = 41 cm = 0.41 m
Calculate the distance between the third charge and the second charge.
The distance between the third charge (x = 41 cm) and the second charge (x = 50 cm) can be calculated as:
Distance = [tex]x_3-x_2[/tex] = 50 cm - 41 cm = 9 cm = 0.09 m
Step 3: Calculate the electrostatic force.
Using Coulomb's law, the electrostatic force between two charges can be calculated as:
[tex]Force = (k * |q_1 * q_2|) / r^2[/tex]
Where:
k is the electrostatic constant (k ≈ 9 × 10^9 Nm^2/C^2),
|q1| and |q2| are the magnitudes of the charges (77 µC and 4.0 µC respectively), and
r is the distance between the charges (0.41 m for the first charge and 0.09 m for the second charge).
Substituting the values into the equation:
Force = (9 × 10^9 Nm^2/C^2) * |77 µC * 4.0 µC| / (0.41 m)^2
Calculating this expression yields:
Force ≈ 81 N
Therefore, the magnitude of the electrostatic force on the third charge is approximately 81 N.
Learn more about electrostatic force
brainly.com/question/9774180
#SPJ11
Consider a cube whose volume is 125 cm? In its interior there are two point charges q1 = -24 picoC and q2 = 9 picoC. q1 = -24 picoC and q2 = 9 picoC. The electric field flux through the surface of the cube is:
a. 1.02 N/C
b. 2.71 N/C
c. -1.69 N/C
d. -5.5 N/C
Answer:
The answer is c. -1.69 N/C.
Explanation:
The electric field flux through a surface is defined as the electric field multiplied by the area of the surface and the cosine of the angle between the electric field and the normal to the surface.
In this case, the electric field is due to the two point charges, and the angle between the electric field and the normal to the surface is 90 degrees.
The electric field due to a point charge is given by the following equation:
E = k q / r^2
where
E is the electric field strength
k is Coulomb's constant
q is the charge of the point charge
r is the distance from the point charge
In this case, the distance from the two point charges to the surface of the cube is equal to the side length of the cube, which is 5 cm.
The charge of the two point charges is:
q = q1 + q2 = -24 picoC + 9 picoC = -15 picoC
Therefore, the electric field at the surface of the cube is:
E = k q / r^2 = 8.988E9 N m^2 C^-1 * -15E-12 C / (0.05 m)^2 = -219.7 N/C
The electric field flux through the surface of the cube is:
\Phi = E * A = -219.7 N/C * 0.015 m^2 = -1.69 N/C
Learn more about Electric Field.
https://brainly.com/question/33261319
#SPJ11