a) There is an azeotrope in this binary system. For azeotrope, the activity coefficient of both A and B should be equal at the same mole fraction. Here, lnγA=0.5xB2 and lnγB=0.5xA2
Given, Temperature (T) = 80°C = (80 + 273.15) K = 353.15 K The vapor pressures of A and B at 80°C are PAsatv=900 mm Hg and PBsat = 600 mm Hg.
Let, the mole fraction of A in the azeotrope be x* and mole fraction of B be (1 - x*). Now, from Raoult's law for A, PA = x* PAsatv for B, PB = (1 - x*) PBsat For azeotrope,PA = x* PAsatv = P* (where P* is the pressure of the azeotrope)PB = (1 - x*) PBsat = P*
From the above two equations,x* = P*/PAsatv = (600/900) = 0.67(1 - x*) = P*/PBsat = (600/900) = 0.67
Therefore, the azeotropic pressure at 80°C in the binary system A-B is P* = 0.67 × PAsatv = 0.67 × 900 = 603 mm HgThe mole fractions of A and B in the azeotrope are x* = 0.67 and (1 - x*) = 0.33, respectively.
b) To calculate the pressure above a liquid with a mole fraction of A of 0.2 and composition of the vapor in equilibrium with it, we will use Raoult's law.PA = 0.2 × PAsatv = 0.2 × 900 = 180 mm HgPB = 0.8 × PBsat = 0.8 × 600 = 480 mm Hg
The total vapor pressure, P = PA + PB = 180 + 480 = 660 mm Hg
Mole fraction of A in vapor, YA = PA / P = 180 / 660 = 0.27Mole fraction of B in vapor, YB = PB / P = 480 / 660 = 0.73
Therefore, the pressure above a liquid with a mole fraction of A of 0.2 would be 660 mm Hg and the composition of the vapor in equilibrium with it would be 0.27 and 0.73 for A and B, respectively.
More on azeotropic pressure: https://brainly.com/question/32388536
#SPJ11
Why did the flame of a candle go out when a jar was put on top of it
These byproducts can accumulate within the closed jar, further contributing to the depletion of oxygen and ultimately causing the flame to go out.
When a jar is placed on top of a candle, it creates a closed environment within the jar. This closed environment leads to a depletion of oxygen, which is necessary for combustion to occur. As the candle burns, it consumes oxygen from the surrounding air to sustain the flame.
When the jar is placed over the candle, it limits the availability of fresh air and restricts the flow of oxygen into the jar. As the candle burns and consumes the available oxygen, it eventually uses up the oxygen trapped inside the jar. Without sufficient oxygen, the combustion process cannot continue, and the flame extinguishes.
Additionally, the combustion process produces carbon dioxide and water vapor as byproducts. These byproducts can accumulate within the closed jar, further contributing to the depletion of oxygen and ultimately causing the flame to go out.
Learn more about byproducts here
https://brainly.com/question/32038503
#SPJ11
A geothermal power plant uses dry steam at a temperature of 308 °C and cooling water at a temperature of 23 °C. What is the maximum % efficiency the plant can achieve converting the geothermal heat to electricity?
The maximum efficiency the geothermal power plant can achieve in converting geothermal heat to electricity is approximately 49.09%
The maximum efficiency of a heat engine is determined by the Carnot efficiency, which depends on the temperatures of the hot and cold reservoirs. In this case, the hot reservoir is the geothermal steam at 308 °C (581 K), and the cold reservoir is the cooling water at 23 °C (296 K).
The Carnot efficiency (η_Carnot) is given by the formula:
η_Carnot = 1 - (T_cold / T_hot)
where T_cold is the temperature of the cold reservoir and T_hot is the temperature of the hot reservoir.
Substituting the given temperatures:
η_Carnot = 1 - (296 K / 581 K)
η_Carnot ≈ 0.4909 or 49.09%
Therefore, the maximum efficiency the geothermal power plant can achieve in converting geothermal heat to electricity is approximately 49.09%
Learn more about geothermal power :
brainly.com/question/29108059
#SPJ11
The number of moles of CO² which contain 8. 00g of oxygen is
The fact that water is often the solvent in a solution demonstrates that water can ______. multiple choice question.
The fact that water is often the solvent in a solution demonstrates that water can dissolve a wide range of substances.
Water's ability to dissolve various solutes is due to its unique molecular structure and polarity.
Water is a polar molecule, meaning it has a slightly positive charge on one end (the hydrogen atoms) and a slightly negative charge on the other end (the oxygen atom). This polarity allows water molecules to form hydrogen bonds with other polar molecules or ions, facilitating the dissolution process.
Water's ability to dissolve substances is essential for many biological and chemical processes. In living organisms, water serves as the primary solvent for metabolic reactions, transporting nutrients, ions, and waste products. It allows for the dissolution of polar molecules like sugars, amino acids, and salts, enabling their efficient transport within cells and throughout the body.
Additionally, water's solvent properties are crucial in environmental processes. It contributes to the weathering of rocks, enabling the release of essential minerals into the soil. Water also plays a vital role in the formation of aqueous solutions in nature, such as the oceans and rivers, which support diverse ecosystems.
In conclusion, water's role as a solvent in many solutions highlights its remarkable ability to dissolve a wide range of substances due to its molecular structure and polarity. This characteristic is fundamental for numerous biological, chemical, and environmental processes.
To know more about Water, refer to the link below:
https://brainly.com/question/11312532#
#SPJ11