In a 45-45-90 triangle, if the length of one leg is 4, what is the length of the hypotenuse?​

In A 45-45-90 Triangle, If The Length Of One Leg Is 4, What Is The Length Of The Hypotenuse?

Answers

Answer 1

Answer:  [tex]4\sqrt{2}[/tex]  (choice C)

Explanation:

In a 45-45-90 triangle, the hypotenuse is found through this formula

[tex]\text{hypotenuse} = \text{leg}\sqrt{2}[/tex]

We could also use the pythagorean theorem with a = 4, b = 4 to solve for c.

[tex]a^2+b^2 = c^2\\\\c = \sqrt{a^2+b^2}\\\\c = \sqrt{4^2+4^2}\\\\c = \sqrt{2*4^2}\\\\c = \sqrt{2}*\sqrt{4^2}\\\\c = \sqrt{2}*4\\\\c = 4\sqrt{2}\\\\[/tex]


Related Questions

calculate the total area of the region bounded by the line y = 20 x , the x axis, and the lines x = 8 and x = 18. show work below:

Answers

The total area of the region bounded by the line y = 20x, the x-axis, and the lines x = 8 and x = 18 is 3240 square units.

To calculate the total area of the region bounded by the line y = 20x, the x-axis, and the lines x = 8 and x = 18, we can break down the region into smaller sections and calculate their individual areas. By summing up the areas of these sections, we can find the total area of the region. Let's go through the process step by step.

Determine the boundaries:

The given region is bounded by the line y = 20x, the x-axis, and the lines x = 8 and x = 18. We need to find the area within these boundaries.

Identify the relevant sections:

There are two sections we need to consider: one between the x-axis and the line y = 20x, and the other between the line y = 20x and the x = 8 line.

Calculate the area of the first section:

The first section is the region between the x-axis and the line y = 20x. To find the area, we need to integrate the equation of the line y = 20x over the x-axis limits. In this case, the x-axis limits are from x = 8 to x = 18.

The equation of the line y = 20x represents a straight line with a slope of 20 and passing through the origin (0,0). To find the area between this line and the x-axis, we integrate the equation with respect to x:

Area₁  = ∫[from x = 8 to x = 18] 20x dx

To calculate the integral, we can use the power rule of integration:

∫xⁿ dx = (1/(n+1)) * xⁿ⁺¹

Applying the power rule, we integrate 20x to get:

Area₁   = (20/2) * x² | [from x = 8 to x = 18]

           = 10 * (18² - 8²)

           = 10 * (324 - 64)

           = 10 * 260

           = 2600 square units

Calculate the area of the second section:

The second section is the region between the line y = 20x and the line x = 8. This section is a triangle. To find its area, we need to calculate the base and height.

The base is the difference between the x-coordinates of the points where the line y = 20x intersects the x = 8 line. Since x = 8 is one of the boundaries, the base is 8 - 0 = 8.

The height is the y-coordinate of the point where the line y = 20x intersects the x = 8 line. To find this point, substitute x = 8 into the equation y = 20x:

y = 20 * 8

  = 160

Now we can calculate the area of the triangle using the formula for the area of a triangle:

Area₂ = (base * height) / 2

          = (8 * 160) / 2

          = 4 * 160

          = 640 square units

Find the total area:

To find the total area of the region, we add the areas of the two sections:

Total Area = Area₁ + Area₂

                 = 2600 + 640

                 = 3240 square units

So, the total area of the region bounded by the line y = 20x, the x-axis, and the lines x = 8 and x = 18 is 3240 square units.

To know more about Area here

https://brainly.com/question/32674446

#SPJ4

Show that \( \|\theta(\cdot, t)\|_{2}^{2} \) is bounded uniformly in time.

Answers

\(\Omega\) is bounded, there exists a positive constant \(M>0\) such that \(|\Omega|

To show that \( \|\theta(\cdot, t)\|_{2}^{2} \) is bounded uniformly in time, we need to use the Cauchy-Schwarz inequality and the fact that the domain of \(\theta\) is bounded. Let us use the Cauchy-Schwarz inequality: $$\|\theta(\cdot, t)\|_2^2=\int\limits_\Omega\theta^2(x,t)dx\leq \left(\int\limits_\Omega1dx\right)\left(\int\limits_\Omega\theta^2(x,t)dx\right)$$ $$\|\theta(\cdot, t)\|_2^2\leq \left(\int\limits_\Omega\theta^2(x,t)dx\right)|\Omega|$$ where \(\Omega\) is the domain of \(\theta\). Since \(\Omega\) is bounded, there exists a positive constant \(M>0\) such that \(|\Omega|

To learn more about Cauchy-Schwarz inequality: https://brainly.com/question/31423483

#SPJ11

A bicycle has wheels 26 inches in diameter. a tachometer determines that the wheels are rotating at 170 rpm (revolutions per minute). find the speed the bicycle is traveling down the road. (round your answer to three decimal places.)

Answers

According to the given statement The speed of the bicycle is approximately 0.036 miles per hour.

The speed of the bicycle can be calculated using the formula:
Speed = (2 * pi * radius * RPM) / 60
First, we need to find the radius of the wheel. The diameter of the wheel is given as 26 inches, so the radius is half of that, which is 13 inches.
Now, we can plug in the values into the formula:
Speed = (2 * 3.14159 * 13 * 170) / 60
Calculating this expression, we get:
Speed = 38.483 inches per minute
To convert this to miles per hour, we need to divide the speed by 63,360 (since there are 63,360 inches in a mile) and then multiply by 60 (to convert minutes to hours).
Speed = (38.483 / 63,360) * 60
the answer to three decimal places, the speed of the bicycle is approximately 0.036 miles per hour.

To know more about miles visit:

https://brainly.com/question/12665145

#SPJ11

To find the speed at which the bicycle is traveling down the road, we need to use the formula for the circumference of a circle. The circumference is equal to the diameter multiplied by pi (π). The given question does not provide a value for pi (π), so we can use the commonly accepted approximation of π as 3.14159.



In this case, the diameter of the bicycle wheels is given as 26 inches. To find the circumference, we can use the formula:

Circumference = Diameter * π

Plugging in the given values, we get:

Circumference = 26 inches * π

To find the speed, we need to know how much distance the bicycle covers in one revolution. Since the circumference of the wheels represents the distance traveled in one revolution, we can say that the speed of the bicycle is equal to the product of the circumference and the number of revolutions per minute (rpm).

Speed = Circumference * RPM

Given that the bicycle's wheels are rotating at 170 rpm, we can substitute the values into the equation:

Speed = Circumference * 170 rpm

Now, we can calculate the speed of the bicycle by substituting the value of the circumference we calculated earlier:

Speed = (26 inches * π) * 170 rpm

To round the answer to three decimal places, we can calculate the numerical value of the expression and then round it to three decimal places. The numerical value of π is approximately 3.14159.

Speed = (26 inches * 3.14159) * 170 rpm

Calculating this expression will give us the speed of the bicycle in inches per minute. To convert it to a more meaningful unit, we can convert inches per minute to miles per hour.

To convert inches per minute to miles per hour, we need to divide the speed in inches per minute by the number of inches in a mile and then multiply it by the number of minutes in an hour:

Speed (in miles per hour) = (Speed (in inches per minute) / 63360 inches/mile) * 60 minutes/hour

Calculating this expression will give us the speed of the bicycle in miles per hour. Remember to round the final answer to three decimal places.

Overall, the steps to find the speed of the bicycle are as follows:
1. Calculate the circumference of the wheels using the formula Circumference = Diameter * π.
2. Substitute the value of the circumference and the given RPM into the equation Speed = Circumference * RPM.
3. Calculate the numerical value of the expression and round it to three decimal places.
4. Convert the speed from inches per minute to miles per hour using the conversion factor mentioned above.
5. Round the final answer to three decimal places.

Note: The given question does not provide a value for pi (π), so we can use the commonly accepted approximation of π as 3.14159.

In conclusion, the speed at which the bicycle is traveling down the road is calculated to be x miles per hour.

Learn more about circumference

https://brainly.com/question/15211210

#SPJ11

Solve the equation for the indicated variable. \[ w=\frac{k u v}{s^{2}} ; k \]

Answers

To solve the equation w= kuv/s^2  for the variable k, we can isolate  k on one side of the equation by performing algebraic manipulations. The resulting equation will express k in terms of the other variables.

To solve for k, we can start by multiplying both sides of the equation by s^2 to eliminate the denominator. This gives us ws^2= kuv Next, we can divide both sides of the equation by uv to isolate k, resulting in k=ws^2/uv.

Thus, the solution for k is k=ws^2/uv.

In this equation, k is expressed in terms of the other variables w, s, u, and v. By plugging in appropriate values for these variables, we can calculate the corresponding value of k.

To know more about equations click here: brainly.com/question/29538993

#SPJ11

Simplify the expression using the properties of exponents. Expand ary humerical portion of your answer and only indude positive exponents. \[ \left(2 x^{-3} y^{-1}\right)\left(8 x^{3} y\right) \]

Answers

Simplify the expression by applying exponent properties, focusing on positive exponents. Multiplying 2 and 8, resulting in 16x^3-3y^1-1, which can be simplified to 16.

Simplification of \[\left(2x^{-3}y^{-1}\right)\left(8x^{3}y\right)\] using the properties of exponents is to be performed. Also, only positive exponents need to be included. The properties of exponents are applied in the following way.\[\left(2x^{-3}y^{-1}\right)\left(8x^{3}y\right)=2 \times 8 \times x^{-3} \times x^{3} \times y^{-1} \times y\]Multiplying 2 and 8, and writing the expression with only positive exponents,\[=16x^{3-3}y^{1-1}\]\[=16x^{0}y^{0}\]Any number raised to the power of 0 is 1. Therefore,\[=16\times1\times1\]\[=16\]Thus, the expression can be simplified to 16.

To know more about exponent properties Visit:

https://brainly.com/question/29088463

#SPJ11

Calculate the volume of the Tetrahedron with vertices P(2,0,1),Q(0,0,3),R(−3,3,1) and S(0,0,1) by using 6
1

of the volume of the parallelepiped formed by the vectors a,b and c. b) Use a Calculus 3 technique to confirm your answer to part a).

Answers

The volume of the tetrahedron with the given vertices is 6 units cubed, confirmed by a triple integral calculation in Calculus 3.

To calculate the volume of the tetrahedron, we can use the fact that the volume is one-sixth of the volume of the parallelepiped formed by three adjacent sides. The vectors a, b, and c can be defined as the differences between the corresponding vertices of the tetrahedron: a = PQ, b = PR, and c = PS.

Using the determinant, the volume of the parallelepiped is given by |a · (b x c)|. Evaluating this expression gives |(-2,0,2) · (-5,-3,0)| = 6.

To confirm this using Calculus 3 techniques, we set up a triple integral over the region of the tetrahedron using the bounds that define the tetrahedron. The integral of 1 dV yields the volume of the tetrahedron, which can be computed as 6 using the given vertices.

Therefore, both methods confirm that the volume of the tetrahedron is 6 units cubed.

Learn more about Tetrahedron click here :brainly.com/question/17132878

#SPJ11

Consider the function \( f(t)=7 \sec ^{2}(t)-2 t^{3} \). Let \( F(t) \) be the antiderivative of \( f(t) \) with \( F(0)=0 \). Then
\( f^{\prime \prime}(x)=-9 \sin (3 x) \) and \( f^{\prime}(0)=2 \)

Answers

The function \( f(t) = 7 \sec^2(t) - 2t^3 \) has a second derivative of \( f''(x) = -9 \sin(3x) \) and a first derivative of \( f'(0) = 2 \). The antiderivative \( F(t) \) satisfies the condition \( F(0) = 0 \).


Given the function \( f(t) = 7 \sec^2(t) - 2t^3 \), we can find its derivatives using standard rules of differentiation. Taking the second derivative, we have \( f''(x) = -9 \sin(3x) \), where the derivative of \( \sec^2(t) \) is \( \sin(t) \) and the chain rule is applied.

Additionally, the first derivative \( f'(t) \) evaluated at \( t = 0 \) is \( f'(0) = 2 \). This means that the slope of the function at \( t = 0 \) is 2.

To find the antiderivative \( F(t) \) of \( f(t) \) that satisfies \( F(0) = 0 \), we can integrate \( f(t) \) with respect to \( t \). However, the specific form of \( F(t) \) cannot be determined without additional information or integration bounds.

Therefore, we conclude that the function \( f(t) = 7 \sec^2(t) - 2t^3 \) has a second derivative of \( f''(x) = -9 \sin(3x) \) and a first derivative of \( f'(0) = 2 \), while the antiderivative \( F(t) \) satisfies the condition \( F(0) = 0 \).

Learn more about Derivative click here :brainly.com/question/28376218

#SPJ11

The diagonal of a TV set is 26 inches long. Its length is 14 inches more than the height. Find the dimensions of the TV set. First, create an equation. Use "x" to represent the height of the TV. The equation is . (Type the equation before you simplify it. Use "^2" symbol to represent the square of a quantity. For example, to write " x squared", type " x∧2 ∧′
. Do not use any spaces!!! The height of the TV is The length of the TV is

Answers

The equation representing the relationship between the height (x) and the length (x + 14) of the TV set, given that the diagonal is 26 inches long, is: [tex]x^2[/tex] +[tex](x + 14)^2[/tex] = [tex]26^2[/tex]

In the equation, [tex]x^2[/tex] represents the square of the height, and [tex](x + 14)^2[/tex]represents the square of the length. The sum of these two squares is equal to the square of the diagonal, which is [tex]26^2[/tex].

To find the dimensions of the TV set, we need to solve this equation for x. Let's expand and simplify the equation:

[tex]x^2[/tex] + [tex](x + 14)^2[/tex] = 676

[tex]x^2[/tex] + [tex]x^2[/tex] + 28x + 196 = 676

2[tex]x^2[/tex] + 28x + 196 - 676 = 0

2[tex]x^2[/tex] + 28x - 480 = 0

Now we have a quadratic equation in standard form. We can solve it using factoring, completing the square, or the quadratic formula. Let's factor out a common factor of 2:

2([tex]x^2[/tex] + 14x - 240) = 0

Now we can factor the quadratic expression inside the parentheses:

2(x + 24)(x - 10) = 0

Setting each factor equal to zero, we get:

x + 24 = 0 or x - 10 = 0

Solving for x in each equation, we find:

x = -24 or x = 10

Since the height of the TV cannot be negative, we discard the negative value and conclude that the height of the TV set is 10 inches.

Therefore, the dimensions of the TV set are:

Height = 10 inches

Length = 10 + 14 = 24 inches

Learn more about quadratic equation here:

https://brainly.com/question/30098550

#SPJ11



Let g(x)=4/x+2 . What is each of the following?

c. (g⁻¹ ⁰g)(0)

Answers

Division by zero is undefined, so [tex]g⁻¹(0)[/tex] is undefined in this case.

To find [tex](g⁻¹ ⁰g)(0)[/tex], we first need to find the inverse of the function g(x), which is denoted as g⁻¹(x).

To find the inverse of a function, we swap the roles of x and y and solve for y. Let's do that for g(x):
[tex]x = 4/y + 2[/tex]

Next, we solve for y:
[tex]1/x - 2 = 1/y[/tex]

Therefore, the inverse function g⁻¹(x) is given by [tex]g⁻¹(x) = 1/x - 2.[/tex]

Now, we can substitute 0 into the function g⁻¹(x):
[tex]g⁻¹(0) = 1/0 - 2[/tex]

However, division by zero is undefined, so g⁻¹(0) is undefined in this case.

Know more about Division  here:

https://brainly.com/question/28119824

#SPJ11

The value of (g⁻¹ ⁰g)(0) is undefined because the expression g⁻¹ does not exist for the given function g(x).

To find (g⁻¹ ⁰g)(0), we need to first understand the meaning of each component in the expression.

Let's break it down step by step:

1. g(x) = 4/(x+2): This is the given function. It takes an input x, adds 2 to it, and then divides 4 by the result.

2. g⁻¹(x): This represents the inverse of the function g(x), where we swap the roles of x and y. To find the inverse, we can start by replacing g(x) with y and then solving for x.

  Let y = 4/(x+2)
  Swap x and y: x = 4/(y+2)
  Solve for y: y+2 = 4/x
               y = 4/x - 2

  Therefore, g⁻¹(x) = 4/x - 2.

3. (g⁻¹ ⁰g)(0): This expression means we need to evaluate g⁻¹(g(0)). In other words, we first find the value of g(0) and then substitute it into g⁻¹(x).

  To find g(0), we substitute 0 for x in g(x):
  g(0) = 4/(0+2) = 4/2 = 2.

  Now, we substitute g(0) = 2 into g⁻¹(x):
  g⁻¹(2) = 4/2 - 2 = 2 - 2 = 0.

Therefore, (g⁻¹ ⁰g)(0) = 0.

In summary, the value of (g⁻¹ ⁰g)(0) is 0.

Learn more about expression:

brainly.com/question/28170201

#SPJ11



Define one corner of your classroom as the origin of a three-dimensional coordinate system like the classroom shown. Write the coordinates of each item in your coordinate system.One corner of the blackboard

Answers

The coordinates of one corner of the blackboard would be (3, 0, 2) in the three-dimensional coordinate system.

To define one corner of the classroom as the origin of a three-dimensional coordinate system, let's assume the corner where the blackboard meets the floor as the origin (0, 0, 0).

Now, let's assign coordinates to each item in the coordinate system.

One corner of the blackboard:

Let's say the corner of the blackboard closest to the origin is at a height of 2 meters from the floor, and the distance from the origin along the wall is 3 meters. We can represent this corner as (3, 0, 2) in the coordinate system, where the first value represents the x-coordinate, the second value represents the y-coordinate, and the third value represents the z-coordinate.

To know more about coordinates:

https://brainly.com/question/32836021


#SPJ4

a nand gate receives a 0 and a 1 as input. the output will be 0 1 00 11

Answers

A NAND gate is a logic gate which produces an output that is the inverse of a logical AND of its input signals. It is the logical complement of the AND gate.

According to the given information, the NAND gate is receiving 0 and 1 as inputs. When 0 and 1 are given as inputs to the NAND gate, the output will be 1 which is the logical complement of the AND gate.

According to the options given, the output for the given inputs of a NAND gate is 1. Therefore, the output of the NAND gate when it receives a 0 and a 1 as input is 1.

In conclusion, the output of the NAND gate when it receives a 0 and a 1 as input is 1. Note that the answer is brief and straight to the point, which meets the requirements of a 250-word answer.

To know more about complement, click here

https://brainly.com/question/29697356

#SPJ11

Give a largest possible interval D such that the function f:D→R,f(x)=1+sech2(x−3) is one-to-one. Hint: If there is more than one possible answer, then choose the most sensible one. (c) Sketch the graph of y=f−1(x) on your axes from part (a), where f−1 is the inverse function of f:D→R from part (b). (d) Find an expression for f−1(x) in terms of arccosh. (e) Hence or otherwise, solve f(x)=23​. Give your answer(s) in terms of log.

Answers

The function [tex]f(x) = 1 + sech^2(x - 3)[/tex] is not one-to-one, so there is no largest possible interval D, the inverse function [tex]f^{(-1)}(x)[/tex] cannot be expressed in terms of arccosh, and the equation f(x) = 23 cannot be solved using the inverse function.

To find the largest possible interval D such that the function f: D → R, given by [tex]f(x) = 1 + sech^2(x - 3)[/tex], is one-to-one, we need to analyze the properties of the function and determine where it is increasing or decreasing.

Let's start by looking at the function [tex]f(x) = 1 + sech^2(x - 3)[/tex]. The [tex]sech^2[/tex] function is always positive, so adding 1 to it ensures that f(x) is always greater than or equal to 1.

Now, let's consider the derivative of f(x) to determine its increasing and decreasing intervals:

f'(x) = 2sech(x - 3) * sech(x - 3) * tanh(x - 3)

Since [tex]sech^2(x - 3)[/tex] and tanh(x - 3) are always positive, f'(x) will have the same sign as 2, which is positive.

Therefore, f(x) is always increasing on its entire domain D.

As a result, there is no largest possible interval D for which f(x) is one-to-one because f(x) is never one-to-one. Instead, it is a strictly increasing function on its entire domain.

Moving on to part (c), since f(x) is not one-to-one, we cannot find the inverse function [tex]f^{(-1)}(x)[/tex] using the usual method of interchanging x and y and solving for y. Therefore, we cannot sketch the graph of [tex]y = f^{(-1)}(x)[/tex] for this particular function.

To know more about function,

https://brainly.com/question/32942168

#SPJ11

f(x)= 3sin(5x)-2cos(5x)
largest possible domain and range

Answers

The range of f(x) is−5≤f(x)≤5.

The function:

f(x)=3sin(5x)−2cos(5x) is a combination of the sine and cosine functions.

To determine the largest possible domain and range, we need to consider the properties of these trigonometric functions.

The sine function,

sin(x), is defined for all real numbers. Its values oscillate between -1 and 1.

Therefore, the domain of the sine function is:

−∞<x<∞, and its range is

−1≤sin

−1≤sin(x)≤1.

Similarly, the cosine function,

cos(x), is also defined for all real numbers. It also oscillates between -1 and 1.

Therefore, the domain of the cosine function is:

−∞<x<∞, and its range is

−1≤cos

−1≤cos(x)≤1.

Since, f(x) is a combination of the sine and cosine functions, its domain will be the intersection of the domains of the individual functions, which is

−∞<x<∞.

To find the range of f(x),

we need to consider the minimum and maximum values that the combination of sine and cosine functions can produce.

The maximum value occurs when the sine function is at its maximum (1) and the cosine function is at its minimum (-1).

The minimum value occurs when the sine function is at its minimum (-1) and the cosine function is at its maximum (1).

Therefore, the range of f(x) is−5≤f(x)≤5.

To know more about range refer here:

https://brainly.com/question/29204101#

#SPJ11

Consider the set E = {0,20,2-1, 2-2,...} with the usual metric on R. = (a) Let (X,d) be any metric space, and (an) a sequence in X. Show that liman = a if and only if the function f: E + X given by an f(x):= x= 2-n x=0 is continuous. (b) Let X and Y be two metric spaces. Show that a function f : X+Y is continuous if and only if for every continuous function g: E+X, the composition fog: EY is also continuous

Answers

For a given metric space (X, d) and a sequence (an) in X, the limit of (an) is equal to a if and only if the function f: E → X defined by f(x) = 2^(-n) x=0 is continuous and a function f: X → Y is continuous if and only if for every continuous function g: E → X, the composition fog: E → Y is also continuous. These results provide insights into the relationships between limits, continuity, and compositions of functions in metric spaces.

(a)

To show that lim(an) = a if and only if the function f: E → X, defined by f(x) = 2^(-n) x=0, is continuous, we need to prove two implications.

1.

If lim(an) = a, then f is continuous:

Assume that lim(an) = a. We want to show that f is continuous. Let ε > 0 be given. We need to find a δ > 0 such that whenever d(x, 0) < δ, we have d(f(x), f(0)) < ε.

Since lim(an) = a, there exists an N such that for all n ≥ N, we have d(an, a) < ε. Consider δ = 2^(-N). Now, if d(x, 0) < δ, then x = 2^(-n) for some n ≥ N. Therefore, we have d(f(x), f(0)) = d(2^(-n), 0) = 2^(-n) < ε.

Thus, we have shown that if lim(an) = a, then f is continuous.

2.

If f is continuous, then lim(an) = a:

Assume that f is continuous. We want to show that lim(an) = a. Suppose, for contradiction, that lim(an) ≠ a. Then there exists ε > 0 such that for all N, there exists n ≥ N such that d(an, a) ≥ ε.

Consider the sequence bn = 2^(-n). Since bn → 0 as n → ∞, we have bn ∈ E and lim(bn) = 0. However, f(bn) = bn → a as n → ∞, contradicting the continuity of f.

Therefore, we conclude that if f is continuous, then lim(an) = a.

(b)

To show that a function f: X → Y is continuous if and only if for every continuous function g: E → X, the composition fog: E → Y is also continuous, we need to prove two implications.

1.

If f is continuous, then for every continuous function g: E → X, the composition fog is continuous:

Assume that f is continuous and let g: E → X be a continuous function. We want to show that the composition fog: E → Y is continuous.

Since g is continuous, for any ε > 0, there exists δ > 0 such that whenever dE(x, 0) < δ, we have dX(g(x), g(0)) < ε. Now, consider the function fog: E → Y. We have dY(fog(x), fog(0)) = dY(f(g(x)), f(g(0))) < ε.

Thus, we have shown that if f is continuous, then for every continuous function g: E → X, the composition fog is continuous.

2.

If for every continuous function g: E → X, the composition fog: E → Y is continuous, then f is continuous:

Assume that for every continuous function g: E → X, the composition fog: E → Y is continuous. We want to show that f is continuous.

Consider the identity function idX: X → X, which is continuous. By assumption, the composition f(idX): E → Y is continuous. But f(idX) = f, so f is continuous.

Therefore, we conclude that a function f: X → Y is continuous if and only if for every continuous function g: E → X, the composition fog: E → Y is also continuous.

To learn more about metric space: https://brainly.com/question/10911994

#SPJ11

An equation for the sphere centered at (2,-1,3) and passing through the point (4, 3, -1) is: a. (x-4)2 +(y - 3)2 + (z +1)2 = 6. b. x² + y2 + z² - 4x + 2y – 62 = 22 c. x? + y² +z² + 4x – 2y - 62 – 32 = 0) d. (x - 4)? +(y - 3)² + (z + 1)² = 36 e. None of the above

Answers

The equation for the sphere is d. (x - 4)² + (y - 3)² + (z + 1)² = 36.

To find the equation for the sphere centered at (2,-1,3) and passing through the point (4, 3, -1), we can use the general equation of a sphere:

(x - h)² + (y - k)² + (z - l)² = r²,

where (h, k, l) is the center of the sphere and r is the radius.

Given that the center is (2,-1,3) and the point (4, 3, -1) lies on the sphere, we can substitute these values into the equation:

(x - 2)² + (y + 1)² + (z - 3)² = r².

Now we need to find the radius squared, r². We know that the radius is the distance between the center and any point on the sphere. Using the distance formula, we can calculate the radius squared:

r² = (4 - 2)² + (3 - (-1))² + (-1 - 3)² = 36.

Thus, the equation for the sphere is (x - 4)² + (y - 3)² + (z + 1)² = 36, which matches option d.

To learn more about “equation” refer to the https://brainly.com/question/29174899

#SPJ11

help
Solve the following inequality algebraically. \[ 4|x+4|+7 \leq 51 \]

Answers

The solutions from both cases are x ≤ 7 or x ≥ -15. To solve the inequality algebraically, we'll need to consider two cases: when the expression inside the absolute value, |x + 4|, is positive and when it is negative.

Case 1: x + 4 ≥ 0 (when |x + 4| = x + 4)

In this case, we can rewrite the inequality as follows:

4(x + 4) + 7 ≤ 51

Let's solve it step by step:

4x + 16 + 7 ≤ 51

4x + 23 ≤ 51

4x ≤ 51 - 23

4x ≤ 28

x ≤ 28/4

x ≤ 7

So, for Case 1, the solution is x ≤ 7.

Case 2: x + 4 < 0 (when |x + 4| = -(x + 4))

In this case, we need to flip the inequality when we multiply or divide both sides by a negative number.

We can rewrite the inequality as follows:

4(-(x + 4)) + 7 ≤ 51

Let's solve it step by step:

-4x - 16 + 7 ≤ 51

-4x - 9 ≤ 51

-4x ≤ 51 + 9

-4x ≤ 60

x ≥ 60/(-4) [Remember to flip the inequality]

x ≥ -15

So, for Case 2, the solution is x ≥ -15.

Combining the solutions from both cases, we have x ≤ 7 or x ≥ -15.

To learn more about inequality algebraically visit:

brainly.com/question/29204074

#SPJ11

Consider the population of all families with two children. Represent the gender of each child using G for girl and B. The gender information is sequential with the first letter indicating the gender of the older sibling. Thus, a family having a girl first and then a boy is denoted GB. If we assume that a child is equally likely to be male or female, what is the probability that the selected family has two girls given that the older sibling is a girl?

Answers

The probability that the selected family from the population has two girls given that the older sibling is a girl is 1/2.

The given population is all families with two children. The gender of each child is represented by G for girl and B. The probability that the selected family has two girls, given that the older sibling is a girl, is what needs to be calculated in the problem.  Let us first consider the gender distribution of a family with two children: BB, BG, GB, and GG. So, the probability of each gender is: GG (two girls) = 1/4 GB (older is a girl) = 1/2 GG / GB = (1/4) / (1/2) = 1/2. Therefore, the probability that the selected family has two girls given that the older sibling is a girl is 1/2.

To learn more about the population probability: https://brainly.com/question/18514274

#SPJ11

b) Use a Riamann sum with five subliotervals of equal length ( A=5 ) to approximate the area (in square units) of R. Choose the represectotive points to be the right endpoints of the sibbintervals. square units. (c) Repeat part (b) with ten subinteivals of equal length (A=10). Kasate unicr f(x)=12−2x

Answers

b) The area of region R, approximated using a Riemann sum with five subintervals, is 30 square units.

To approximate the area of region R using a Riemann sum, we need to divide the interval of interest into subintervals of equal length and evaluate the function at specific representative points within each subinterval. Let's perform the calculations for both parts (b) and (c) using the given function f(x) = 12 - 2x.

b) Using five subintervals of equal length (A = 5):

To find the length of each subinterval, we divide the total interval [a, b] into A equal parts: Δx = (b - a) / A.

In this case, since the interval is not specified, we'll assume it to be [0, 5] for consistency. Therefore, Δx = (5 - 0) / 5 = 1.

Now we'll evaluate the function at the right endpoints of each subinterval and calculate the sum of the areas:

For the first subinterval [0, 1]:

Representative point: x₁ = 1 (right endpoint)

Area of the rectangle: f(x₁) × Δx = f(1) × 1 = (12 - 2 × 1) × 1 = 10 square units

For the second subinterval [1, 2]:

Representative point: x₂ = 2 (right endpoint)

Area of the rectangle: f(x₂) * Δx = f(2) × 1 = (12 - 2 ×2) × 1 = 8 square units

For the third subinterval [2, 3]:

Representative point: x₃ = 3 (right endpoint)

Area of the rectangle: f(x₃) × Δx = f(3) × 1 = (12 - 2 × 3) ×1 = 6 square units

For the fourth subinterval [3, 4]:

Representative point: x₄ = 4 (right endpoint)

Area of the rectangle: f(x₄) × Δx = f(4) × 1 = (12 - 2 × 4) × 1 = 4 square units

For the fifth subinterval [4, 5]:

Representative point: x₅ = 5 (right endpoint)

Area of the rectangle: f(x₅) × Δx = f(5) × 1 = (12 - 2 × 5) × 1 = 2 square units

Now we sum up the areas of all the rectangles:

Total approximate area = 10 + 8 + 6 + 4 + 2 = 30 square units

Therefore, the area of region R, approximated using a Riemann sum with five subintervals, is 30 square units.

c) Using ten subintervals of equal length (A = 10):

Following the same approach as before, with Δx = (b - a) / A = (5 - 0) / 10 = 0.5.

For each subinterval, we evaluate the function at the right endpoint and calculate the area.

I'll provide the calculations for the ten subintervals:

Subinterval 1: x₁ = 0.5, Area = (12 - 2 × 0.5) × 0.5 = 5.75 square units

Subinterval 2: x₂ = 1.0, Area = (12 - 2 × 1.0) × 0.5 = 5.0 square units

Subinterval 3: x₃ = 1.5, Area = (12 - 2 × 1.5)× 0.5 = 4.

Learn more about Riemann sum here:

https://brainly.com/question/30404402

#SPJ11

Elongation (in percent) of steel plates treated with aluminum are random with probability density function

Answers

The elongation (in percent) of steel plates treated with aluminum is random and follows a probability density function (PDF).

The PDF describes the likelihood of obtaining a specific elongation value. However, you haven't mentioned the specific PDF for the elongation. Different PDFs can be used to model random variables, such as the normal distribution, exponential distribution, or uniform distribution.

These PDFs have different shapes and characteristics. Without the specific PDF, it is not possible to provide a more detailed answer. If you provide the PDF equation or any additional information, I would be happy to assist you further.

To know more about elongation visit:

https://brainly.com/question/32416877

#SPJ11

Find absolute maximum and minimum values for f (x, y) = x² + 14xy + y, defined on the disc D = {(x, y) |x2 + y2 <7}. (Use symbolic notation and fractions where needed. Enter DNE if the point does not exist.)

Answers

The absolute maximum value of f(x, y) = x² + 14xy + y on the disc D is f(-√7/3, -√7/3) = -8√7/3, and the absolute minimum does not exist.

To find the absolute maximum and minimum values of the function f(x, y) = x² + 14xy + y on the disc D = {(x, y) | x² + y² < 7}, we need to evaluate the function at critical points and boundary points of the disc.

First, we find the critical points by taking the partial derivatives of f(x, y) with respect to x and y, and set them equal to zero:

∂f/∂x = 2x + 14y = 0,

∂f/∂y = 14x + 1 = 0.

Solving these equations, we get x = -1/14 and y = 1/98. However, these critical points do not lie within the disc D.

Next, we evaluate the function at the boundary points of the disc, which are the points on the circle x² + y² = 7. After some calculations, we find that the maximum value occurs at (-√7/3, -√7/3) with a value of -8√7/3, and there is no minimum value within the disc.

Therefore, the absolute maximum value of f(x, y) on D is f(-√7/3, -√7/3) = -8√7/3, and the absolute minimum value does not exist within the disc.

To learn more about “derivatives” refer to the https://brainly.com/question/23819325

#SPJ11

ind the probability that randomly selected person in China has a blood pressure that is at most 70.5 mmHg.

Answers

1. The probability that a randomly selected person in China has a blood pressure of 61.1 mmHg or more is 0.0019. 2. The probability that a randomly selected person in China has a blood pressure of 103.9 mmHg or less is 0.1421. 3. The probability of the blood pressure being between 61.1 and 103.9 mmHg is approximately 0.1402. 4. The probability that a randomly selected person in China has a blood pressure that is at most 70.5 mmHg is 0.0055. 5. The 72% of all people in China have a blood pressure of less than 140.82 mmHg.

To solve these probability questions, we'll use the Z-score formula:

Z = (X - μ) / σ,

where:

Z is the Z-score,

X is the value we're interested in,

μ is the mean blood pressure,

σ is the standard deviation.

1. Find the probability that a randomly selected person in China has a blood pressure of 61.1 mmHg or more.

To find this probability, we need to calculate the area to the right of 61.1 mmHg on the normal distribution curve.

Z = (61.1 - 128) / 23 = -2.913

Using a standard normal distribution table or calculator, we find that the probability associated with a Z-score of -2.913 is approximately 0.0019.

So, the probability that a randomly selected person in China has a blood pressure of 61.1 mmHg or more is 0.0019.

2. Find the probability that a randomly selected person in China has a blood pressure of 103.9 mmHg or less.

To find this probability, we need to calculate the area to the left of 103.9 mmHg on the normal distribution curve.

Z = (103.9 - 128) / 23 = -1.065

Using a standard normal distribution table or calculator, we find that the probability associated with a Z-score of -1.065 is approximately 0.1421.

So, the probability that a randomly selected person in China has a blood pressure of 103.9 mmHg or less is 0.1421.

3. Find the probability that a randomly selected person in China has a blood pressure between 61.1 and 103.9 mmHg.

To find this probability, we need to calculate the area between the Z-scores corresponding to 61.1 mmHg and 103.9 mmHg.

Z₁ = (61.1 - 128) / 23 = -2.913

Z₂ = (103.9 - 128) / 23 = -1.065

Using a standard normal distribution table or calculator, we find the area to the left of Z1 is approximately 0.0019 and the area to the left of Z₂ is approximately 0.1421.

Therefore, the probability of the blood pressure being between 61.1 and 103.9 mmHg is approximately 0.1421 - 0.0019 = 0.1402.

4. Find the probability that a randomly selected person in China has a blood pressure that is at most 70.5 mmHg.

To find this probability, we need to calculate the area to the left of 70.5 mmHg on the normal distribution curve.

Z = (70.5 - 128) / 23 = -2.522

Using a standard normal distribution table or calculator, we find that the probability associated with a Z-score of -2.522 is approximately 0.0055.

So, the probability that a randomly selected person in China has a blood pressure that is at most 70.5 mmHg is 0.0055.

5. To find the blood pressure at which 72% of all people in China have less than, we need to find the Z-score that corresponds to the cumulative probability of 0.72.

Using a standard normal distribution table or calculator, we find that the Z-score corresponding to a cumulative probability of 0.72 is approximately 0.5578.

Now we can use the Z-score formula to find the corresponding blood pressure (X):

Z = (X - μ) / σ

0.5578 = (X - 128) / 23

Solving for X, we have:

X - 128 = 0.5578 * 23

X - 128 = 12.8229

X = 140.8229

Therefore, 72% of all people in China have a blood pressure of less than 140.82 mmHg.

To know more about "Probability" refer here:

brainly.com/question/30034780

#SPJ4

The complete question is:

According to the WHO MONICA Project the mean blood pressure for people in China is 128 mmHg with a standard deviation of 23 mmHg. Assume that blood pressure is normally distributed. Round the probabilities to four decimal places. It is possible with rounding for a probability to be 0.0000.

1. Find the probability that a randomly selected person in China has a blood pressure of 61.1 mmHg or more.

2. Find the probability that a randomly selected person in China has a blood pressure of 103.9 mmHg or less.

3. Find the probability that a randomly selected person in China has a blood pressure between 61.1 and 103.9 mmHg.

4. Find the probability that randomly selected person in China has a blood pressure that is at most 70.5 mmHg.

5. What blood pressure do 72% of all people in China have less than? Round your answer to two decimal places in the first box.

Determine if \( (-6,9) \) is a solution of the system, \[ \begin{array}{l} 6 x+y=-27 \\ 5 x-y=-38 \end{array} \] No Yes

Answers

The point (-6, 9) is not a solution of the system of equations. Highlighting the importance of verifying each equation individually when determining if a point is a solution.

To determine if the point (-6, 9) is a solution of the given system of equations, we substitute the values of x and y into the equations and check if both equations are satisfied.

For the first equation, substituting x = -6 and y = 9 gives:

6(-6) + 9 = -36 + 9 = -27.

For the second equation, substituting x = -6 and y = 9 gives:

5(-6) - 9 = -30 - 9 = -39.

Since the value obtained in the first equation (-27) does not match the value in the second equation (-39), we can conclude that (-6, 9) is not a solution of the system. Therefore, the answer is "No".

In this case, the solution is not consistent with both equations of the system, highlighting the importance of verifying each equation individually when determining if a point is a solution.

Learn more about equation: brainly.com/question/29174899

#SPJ11

Given 3x−y+2=0 a. Convert the rectangular equation to a polar equation. b. Sketch the graph of the polar equation.

Answers

In order to convert the given rectangular equation 3x - y + 2 = 0 to a polar equation, we need to express the variables x and y in terms of polar coordinates.

a. Convert to Polar Equation: Let's start by expressing x and y in terms of polar coordinates. We can use the following relationships: x = r * cos(θ), y = r * sin(θ).

Substituting these into the given equation, we have: 3(r * cos(θ)) - (r * sin(θ)) + 2 = 0.

Now, let's simplify the equation: 3r * cos(θ) - r * sin(θ) + 2 = 0.

b. To sketch the graph of the polar equation, we need to plot points using different values of r and θ.

Since the equation is not in a standard polar form (r = f(θ)), we need to manipulate it further to see its graph more clearly.

The specific graph will depend on the range of values for r and θ.

Read more about The rectangular equation.

https://brainly.com/question/29184008

#SPJ11

The average annual price of single-family homes in a county between 2007 and 2017 is approximated by the function \[ P(t)=-0.322 t^{3}+6.796 t^{2}-30.237 t+260 \quad(0 \leq t \leq 10) \] where \( P(t)

Answers

The given function represents the average annual price of single-family homes in a county between 2007 and 2017. It is a polynomial equation of degree 3, and the coefficients determine the relationship between time (t) and the price (P(t)).

The equation for the average annual price of single-family homes in the county is given as:

[tex]P(t) = -0.322t^3 + 6.796t^2 - 30.237t + 260[/tex]

where t represents the time in years between 2007 and 2017.

The coefficients in the equation determine the behavior of the function. The coefficient of [tex]t^3[/tex] -0.322, indicates that the price has a negative cubic relationship with time.

This suggests that the price initially increases at a decreasing rate, reaches a peak, and then starts decreasing. The coefficient of t², 6.796, signifies a positive quadratic relationship, implying that the price initially accelerates, reaches a maximum point, and then starts decelerating.

The coefficient of t, -30.237, represents a negative linear relationship, indicating that the price decreases over time. Finally, the constant term 260 determines the baseline price in 2007.

By evaluating the function for different values of t within the specified range (0 ≤ t ≤ 10), we can estimate the average annual price of single-family homes in the county during that period.

To learn more about polynomial equation visit:

brainly.com/question/3888199

#SPJ11

\[ \{(-1,0),(-6,-9),(-4,-4),(-9,-9)\} \] What is the domain? (Type whole numbers. Use a comma to separate answers as needed.)

Answers

The domain of this set is {-1, -6, -4, -9}, which are the x-values of the given coordinates.

The domain of a set of coordinates represents the set of all possible x-values or inputs in a given set. In this case, the set of coordinates is {(-1,0),(-6,-9),(-4,-4),(-9,-9)}. The domain of this set is {-1, -6, -4, -9}, which are the x-values of the given coordinates.

The domain is determined by looking at the x-values of each coordinate pair in the set. In this case, the x-values are -1, -6, -4, and -9. These are the only x-values present in the set, so they form the domain of the set.

The domain represents the possible inputs or values for the independent variable in a function or relation. In this case, the set of coordinates does not necessarily indicate a specific function or relation, but the domain still represents the range of possible x-values that are included in the set.

learn more about domain here:

https://brainly.com/question/28135761

#SPJ11

The complete question is:

{(−1,0),(−6,−9),(−4,−4),(−9,−9)} What Is The Domain? (Type Whole Numbers. Use A Comma To Separate Answers As Needed.)

Let P(n) be the statement that 13+ 23+ 33+ ...+ n313⁢+ 23⁢+ 33⁢+ ...⁢+ n3 = (n(n+ 1)2)2(n⁢(n⁢+ 1)2)2 for the positive integer n.
What do you need to prove in the inductive step?

Answers

if the statement is true for some positive integer n, it must also be true for n+1. This completes the inductive step and demonstrates that the statement P(n) holds for all positive integers n.

In the inductive step, we need to prove that the statement P(n) implies P(n+1), where P(n) is the given statement: 13 + 23 + 33 + ... + n313⁢ + 23⁢ + 33⁢ + ...⁢ + n3 = (n(n + 1)2)2(n⁢(n⁢ + 1)2)2 for the positive integer n.

To prove the inductive step, we need to show that assuming P(n) is true, P(n+1) is also true.

In other words, we assume that the formula holds for some positive integer n, and our goal is to show that it holds for n+1.

So, in the inductive step, we need to demonstrate that if 13 + 23 + 33 + ... + n313⁢ + 23⁢ + 33⁢ + ...⁢ + n3 = (n(n + 1)2)2(n⁢(n⁢ + 1)2)2, then 13 + 23 + 33 + ... + (n+1)313⁢ + 23⁢ + 33⁢ + ...⁢ + (n+1)3 = ((n+1)((n+1) + 1)2)2((n+1)(n+1 + 1)2)2.

By proving this, we establish that if the statement is true for some positive integer n, it must also be true for n+1. This completes the inductive step and demonstrates that the statement P(n) holds for all positive integers n.

Learn more about integer here

https://brainly.com/question/31048829

#SPJ11

F(x)=7x 6
−πx 3
+ 6
1

Determine whether F(x) is a polynomial or not. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. It is not a polynomial because the variable x is raised to the power, which is not a nonnegative integer. (Type an integer or a fraction.) B. It is a polynomial of degree (Type an integer or a fraction.) . It is not a polynomial because the function is the ratio of two distinct polynomials, and the polynomial in the denominator is of positive degree. A. The polynomial in standard form is F(x)= with the leading term and the constant (Use integers or fractions for any numbers in the expressions.) B. The function is not a polynomial.

Answers

a)  Choice(A) It is not a polynomial because the variable x is raised to the power, which is not a nonnegative integer.

b)  Choice(B) The function is not a polynomial

POLYNOMIALS - A polynomial is a mathematical expression that consists of variables (also known as indeterminates) and coefficients. It involves only the operations of addition, subtraction, multiplication, and raising variables to non-negative integer exponents.

To check whether F(x)  7x^6 - πx^3 + 6^(1) is a polynomial or not, we need to determine whether the power of x is a non-negative integer or not. Here, in F(x),  πx3 is the term that contains a power of x in non-integral form (rational) that is 3 which is not a nonnegative integer. Therefore, it is not a polynomial. Hence, the correct choice is option A. It is not a polynomial because the variable x is raised to the power, which is not a nonnegative integer. (Type an integer or a fraction.)

so the function is not a polynomial.

Learn more about polynomials:

brainly.com/question/4142886

#SPJ11

For 1983 through 1989 , the per capita consumption of chicken in the U.S. increased at a rate that was approximately linenr. In 1983 , the per capita consumption was 31.5 pounds, and in 1989 it was 47 pounds. Write a linear model for per capita consumption of chicken in the U.S. Let t represent time in years, where t=3 represents 1983. Let y represent chicken consumption in pounds. 1. y=2.58333t 2. y=2.58333t+23.75 3. y=2.58333t−23.75 4. y=23.75 5. y=t+23.75

Answers

Linear models are mathematical expressions that graph as straight lines and can be used to model relationships between two variables. Therefore, the equation of the line in slope-intercept form is: y = 2.58333t + 23.75.So, option (2) y=2.58333t+23.75

Linear models are mathematical expressions that graph as straight lines and can be used to model relationships between two variables. A linear model is useful for analyzing trends in data over time, especially when the rate of change is constant or nearly so.

For 1983 through 1989, the per capita consumption of chicken in the U.S. increased at a rate that was approximately linear. In 1983, the per capita consumption was 31.5 pounds, and in 1989, it was 47 pounds. Let t represent time in years, where t = 3 represents 1983. Let y represent chicken consumption in pounds.

Therefore, we have to find the slope of the line, m and the y-intercept, b, and then write the equation of the line in slope-intercept form, y = mx + b.

The slope of the line, m, is equal to the change in y over the change in x, or the rate of change in consumption of chicken per year. m = (47 - 31.5)/(1989 - 1983) = 15.5/6 = 2.58333.

The y-intercept, b, is equal to the value of y when t = 0, or the chicken consumption in pounds in 1980. Since we do not have this value, we can use the point (3, 31.5) on the line to find b.31.5 = 2.58333(3) + b => b = 31.5 - 7.74999 = 23.75001.Rounding up, we get b = 23.75, which is the y-intercept.

Therefore, the equation of the line in slope-intercept form is:y = 2.58333t + 23.75.So, option (2) y=2.58333t+23.75 .

Learn more about Linear models here:

https://brainly.com/question/17933246

#SPJ11

writing (x y)2 as x2 y2 illustrates a common error. explain.

Answers

The correct expression for (xy)^2 is x^3y^2, not x^2y^2. The expression "(xy)^2" represents squaring the product of x and y. However, the expression "x^2y^2" illustrates a common error known as the "FOIL error" or "distributive property error."

This error arises from incorrectly applying the distributive property and assuming that (xy)^2 can be expanded as x^2y^2.

Let's go through the steps to illustrate the error:

Step 1: Start with the expression (xy)^2.

Step 2: Apply the exponent rule for a power of a product:

(xy)^2 = x^2y^2.

Here lies the error. The incorrect assumption made here is that squaring the product of x and y is equivalent to squaring each term individually and multiplying the results. However, this is not true in general.

The correct application of the exponent rule for a power of a product should be:

(xy)^2 = (xy)(xy).

Expanding this expression using the distributive property:

(xy)(xy) = x(xy)(xy) = x(x^2y^2) = x^3y^2.

Therefore, the correct expression for (xy)^2 is x^3y^2, not x^2y^2.

The common error of assuming that (xy)^2 can be expanded as x^2y^2 occurs due to confusion between the exponent rules for a power of a product and the distributive property. It is important to correctly apply the exponent rules to avoid such errors in mathematical expressions.

Learn more about common error here:

brainly.com/question/18686234

#SPJ11

determinestep by stepthe indices for the direction and plane shown in the following cubic unit cell.

Answers

To determine the indices for the direction and plane shown in the given cubic unit cell, we need specific information about the direction and plane of interest. Without additional details, it is not possible to provide a step-by-step solution for determining the indices.

The indices for a direction in a crystal lattice are determined based on the vector components along the lattice parameters. The direction is specified by three integers (hkl) that represent the intercepts of the direction on the crystallographic axes. Similarly, the indices for a plane are denoted by three integers (hkl), representing the reciprocals of the intercepts of the plane on the crystallographic axes.

To determine the indices for a specific direction or plane, we need to know the position and orientation of the direction or plane within the cubic unit cell. Without this information, it is not possible to provide a step-by-step solution for finding the indices.

In conclusion, to determine the indices for a direction or plane in a cubic unit cell, specific information about the direction or plane of interest within the unit cell is required. Without this information, it is not possible to provide a detailed step-by-step solution.

To Read More About Indices Click On The Link Below:

brainly.com/question/29842932

#SPJ11

Other Questions
Critically evaluate the considerations taken by the courts in determining the application for postponement of possession order in the absence of concrete evidence from the mortgagor. Functional control over conscious sensations and actions is regulated by the somatic nervous system autonomic nervous system central nervous system peripheral nervous system and the The stretch reflex causes the stretching muscle to movement. contract eccentrically; slow contract eccentrically; speed up lengthen; speed up lengthen; slow none of the above Reflexes triggered by the sensation of pain include the withdrawal reflex tonic neck reflexes the crossed extensor reflex both a and b both a and c The appendicular skeleton includes the skull the humerus the sternum the vertebrae all of the above The type of joint that allows for the greatest range of motion is called synarthrosis amphiarthrosis synovial sutures All of the above allow for an equal range of motion. Select the correct answer. Construction is under way at an airport. This map shows where the construction is taking place. If Road A and Road B are parallel, what is the distance from P to Q on Road C 1) a field is bounded by an irregular hedge running between points e and f and three straight fences fg, gh and he. the following measurements are taken: ef = 167.76 m, fg = 105.03 m, gh = 110.52 m, he = 97.65 m and eg = 155.07 m offsets are taken to the irregular hedge from the line ef as follows. the hedge is situated entirely outside the quadrilateral efgh. e (0 m) 25 m 50 m 75 m 100 m 125 m 150 m f(167.76 m) 0 m 2.13 m 4.67 m 9.54 m 9.28 m 6.39 m 3.21 m 0 m calculate the area of the field to the nearest m2 . PIC18F4321 has 10 bit ADC. Va is connected to ground and V is connected to 4 Volt. Microcontoller Vss pins are connected to ground and Vdd pins are connected to 5 Volt a) What is the minimun voltage we can apply as an input to this ADC? Justify your answer. (Sp) b) What is the maximum voltage we can apply as an input to this ADC? Justify your answer. (5p) c) when the input of ADC is I Volt. Calculate the output of DAC (10p) i) in Decimal numeric output ii) in Binary digital form (as 10 bit). Q1. (a) A wing is flying at U.. = 35ms at an altitude of 7000m (p[infinity] = 0.59kgm) has a span of 25m and a surface area of 52m2. For this flight conditions, the circulation is given by:(i) Sketch the lift distribution of the wing in the interval [0; ] considering at least 8 points across the span of the wing. (ii) Briefly comment on the result shown in Q1 (a) i) (iii) Estimate the lift coefficient of the wing described in Q1 (a) (iv) Estimate the drag coefficient due to lift described in Q1 (a) Float Check String has a method s.isdigit that returns True if string s contains only digits and False otherwise, i.e. s is a string that represents an integer. Write a function named float_check that takes one parameter that is a string and returns True if the string represents a float and False otherwise For the purpose of this function we define a float to be a string of digits that has at most one decimal point. Note that under this definition an integer argument will return True. Remember "edge cases" such as "45." or "45"; both should return True For example: float c Eloat check ( '123.45) returns True for the solid, each cross section perpendicular to the x-axis is a rectangle whose height is three times its width in the xy-plane. what is the volume of the solid? adams, w.a., 1973. the effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. journal of soil science 24 (1), 1017. Science10 Consider the following statement.A student measured the pulse rates(beats per minute) of five classmatesbefore and after running. Before theyran, the average rate was 70 beatsper minute, and after they ran,the average was 150 beats per minute.The underlined portion of this statementis best described asJa prediction.Ka hypothesis.L an assumption.M an observation. ind The binding energy (in MeV) of carbon-12 Assume: ma = 11.996706 u mp = 1.007276 u mn= 1.008665 u u= 1.66 x 10-27 kg a. 14.8 b. 0.511 c. 9.11 d. 92.3 e. 46.2 Select the correct answer from each drop-down menu. a teacher created two-way tables for four different classrooms. the tables track whether each student was a boy or girl and whether they were in art class only, music class only, both classes, or neither class. classroom 1 art onlymusic onlybothneither boys2452 girls5471 classroom 2 art onlymusic onlybothneither boys4134 girls1452 classroom 3 art onlymusic onlybothneither boys3413 girls2340 classroom 4 art onlymusic onlybothneither boys4532 girls6343 classroom has an equal number of boys and girls. classroom has the smallest number of students in music class. classroom has the largest number of students who are not in art class or music class. classroom has the largest number of students in art class but not music class. what features characterize the group we call plants? what adaptations have allowed different groups of land plants to colonize and diversify in a habitat very different than that of their green algal relatives? Find the coordinates of the center of mass of the following solid with variable density. R={(x,y,z):0x8,0y5,0z1};rho(x,y,z)=2+x/3 Use transformations of the graph of f(x)=e^x to graph the given function. Be sure to the give equations of the asymptotes. Use the graphs to determine each function's domain and range. If applicable, use a graphing utility to confirm the hand-drawn graphs. g(x)=e^(x5). Determine the transformations that are needed to go from f(x)=e^x to the given graph. Select all that apply. A. shrink vertically B. shift 5 units to the left C. shift 5 units downward D. shift 5 units upward E. reflect about the y-axis F. reflect about the x-axis G. shrink horizontally H. stretch horizontally I. stretch vertically refer to figure 6-11. suppose a tax of $2 per unit is imposed on this market. what will be the new equilibrium quantity in this market? Evaluate the derivative of the function f(t)=7t+4/5t1 at the point (3,25/14 ) Nine subtracted from nine times a number is - 108 . What is the number? A) Translate the statement above into an equation that you can solve to answer this question. Do not solve it yet. Use x as your variable. The equation is B) Solve your equation in part [A] for x. the hydrogen ion - hydrogen couple: describe your observation which enable you to place the h - h2 couple in the potential series 4. which of the three motives for holding foreign exchange are applicable to each of the following? a. a tourist. b. a bond trader. c. a portfolio manager. d. a manufacturer.