The measure of angle of arc UB is 46°
What is arc angle relationships?An arc is a part of the circumference.
If two arcs in circles with equal radii have the same length, then their central angles (and measures) will be equal.
To find the measure of angle of arc UB, we use the theorem that says;
angle I = 1/2( angle ZC - angle UB)
angle I = 48°
angle ZC = 142°
Therefore ;
represent angle UB by x
48 = 1/2( 142-x)
142 - x = 96
x = 142 -96
x = 46°
Therefore the measure of angle of arc UB is 46°
learn more about arc angle relationships from
https://brainly.com/question/31665604
#SPJ1
93-(15x10)+(160:16) =
Answer:
Step-by-step explanation:
Let's calculate the expression step by step:
93 - (15 × 10) + (160 ÷ 16)
First, we perform the multiplication:
93 - 150 + (160 ÷ 16)
Next, we perform the division:
93 - 150 + 10
Finally, we perform the subtraction and addition:
-57 + 10
The result is:
-47
Therefore, 93 - (15 × 10) + (160 ÷ 16) equals -47.
on a scale drawing 9 inches represents 11 miles how many inches represent 55 miles
Answer:
45 inches represent 55 miles on the scale drawing.
Step-by-step explanation:
To solve this proportion, we can set up the following ratio:
9 inches / 11 miles = x inches / 55 miles
We can cross-multiply to solve for x:
9 inches * 55 miles = 11 miles * x inches
495 inches = 11 miles * x inches
Now, we can isolate x by dividing both sides by 11 miles:
495 inches / 11 miles = x inches
Simplifying the expression:
45 inches = x inches
Net Present Value Method, Internal Rate of Return Method, and Analysis
The management of Advanced Alternative Power Inc. is considering two capital investment projects. The estimated net cash flows from each project are as follows:
Year Wind Turbines Biofuel Equipment
1 $420,000 $880,000
2 420,000 880,000
3 420,000 880,000
4 420,000 880,000
Present Value of an Annuity of $1 at Compound Interest
Year 6% 10% 12% 15% 20%
1 0.943 0.909 0.893 0.870 0.833
2 1.833 1.736 1.690 1.626 1.528
3 2.673 2.487 2.402 2.283 2.106
4 3.465 3.170 3.037 2.855 2.589
5 4.212 3.791 3.605 3.352 2.991
6 4.917 4.355 4.111 3.784 3.326
7 5.582 4.868 4.564 4.160 3.605
8 6.210 5.335 4.968 4.487 3.837
9 6.802 5.759 5.328 4.772 4.031
10 7.360 6.145 5.650 5.019 4.192
The wind turbines require an investment of $1,199,100, while the biofuel equipment requires an investment of $2,278,320. No residual value is expected from either project.
Required:
1a. Compute the net present value for each project. Use a rate of 10% and the present value of an annuity of $1 in the table above. If required, use the minus sign to indicate a negative net present value. If required, round to the nearest whole dollar.
Wind Turbines Biofuel Equipment
Present value of annual net cash flows $fill in the blank 1 $fill in the blank 2
Less amount to be invested $fill in the blank 3 $fill in the blank 4
Net present value $fill in the blank 5 $fill in the blank 6
1b. Compute a present value index for each project. If required, round your answers to two decimal places.
Present Value Index
Wind Turbines fill in the blank 7
Biofuel Equipment fill in the blank 8
2. Determine the internal rate of return for each project by (a) computing a present value factor for an annuity of $1 and (b) using the present value of an annuity of $1 in the table above. If required, round your present value factor answers to three decimal places and internal rate of return to the nearest whole percent.
Wind Turbines Biofuel Equipment
Present value factor for an annuity of $1 fill in the blank 9 fill in the blank 10
Internal rate of return fill in the blank 11 % fill in the blank 12 %
3. The net present value, present value index, and internal rate of return all indicate that the
is a better financial opportunity compared to the
, although both investments meet the minimum return criterion of 10%.
1a. Compute NPV by calculating the present value of net cash flows and subtracting the investment amount.
1b. Compute PVI by dividing NPV by the investment amount.
2. Determine IRR by finding the discount rate corresponding to an NPV of zero.
3. Compare NPV, PVI, and IRR to identify the better financial opportunity.
1a. To compute the net present value (NPV) for each project, we need to calculate the present value of the annual net cash flows and subtract the amount to be invested. Using the present value of an annuity of $1 from the table, we can fill in the following values:
Wind Turbines:
Present value of annual net cash flows: $420,000 * 1.736 + $420,000 * 2.487 + $420,000 * 3.170 + $420,000 * 3.791
Less amount to be invested: $1,199,100
Net present value: NPV_Wind_Turbines = Present value of annual net cash flows - Amount to be invested
Biofuel Equipment:
Present value of annual net cash flows: $880,000 * 1.736 + $880,000 * 2.487 + $880,000 * 3.170 + $880,000 * 3.791
Less amount to be invested: $2,278,320
Net present value: NPV_Biofuel_Equipment = Present value of annual net cash flows - Amount to be invested
1b. The present value index (PVI) can be calculated by dividing the NPV by the amount to be invested:
Present Value Index = NPV / Amount to be invested
2. To determine the internal rate of return (IRR) for each project, we need to find the discount rate at which the NPV becomes zero. We can use the present value of an annuity of $1 from the table to calculate the present value factor for an annuity of $1. Then, we can find the discount rate that corresponds to an NPV of zero.
Wind Turbines:
Present value factor for an annuity of $1: Fill in the values from the table
Internal rate of return: IRR_Wind_Turbines = Discount rate corresponding to NPV = 0
Biofuel Equipment:
Present value factor for an annuity of $1: Fill in the values from the table
Internal rate of return: IRR_Biofuel_Equipment = Discount rate corresponding to NPV = 0
3. Based on the calculations of NPV, PVI, and IRR, we can compare the two projects. The project with the higher NPV, PVI, and IRR is considered the better financial opportunity. Both investments meet the minimum return criterion of 10%, but the project with the higher financial indicators is preferred.
For more such questions on present value visit:
https://brainly.com/question/30390056
#SPJ8
Given the function f(x) = 4 – 2x, find f(3r – 1).
Answer:
f(3r - 1) = -6r + 6
Step-by-step explanation:
To find f(3r - 1), we substitute 3r - 1 for x in the expression for f(x) and simplify:
f(x) = 4 - 2x
f(3r - 1) = 4 - 2(3r - 1)
= 4 - 6r + 2
= -6r + 6
So, f(3r - 1) = -6r + 6.
Please explain how to do this and what the answer is. The answer with best explaination gets Brainliest
Answer:
102
Step-by-step explanation:
we substitute x by 7
7^2+9(7)-10
49+63-10
=102
Suppose a finite population has 6 items and 2 items are selected at random without replacement,then all possible samples will be:
Select one:
a. 15
b. 2
c. 36
d. 6
e. 12
Note: Answer D is NOT the correct answer. Please find the correct answer. Any answer without justification will be rejected automatically.
When 2 items are selected without replacement from a population of 6 items, there are 15 possible samples that can be formed. Option A.
To determine the number of possible samples when 2 items are selected at random without replacement from a population of 6 items, we can use the concept of combinations.
The number of combinations of selecting k items from a set of n items is given by the formula C(n, k) = n! / (k! * (n-k)!), where n! represents the factorial of n.
In this case, we have a population of 6 items and we want to select 2 items. Therefore, the number of possible samples can be calculated as:
C(6, 2) = 6! / (2! * (6-2)!) = 6! / (2! * 4!) = (6 * 5 * 4!) / (2! * 4!) = (6 * 5) / (2 * 1) = 15. Option A is correct.
For more such question on samples. visit :
https://brainly.com/question/13219833
#SPJ8
Question What are the similarities and differences between these data sets in terms of their centers and their variability? Data Set A: 21, 26, 29, 33, 40, 43 Data Set B: 20, 23, 28, 30, 44, 47 Select from the drop-down menus to correctly complete the statements. Comparing the centers of the data sets, the median for Data Set A is Choose... the median for Data Set B. The mean for Data Set A is Choose... the mean for Data Set B.
Answer:
Comparing the centers of the data sets:
- The median for Data Set A is greater than the median for Data Set B.
- The mean for Data Set A is greater than the mean for Data Set B.
Comparing the variability of the data sets:
- The range of Data Set A is 22, while the range of Data Set B is 27. Therefore, the range of Data Set B is greater.
- The standard deviation of Data Set A is greater than the standard deviation of Data Set B, indicating higher variability in Data Set A.
The cost of capsaicin arthritis rub is $21 for a
physical therapist who works with chronic arthritis patients, you need to buy
42 ounces of capsaicin. How many tubes will you need to purchase?
You will need to purchase approximately 1/42 of a tube, which is less than a full tube. In practical terms, you would need to purchase at least one tube to meet your requirement of 42 ounces of capsaicin arthritis rub.
To determine the number of tubes of capsaicin arthritis rub you will need to purchase, we can divide the total required quantity by the quantity in each tube.
Given that the cost of capsaicin arthritis rub is $21 and you need to buy 42 ounces, we need to find out how many ounces are in each tube.
Let's assume that each tube contains x ounces of capsaicin arthritis rub.
Now we can set up a proportion to solve for x:
42 ounces / x tubes = 1 tube / x ounces
Cross-multiplying gives us:
42x = 1 * x
Simplifying the equation:
42x = x
Dividing both sides of the equation by x (since x cannot be zero):
42 = 1
Since this equation is not true, it means that there is an error in our assumption. We need to revise our assumption.
Let's assume that each tube contains 1 ounce of capsaicin arthritis rub.
Now we can set up a new proportion:
42 ounces / x tubes = 1 tube / 1 ounce
Cross-multiplying gives us:
42x = 1 * 1
Simplifying the equation:
42x = 1
Dividing both sides of the equation by 42:
x = 1/42
As a result, you will need to buy less than a full tube—roughly 1/42 of a tube. In order to get the 42 ounces of capsaicin arthritis rub you need, you would essentially need to buy at least one tube.
for such more question on purchase
https://brainly.com/question/28787564
#SPJ8
An isosceles triangle has two angles both equal to x. The third angle is 45 degrees bigger than either of these. Find the value of x.
Let's use the fact that the sum of the angles of a triangle is always 180 degrees to solve this problem. Let the two equal angles be x, then the third angle is x + 45.Let's add all the angles together:x + x + x + 45 = 180Simplifying this equation, we get:3x + 45 = 180Now, we need to isolate the variable on one side of the equation. We can do this by subtracting 45 from both sides of the equation:3x = 135Finally, we can solve for x by dividing both sides of the equation by 3:x = 45Therefore, the value of x is 45 degrees.
Answer:
45°
Step-by-step explanation:
An isosceles triangle has two angles both equal to x. The third angle is 45 degrees bigger than either of these. Find the value of x.Let's turn the question into an equation
180 = x + x + x + 45
180 - 45 = 3x
135 = 3x
x = 135 : 3
x = 45°
------------------
check
180 = 45 + 45 + 45 + 45
180 = 180
same value the answer is good
The length of a rectangle is six times its width. If the area of the rectangle is 600 in2, find its perimeter.
The perimeter of the rectangle is 140 inches.
Let's denote the width of the rectangle as w. According to the given information, the length of the rectangle is six times its width, so we can express the length as 6w.
The area of a rectangle is given by the formula A = length × width. Substituting the values we have:
A = (6w) × w
600 = 6w^2
To solve for w, we divide both sides of the equation by 6:
w^2 = 100
Taking the square root of both sides:
w = ±10
Since width cannot be negative in this context, we discard the negative value and consider the positive value, w = 10.
Now that we have the width, we can find the length of the rectangle:
Length = 6w = 6 × 10 = 60
The perimeter of a rectangle is given by the formula P = 2(length + width). Substituting the values:
P = 2(60 + 10)
P = 2(70)
P = 140
Therefore, the perimeter of the rectangle is 140 inches.
for such more question on perimeter
https://brainly.com/question/23875717
#SPJ8
what best describes the relationship between the computed mean of 52.4 and the actual mean of 52.7
The computed mean of 52.4 and the actual mean of 52.7 suggest a close relationship in terms of central tendency.
A computed mean is a statistical measure calculated by summing up a set of values and dividing by the number of observations. In this case, the computed mean of 52.4 implies that when the values are averaged, the result is 52.4.
The actual mean of 52.7 refers to the true average of the population or data set being analyzed. Since it is higher than the computed mean, it indicates that the sample used for computation might have slightly underestimated the true population mean.
However, the difference between the computed mean and the actual mean is relatively small, with only a 0.3 unit discrepancy.
Given the proximity of these two values, it suggests that the computed mean is a reasonably accurate estimate of the actual mean.
However, it's important to note that without additional information, such as the sample size or the variability of the data, it is difficult to draw definitive conclusions about the relationship between the computed mean and the actual mean.
For more such questions on mean
https://brainly.com/question/1136789
#SPJ8
A parabola can be drawn given a focus of ... 100pts
Answer:
[tex]\textsf{The parabola has a vertex at $\left(\:\boxed{-3}\:,\boxed{-7}\:\right)$, has a p-value of $\boxed{-1}$ and it}[/tex]
[tex]\textsf{$\boxed{\sf op\:\!ens\;to\;the\;left}$\:.}[/tex]
Step-by-step explanation:
The given directrix of the parabola is x = -2, which is a vertical line.
The directrix is perpendicular to the axis of symmetry. Therefore, this means that the parabola has a horizontal axis of symmetry.
The focus of a parabola is a fixed point located inside the curve. The x-coordinate of the given focus is x = -4. As this is to the left of the directrix, it means that the parabola opens to the left.
The standard form of a horizontal parabola is:
[tex]\boxed{(y-k)^2=4p(x-h)}[/tex]
where:
Vertex = (h, k)Focus = (h+p, k)Directrix: x = (h - p)Axis of symmetry: y = kAs the focus is (-4, -7), then:
[tex]\begin{aligned}(h+p, k)&=(-4,-7)\\\\\implies k&=-7\\\implies h+p&=-4\end{aligned}[/tex]
As the directrix is x = -2, then:
[tex]h - p=-2[/tex]
To find the value of h, sum the equations involved h and p to eliminate p:
[tex]\begin{array}{crcccr}&h &+& p& =& -4\\+&h& -& p& = &-2\\\cline{2-6}&2h&&& =& -6\\\cline{2-6}\\\implies &h&&&=&-3\end{array}[/tex]
To find the value of p, substitute the found value of h into one of the equations:
[tex]\begin{aligned}-3 - p&=-2\\p&=-3+2\\p&=-1\end{aligned}[/tex]
Therefore, the values of h, k and p are:
h = -3k = -7p = -1The parabola has a vertex at (-3, -7), has a p-value of -1 and it opens to the left.
The parabola has a vertex at (-3, y), has p-value of 1 and it equation is
(x + 3)² = 4y.
What is the equation of the parabola?To find the equation of the parabola with the given focus and directrix, we can use the standard form equation of a parabola:
(x - h)² = 4p(y - k)
where (h, k) is the vertex of the parabola and "p" is the distance from the vertex to the focus (and also from the vertex to the directrix).
Given:
Focus: (-4, -7)
Directrix: x = -2
1. Finding the vertex:
Since the directrix is a vertical line, the vertex lies on the line that is equidistant from the focus and directrix. In this case, it lies on the line x = (-4 + (-2))/2 = -3.
Therefore, the vertex of the parabola is (-3, y).
2. Finding the p-value:
The distance from the vertex to the focus (and also to the directrix) is the same. In this case, the distance is |-3 - (-4)| = 1.
Therefore, the value of "p" is 1.
3. Writing the equation of the parabola:
Using the vertex (-3, y) and the p-value of 1, we can write the equation of the parabola:
(x - h)² = 4p(y - k)
(x - (-3))² = 4(1)(y - y)
Simplifying, we get:
(x + 3)² = 4(y - y)
(x + 3)² = 4y
So, the equation of the parabola is (x + 3)² = 4y.
The vertex of the parabola is (-3, y) and the p-value is 1.
Learn more on equation of parabola here;
https://brainly.com/question/29635857
#SPJ1
Let f(x) = 4x² - 7.
Using the definition of derivative
Answer:
56
Step-by-step explanation:
f(x)=4x^2-7
f'(x)=8x
f'(7)=56
What kind of growth model (pattern) is shown in the table?
x
y
1
5
2
25
3
125
4
625
5
3,125
square root
linear
exponential
quadratic
Answer:
Option C is correct.
The kind of growth model is shown in the table is exponential
Step-by-step explanation:
Exponential growth function is in the form of : ......[1]; where a is the initial value and b> 0.
Consider any two point from the table:
(1 , 5) and ( 2 , 25)
Substitute these in the equation [1] we get;
......[2]
......[3]
Divide equation [3] by [2] we have;
Simplify:
Now substitute this value in equation [2] we get;
Divide both sides by 5 we get;
Simplify:
1=a or a = 1
Therefore, the table shown the exponential growth function y=5^x
A rectangular pyramid is sliced. The slice passes through line segment AB and is parallel to the base.
Which two-dimensional figure represents the cross section?
A. A rectangle the same size as the base
B. A rectangle that is smaller than the base
C. A quadrilateral that is not a rectangle
D. A triangle with a height the same as the pyramid
Answer:
Step-by-step explanation:
The correct answer is A. A rectangle the same size as the base.
When a rectangular pyramid is sliced parallel to the base, the resulting cross-section is a rectangle that is the same size as the base. The parallel slicing ensures that the cross-section maintains the same dimensions as the base of the pyramid. Therefore, option A, a rectangle the same size as the base, represents the cross-section.
14x^(2n+1)+7x^(n+3)-21^(n+2)
100 points will be awarded
Answer:
Step-by-step explanation:
The given expression is: 14x^(2n+1) + 7x^(n+3) - 21^(n+2)
Unfortunately, it seems there is a missing exponent for the term "21" in the expression. Please provide the correct exponent for 21, and I'll be happy to help you further simplify the expression.
If sin 0=8/17, and tan0<0, what is cos(0)
Use exact values. No decimals.
(0 means theta)
Answer: -15/17
Step-by-step explanation:
sin ∅ = 8/17
If you drew a a line in the 2rd quadrant because tan ∅ <0, which means tan∅ is negative.
Tan∅= sin∅/cos∅
they told you sin∅ is positive which is related to your y.
but cos∅ needs to be negative which is related to x
This happens in the second quadrant x is negative and y is positive.
Now we know which way to draw our line. Label the opposite of the angle 8 and the hypotenuse 17 because sin∅ = 8/17
Use pythagorean to find adjacent.
17² = 8² + a²
225 = a²
a = 15
The adjacent is negative because the adjacent is on the x-axis in the negative direction.
cos ∅ = adj/hyp
cos∅ = -15/17
Answer: -15/17
Step-by-step explanation:
In the first quadrant, all sine, cosine and tan are all positive. In the second quadrant, only sine is positive. Third quadrant, only tangent is positive and fourth quadrant, only cosine is positive.
Therefore, when sine is positive and tan is negative, the angle can only be in quadrant 2. Then draw the triangle. Draw a triangle with the angle from the origin, with the opposite leg from the angle with value of 8 and the hypotenuse of value 17. Since cosine is what the question is asking for, and we know the data given forms an right triangle, the value of the other leg is 15. It is an 8-15-17 special triangle or use the Pythagorean Theorem.
Finally, taking the cosine of the angle from the origin gives -15/17 since it is in quadrant 2.
Is the following graph a logarithmic or exponential function?
Answer: Logarithmic function
Step-by-step explanation: y=logax and it's a reflection of an exponential curve that curves up and a logarithmic function curves down.
The product of 3, and a number increased by -7, is -36
┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈
✦ The number is - 5
┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈
[tex]\begin{gathered} \; \sf{\color{pink}{Let \; the \; other \; number \; be \; (x)::}} \\ \end{gathered}[/tex]
Atq,,
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3 \times \bigg \lgroup \: x + ( - 7) \bigg \rgroup = - 36} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3 \times \bigg \lgroup \: x - 7 \bigg \rgroup = - 36} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3x - 21 = - 36} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3x = - 36 + 21} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3x = - 15} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{x = \dfrac{\cancel{ - 15}}{\cancel{ \: 3}}} \qquad \bigg \lgroup \sf{Cancelling \: by \: 3} \bigg \rgroup \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{pink} :\dashrightarrow \underline{\color{pink}\boxed{\colorbox{black}{x = - 5}}} \: \pmb{\bigstar} \\ \\ \end{gathered}[/tex]
The answer is:
z = -5Work/explanation:
The product means we multiply two numbers.
Here, we multiply 3 and a number increased by -7; let that number be z.
So we have
[tex]\sf{3(z+(-7)}[/tex]
simplify:
[tex]\sf{3(z-7)}[/tex]
This equals -36
[tex]\sf{3(z-7)=-36}[/tex]
[tex]\hspace{300}\above2[/tex]
[tex]\frak{solving~for~z}[/tex]
Distribute
[tex]\sf{3z-21=-36}[/tex]
Add 21 on each side
[tex]\sf{3z=-36+21}[/tex]
[tex]\sf{3z=-15}[/tex]
Divide each side by 3
[tex]\boxed{\boxed{\sf{z=-5}}}[/tex]
Solve using inverse (matrix) method
5x - 4y + z = 12
x + 7y-z = -9
2x+3y + 3z = 8
The solution to the system of equations using the inverse matrix method is x = -1, y = 2, z = 3.
To solve the system of equations using the inverse matrix method, we need to represent the system in matrix form.
The given system of equations can be written as:
| 5 -4 1 | | x | = | 12 |
| 1 7 -1 | [tex]\times[/tex]| y | = | -9 |
| 2 3 3 | | z | | 8 |
Let's denote the coefficient matrix on the left side as A, the variable matrix as X, and the constant matrix as B.
Then the equation can be written as AX = B.
Now, to solve for X, we need to find the inverse of matrix A.
If A is invertible, we can calculate X as [tex]X = A^{(-1)} \times B.[/tex]
To find the inverse of matrix A, we can use the formula:
[tex]A^{(-1)} = (1 / det(A)) \times adj(A)[/tex]
Where det(A) is the determinant of A and adj(A) is the adjugate of A.
Calculating the determinant of A:
[tex]det(A) = 5 \times (7 \times 3 - (-1) \times 3) - (-4) \times (1 \times 3 - (-1) \times 2) + 1 \times (1 \times (-1) - 7\times 2)[/tex]
= 15 + 10 + (-13)
= 12.
Next, we need to find the adjugate of A, which is obtained by taking the transpose of the cofactor matrix of A.
Cofactor matrix of A:
| (73-(-1)3) -(13-(-1)2) (1(-1)-72) |
| (-(53-(-1)2) (53-12) (5[tex]\times[/tex] (-1)-(-1)2) |
| ((5(-1)-72) (-(5(-1)-12) (57-(-1)[tex]\times[/tex](-1)) |
Transpose of the cofactor matrix:
| 20 -7 -19 |
| 13 13 -3 |
| -19 13 36 |
Finally, we can calculate the inverse of A:
A^(-1) = (1 / det(A)) [tex]\times[/tex] adj(A)
= (1 / 12) [tex]\times[/tex] | 20 -7 -19 |
| 13 13 -3 |
| -19 13 36 |
Multiplying[tex]A^{(-1)[/tex] with B, we can solve for X:
[tex]X = A^{(-1)}\times B[/tex]
= | 20 -7 -19 | | 12 |
| 13 13 -3 | [tex]\times[/tex] | -9 |
| -19 13 36 | | 8 |
Performing the matrix multiplication, we can find the values of x, y, and z.
For similar question on inverse matrix method.
https://brainly.com/question/18604519
#SPJ8
Find the probability that a randomly
selected point within the circle falls in the
red-shaded triangle.
12
12
P = [?]
Enter as a decimal rounded to the nearest hundredth.
Step-by-step explanation:
a probability is always the ratio of
desired cases / totally possible cases.
so, in this case it is the
area of the triangle / area of the circle.
as everything of the triangle is also a part of the circle.
and so, that fraction of the area of the whole circle that is the area of the triangle in refutation to the area of the whole circle is the probability that a random point inside the circle would be also inside the triangle.
the area of a right-angled triangle is
leg1 × leg2 / 2
in our case
12 × 12 / 2 = 72 units²
the area of a circle is
pi × r²
in our case that is
pi × 12² = 144pi units²
the requested probability is
P = 72 / 144pi = 1/2pi = 0.159154943... ≈ 0.16
Based on the two data sets represented below, complete the following sentences. DATA SET K DATA SET K 0 0 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 DATA SET L DATA SET L 0 0 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 The center of Data Set K is than the center of Data Set L. The spread of Data Set K is than the spread of Data Set L.
Based on the provided data sets, it can be observed that both Data Set K and Data Set L have identical values. Therefore, their centers and spreads are also identical.
The center of a data set can be measured using various statistical measures such as the mean, median, or mode. Since the data sets have the same values, all these measures will yield the same result for both sets.
In this case, the center of Data Set K is equal to the center of Data Set L.
Similarly, the spread of a data set refers to the measure of variability or dispersion within the data. Common measures of spread include the range, variance, and standard deviation.
However, since the data sets are exactly the same, all these measures will yield identical results for both sets. Thus, the spread of Data Set K is the same as the spread of Data Set L.
In summary, both the center and the spread of Data Set K are the same as those of Data Set L. Therefore, there is no difference between the two data sets in terms of their central tendency or variability.
For more such questions sets,click on
https://brainly.com/question/13458417
#SPJ8
A company Charting its profits notices that the relationship between the number of units sold,x, and the profit,P, is a linear. If 170 units sold results in $20 profit and 220 units sold results in $2820 profit, write the profit function for this company.
P=
Find the marginal profit
$
Step-by-step explanation:
a linear relationship or function is described in general as
y = f(x) = ax + b
Because the variable term has the variable x only with the exponent 1, this makes this a straight line - hence the name "linear".
here f(x) is P(x) :
P(x) = ax + b
now we are using both given points (ordered pairs) to calculate a and b :
20 = a×170 + b
2820 = a×220 + b
to eliminate first one variable we subtract equation 1 from equation 2 :
2800 = a×50
a = 2800/50 = 280/5 = 56
now, we use that in any of the 2 original equations to get b :
20 = 56×170 + b
b = 20 - 56×170 = 20 - 9520 = -9500
so,
P(x) = 56x - 9500
how can you write the expression with a rationalized denominator?
3 sqrt 2 / 3 sqrt 6
see photo attached for answers
The expression (3√2) / (3√6) with a rationalized denominator is 3√9 / 6. Option C is the correct answer.
To rationalize the denominator in the expression (3√2) / (3√6), we can multiply both the numerator and denominator by the conjugate of the denominator. The conjugate of √6 is -√6, so we multiply the expression by (-√6) / (-√6):
(3√2 / 3√6) * (-√6 / -√6)
This simplifies to:
-3√12 / (-3√36)
Further simplifying, we have:
-3√12 / (-3 * 6)
-3√12 / -18
Finally, we can cancel out the common factor of 3:
- 3√9 / - 6.
Simplifying further, we get:
3√9 / 6.
Option C is the correct answer.
For such more question on denominator:
https://brainly.com/question/29618306
#SPJ8
Solve the system of equations using elimination.
5x + 3y = 8
4x + y = 12
O (1, 1)
O (2.4)
O (3,0)
O (4,-4)
Answer: O (4, -4)
Step-by-step explanation:
To solve the system of equations using elimination, we can multiply the second equation by -3 to eliminate the y term:
Original equations:
5x + 3y = 8 (Equation 1)
4x + y = 12 (Equation 2)
Multiply Equation 2 by -3:
-3(4x + y) = -3(12)
-12x - 3y = -36 (Equation 3)
Now we can add Equation 1 and Equation 3 to eliminate the y term:
(5x + 3y) + (-12x - 3y) = 8 + (-36)
Simplifying:
5x - 12x + 3y - 3y = 8 - 36
-7x = -28
Divide both sides by -7:
x = -28 / -7
x = 4
Now substitute the value of x back into either of the original equations, let's use Equation 2:
4(4) + y = 12
16 + y = 12
y = 12 - 16
y = -4
Therefore, the solution to the system of equations is x = 4 and y = -4.
What are the coordinates of the image of point (−1, 5) after a counterclockwise rotation of 90° about the origin?
Responses
(1, 5)
(5, 1)
(−5, −1)
(-5, -1)
Answer: (5, -1)
Step-by-step explanation:
To rotate a point counterclockwise by 90° about the origin, we swap the x and y coordinates and negate the new x-coordinate. For the point (-1, 5), we swap the x and y coordinates to get (5, -1). The x-coordinate becomes positive, and the y-coordinate becomes negative. Therefore, the coordinates of the image of the point (-1, 5) after a counterclockwise rotation of 90° about the origin are (5, -1).
I think you put down the same answer choice twice and instead meant to say (5, -1) instead of (-5, -1) twice.
Trent has an 8-foot tall tent in the shape of square based pyramid with a base length of 14 feet. If one bottle of waterproof spray covers 76 square feet, how many bottles will he need to waterproof his tent.
Trent will need approximately 2.86 bottles of waterproof spray to cover his tent.
To calculate the number of bottles of waterproof spray Trent will need to cover his tent, we first need to find the surface area of the tent.
The surface area of a square-based pyramid is given by the formula:
Surface Area = Base Area + (0.5 x Perimeter of Base x Slant Height)
The base of the pyramid is a square with a side length of 14 feet, so the base area is:
Base Area = (Side Length)^2 = 14^2 = 196 square feet
To find the slant height of the pyramid, we can use the Pythagorean theorem. The slant height is the hypotenuse of a right triangle formed by one side of the base, the height of the pyramid, and the slant height. The height of the pyramid is given as 8 feet, and half the length of the base is 7 feet.
Using the Pythagorean theorem:
[tex]Slant Height^2 = (Half Base Length)^2 + Height^2[/tex]
[tex]Slant Height^2 = 7^2 + 8^2Slant Height^2 = 49 + 64Slant Height^2 = 113Slant Height ≈ √113 ≈ 10.63 feet[/tex]
Now we can calculate the surface area of the tent:
Surface Area = 196 + (0.5 x 4 x 10.63)
Surface Area = 196 + (2 x 10.63)
Surface Area = 196 + 21.26
Surface Area ≈ 217.26 square feet
Since each bottle of waterproof spray covers 76 square feet, we can divide the total surface area of the tent by the coverage of each bottle to find the number of bottles needed:
Number of Bottles = Surface Area / Coverage per Bottle
Number of Bottles = 217.26 / 76
Number of Bottles ≈ 2.86
Therefore, Trent will need approximately 2.86 bottles of waterproof spray to cover his tent. Since we can't have a fraction of a bottle, he will need to round up to the nearest whole number. Therefore, Trent will need 3 bottles of waterproof spray to fully waterproof his tent.
for more such question on bottles visit
https://brainly.com/question/28855819
#SPJ8
The sum of negative twenty-nine and twenty-eight is negative seven more than a number. What is the number?
Answer:
8
Step-by-step explanation:
let x be the number,
according to the question,
-29 + 28 = -7 + x
1 + 7 = x
thus, x = 8
What is the range of this function?
The range of the given graph is expressed as:
Option A: {-∞, ∞}
What is the range of the given function?The range of a function is defined as the set of all the possible output values of y. The formula to find the range of a function is y = f(x).
In a relation, it is only a function if every x value corresponds to only one y value,
Now, looking at the given graph, we see that At x = 0, the function is also y = 0.
However, between 0 and π intervals, we see that the graph approaches positive and negative infinity and as such we can tell that the range is expressed as: {-∞, ∞}
Read more about Range of Function at: https://brainly.com/question/7954282
#SPJ1
A village P is 12 km from village Q. It takes 3 hours 20 minutes to travel from Q to P and back to Q by a boat. If the boat travels at a speed of 6 km/h from P to Q and (6 + x) km/h back to P, find the value of x.
Answer:
Hope this helps and have a nice day
Step-by-step explanation:
To find the value of x, we can use the formula:
Time = Distance / Speed
Let's calculate the time taken to travel from Q to P and back to Q.
From Q to P:
Distance = 12 km
Speed = 6 km/h
Time taken from Q to P = Distance / Speed = 12 km / 6 km/h = 2 hours
From P to Q:
Distance = 12 km
Speed = (6 + x) km/h
Time taken from P to Q = Distance / Speed = 12 km / (6 + x) km/h
Given that the total time taken for the round trip is 3 hours 20 minutes, we can convert it to hours:
Total time = 3 hours + (20 minutes / 60) hours = 3 + (1/3) hours = 10/3 hours
According to the problem, the total time is the sum of the time from Q to P and from P to Q:
Total time = Time taken from Q to P + Time taken from P to Q
Substituting the values:
10/3 hours = 2 hours + 12 km / (6 + x) km/h
Simplifying the equation:
10/3 = 2 + 12 / (6 + x)
Multiply both sides by (6 + x) to eliminate the denominator:
10(6 + x) = 2(6 + x) + 12
60 + 10x = 12 + 2x + 12
Collecting like terms:
8x = 24
Dividing both sides by 8:
x = 3
Therefore, the value of x is 3.
Answer:
x = 3
Step-by-step explanation:
speed = distance / time
time = distance / speed
Total time from P to Q to P:
T = 3h 20min
P to Q :
s = 6 km/h
d = 12 km
t = d/s
= 12/6
t = 2 h
time remaining t₁ = T - t
= 3h 20min - 2h
= 1 hr 20 min
= 60 + 20 min
= 80 min
t₁ = 80/60 hr
Q to P:
d₁ = 12km
t₁ = 80/60 hr
s₁ = d/t₁
[tex]= \frac{12}{\frac{80}{60} }\\ \\= \frac{12*60}{80}[/tex]
= 9
s₁ = 9 km/h
From question, s₁ = (6 + x)km/h
⇒ 6 + x = 9
⇒ x = 3