To prove that the function f(x) = (1 - e^(1/x))/(1 + e^(1/x)) is odd, we need to show that f(-x) = -f(x) for all values of x.
First, let's evaluate f(-x):
f(-x) = (1 - e^(1/(-x)))/(1 + e^(1/(-x)))
Simplifying this expression, we have:
f(-x) = (1 - e^(-1/x))/(1 + e^(-1/x))
Now, let's evaluate -f(x):
-f(x) = -((1 - e^(1/x))/(1 + e^(1/x)))
To prove that f(x) is odd, we need to show that f(-x) is equal to -f(x). We can see that the expressions for f(-x) and -f(x) are identical, except for the negative sign in front of -f(x). Since both expressions are equal, we can conclude that f(x) is indeed an odd function.
To prove that the function f(x) = (1 - e^(1/x))/(1 + e^(1/x)) is odd, we must demonstrate that f(-x) = -f(x) for all values of x. We start by evaluating f(-x) by substituting -x into the function:
f(-x) = (1 - e^(1/(-x)))/(1 + e^(1/(-x)))
Next, we simplify the expression to get a clearer form:
f(-x) = (1 - e^(-1/x))/(1 + e^(-1/x))
Now, let's evaluate -f(x) by negating the entire function:
-f(x) = -((1 - e^(1/x))/(1 + e^(1/x)))
To prove that f(x) is an odd function, we need to show that f(-x) is equal to -f(x). Upon observing the expressions for f(-x) and -f(x), we notice that they are the same, except for the negative sign in front of -f(x). Since both expressions are equivalent, we can conclude that f(x) is indeed an odd function.
This proof verifies that f(x) = (1 - e^(1/x))/(1 + e^(1/x)) is an odd function, which means it exhibits symmetry about the origin.
Learn more about function f(x) here:
brainly.com/question/28887915
#SPJ11
2. A store is having a 12-hour sale. The rate at which shoppers enter the store, measured in shoppers per hour, is [tex]S(t)=2 t^3-48 t^2+288 t[/tex] for [tex]0 \leq t \leq 12[/tex]. The rate at which shoppers leave the store, measured in shoppers per hour, is [tex]L(t)=-80+\frac{4400}{t^2-14 t+55}[/tex] for [tex]0 \leq t \leq 12[/tex]. At [tex]t=0[/tex], when the sale begins, there are 10 shoppers in the store.
a) How many shoppers entered the store during the first six hours of the sale?
The number of customers entered the store during the first six hours is 432 .
Given,
S(t) = 2t³ - 48t² + 288t
0≤ t≤ 12
L(t) = -80 + 4400/t² -14t + 55
0≤ t≤ 12
Now,
Shoppers entered in the store during first six hours.
Time variable is 6.
Thus substitute t = 6 ,
S(t) = 2t³ - 48t² + 288t
S(6) = 2(6)³ - 48(6)² + 288(6)
Simplifying further by cubing and squaring the terms ,
S(6) = 216*2 - 48 * 36 +1728
S(6) = 432 - 1728 + 1728
S(6) = 432.
Know more about rate,
https://brainly.com/question/29334875
#SPJ4
Find the area of the shaded region. The graph to the right depicts 10 scores of adults. and these scores are normally distributhd with a mean of 100 . and a standard deviation of 15 . The ates of the shaded region is (Round to four decimal places as needed.)
The area of the shaded region in the normal distribution of adults' scores is equal to the difference between the areas under the curve to the left and to the right. The area of the shaded region is 0.6826, calculated using a calculator. The required answer is 0.6826.
Given that the scores of adults are normally distributed with a mean of 100 and a standard deviation of 15. The graph shows the area of the shaded region that needs to be determined. The shaded region represents scores between 85 and 115 (100 ± 15). The area of the shaded region is equal to the difference between the areas under the curve to the left and to the right of the shaded region.Using z-scores:z-score for 85 = (85 - 100) / 15 = -1z-score for 115 = (115 - 100) / 15 = 1Thus, the area to the left of 85 is the same as the area to the left of -1, and the area to the left of 115 is the same as the area to the left of 1. We can use the standard normal distribution table or calculator to find these areas.Using a calculator:Area to the left of -1 = 0.1587
Area to the left of 1 = 0.8413
The area of the shaded region = Area to the left of 115 - Area to the left of 85
= 0.8413 - 0.1587
= 0.6826
Therefore, the area of the shaded region is 0.6826. Thus, the required answer is 0.6826.
To know more about normal distribution Visit:
https://brainly.com/question/15103234
#SPJ11
Consider the simple linear regression model y=β 0
+β 1
x+ε, but suppose that β 0
is known and therefore does not need to be estimated. (a) What is the least squares estimator for β 1
? Comment on your answer - does this make sense? (b) What is the variance of the least squares estimator β
^
1
that you found in part (a)? (c) Find a 100(1−α)% CI for β 1
. Is this interval narrower than the CI we found in the setting that both the intercept and slope are unknown and must be estimated?
a) This estimator estimates the slope of the linear relationship between x and y, even if β₀ is known.
(a) In the given scenario where β₀ is known and does not need to be estimated, the least squares estimator for β₁ remains the same as in the standard simple linear regression model. The least squares estimator for β₁ is calculated using the formula:
beta₁ = Σ((xᵢ - x(bar))(yᵢ - y(bar))) / Σ((xᵢ - x(bar))²)
where xᵢ is the observed value of the independent variable, x(bar) is the mean of the independent variable, yᵢ is the observed value of the dependent variable, and y(bar) is the mean of the dependent variable.
(b) The variance of the least squares estimator beta₁ can be calculated using the formula:
Var(beta₁) = σ² / Σ((xᵢ - x(bar))²)
where σ² is the variance of the error term ε.
(c) To find a 100(1−α)% confidence interval for β₁, we can use the standard formula:
beta₁ ± tₐ/₂ * SE(beta₁)
where tₐ/₂ is the critical value from the t-distribution with (n-2) degrees of freedom, and SE(beta₁) is the standard error of the estimator beta₁.
The confidence interval obtained in this scenario, where β₀ is known, should have the same width as the confidence interval when both β₀ and β₁ are unknown and need to be estimated. The only difference is that the point estimate for β₁ will be the same as the true value of β₁, which is known in this case.
To know more about squares visit:
brainly.com/question/14198272
#SPJ11
Let f(x)= e^x/1+e^x
(a) Find the derivative f′.Carefully justify each step using the differentiation rules from the text. (You may identify rules by the number or by a short description such as the quotient rule.)
The given function is f(x) = /1 + e^x. We are to find the derivative of the function.
Using the quotient rule, we have f'(x) = [(1 + e^x)*e^x - e^x*(e^x)] / (1 e^x)^2
Simplifying, we get f'(x) = e^x / (1 + e^x)^2
We used the quotient rule of differentiation which states that if y = u/v,
where u and v are differentiable functions of x, then the derivative of y with respect to x is given byy'
= [v*du/dx - u*dv/dx]/v²
We can see that the given function can be written in the form y = u/v,
where u = e^x and
v = 1 + e^x.
On differentiating u and v with respect to x, we get du/dx = e^x and
dv/dx = e^x.
We then substitute these values in the quotient rule to get the derivative f'(x)
= e^x / (1 + e^x)^2.
Hence, the derivative of the given function is f'(x) = e^x / (1 + e^x)^2.
To know more about derivative visit:
https://brainly.com/question/25324584
#SPJ11
vertex at (4,3), axis of symmetry with equation y=3, length of latus rectums 4, and 4p>0
The given information describes a parabola with vertex at (4,3), axis of symmetry with equation y=3, and a latus rectum length of 4. The value of 4p is positive.
1. The axis of symmetry is a horizontal line passing through the vertex, so the equation y=3 represents the axis of symmetry.
2. Since the latus rectum length is 4, we know that the distance between the focus and the directrix is also 4.
3. The focus is located on the axis of symmetry and is equidistant from the vertex and directrix, so it has coordinates (4+2, 3) = (6,3).
4. The directrix is also a horizontal line and is located 4 units below the vertex, so it has the equation y = 3-4 = -1.
5. The distance between the vertex and focus is p, so we can use the distance formula to find that p = 2.
6. Since 4p>0, we know that p is positive and thus the parabola opens to the right.
7. Finally, the equation of the parabola in standard form is (y-3)^2 = 8(x-4).
Learn more about parabola : brainly.com/question/11911877
#SPJ11
The following sets are defined: - C={ companies },e.g.: Microsoft,Apple I={ investors },e.g.JP Morgan Chase John Doe - ICN ={(i,c,n)∣(i,c,n)∈I×C×Z +
and investor i holds n>0 shares of company c} o Note: if (i,c,n)∈
/
ICN, then investor i does not hold any stocks of company c Write a recursive definition of a function cwi(I 0
) that returns a set of companies that have at least one investor in set I 0
⊆I. Implement your definition in pseudocode.
A recursive definition of a function cwi (I0) that returns a set of companies that have at least one investor in set I0 is provided below in pseudocode. The base case is when there is only one investor in the set I0.
The base case involves finding the companies that the investor owns and returns the set of companies.The recursive case is when there are more than one investors in the set I0. The recursive case divides the set of investors into two halves and finds the set of companies owned by the first half and the second half of the investors.
The recursive case then returns the intersection of these two sets of def cwi(I0):
companies.pseudocode:
if len(I0) == 1:
i = I0[0]
return [c for (j, c, n) in ICN if j == i and n > 0]
else:
m = len(I0) // 2
I1 = I0[:m]
I2 = I0[m:]
c1 = cwi(I1)
c2 = cwi(I2)
return list(set(c1) & set(c2))
To know more about intersection visit :
https://brainly.com/question/30722656
#SPJ11
2. (14 points) Find a function F(n) with the property that the graph of y- F(x) is the
result of applying the following transformations to the graph of
v=1²+2r. First, stretch the graph horizontally by a factor of 4, then shift the resulting graph 7 units down and 3 units to the left. Leave your answer unsimplified. You don't have to sketch the graph,
Given that, the graph of y - F(x) is the result of applying the following transformations to the graph of v = 1² + 2r.Therefore, the function F(n) can be determined by applying the inverse of these transformations.
The correct option is (C)
The graph of v = 1² + 2r is a parabola.
To stretch it horizontally by a factor of 4, replace r with r/4: v = 1² + 2r/4²
or v = 1 + r/8.
Now, shifting the graph down by 7 units means replacing v with (v - 7): v - 7 = 1 + r/8
or v = r/8 + 8.
Finally, shifting the graph 3 units to the left means replacing r with (r + 3): v = (r + 3)/8 + 8
or v = (r + 24)/8.
The function F(n) is given by F(n) = (n + 24)/8.
We know that the graph of v = 1² + 2r is a parabola. Then the transformations of the graph are as follows: To stretch the graph horizontally by a factor of 4, we replace r with r/4: v = 1² + 2r/4²
or v = 1 + r/8.
Now, shift the resulting graph 7 units down by replacing v with (v - 7): v - 7 = 1 + r/8
or v = r/8 + 8.
Finally, shift the resulting graph 3 units to the left by replacing r with (r + 3): v = (r + 3)/8 + 8
or v = (r + 24)/8.
Thus, the function F(n) is given by F(n) = (n + 24)/8. To determine the function F(n) with the given graph, we need to apply the inverse transformations of the graph. First, we stretch the graph horizontally by a factor of 4. This can be done by replacing r with r/4, which gives v = 1² + 2r/4²
or v = 1 + r/8.
Next, we shift the resulting graph down 7 units by replacing v with (v - 7), which gives v - 7 = 1 + r/8
or v = r/8 + 8.
Finally, we shift the resulting graph 3 units to the left by replacing r with (r + 3), which gives v = (r + 3)/8 + 8
or v = (r + 24)/8.
Therefore, the function F(n) is given by F(n) = (n + 24)/8.
To know more about graph visit:
https://brainly.com/question/17267403
#SPJ11
tanning parlor located in a major located in a major shopping center near a large new england city has the following history of customers over the last four years (data are in hundreds of customers) year feb may aug nov yearly totals 2012 3.5 2.9 2.0 3.2 11.6 2013 4.1 3.4 2.9 3.6 14 2014 5.2 4.5 3.1 4.5 17.3 2015 6.1 5.0 4.4 6.0 21.5
The Cycle Factor Forecast is 0.13,0.13,0.13,0.13 and the Overall Forecast is 6.3,5.4,4.9,6.3.
Time series forecasting differs from supervised learning in their goal. One of the main variables in forecasting is the history of the very metric we are trying to predict. Supervised learning on the other hand usually seeks to predict using primarily exogenous variables.
A and B. The table is shown below with attached python code at the very end. To get this values simply use stats model as they have all the functions needed. Seasonal index is also in the table.
C and D: To forecast either of these, we will use tbats with a frequency of 4 which has proven to be better than an auto arima on average. Again code, is attached at end. Forecasts are below. It seems tabs though a naïve forecast was best for the cycle factor.
Cycle Factor Forecast: 0.13,0.13,0.13,0.13
Overall Forecast: 6.3,5.4,4.9,6.3
E:0.324
Again I simply created a function in python to calculate the RMSE of any two time series.
F.
CODE:
import pandas as pd
from statsmodels.tsa.seasonal import seasonal_decompose
import numpy as np
import matplotlib.pyplot as plt
data=3.5,2.9,2.0,3.2,4.1,3.4,2.9,2.6,5.2,4.5,3.1,4.5,6.1,5,4.4,6,6.8,5.1,4.7,6.5
df=pd.DataFrame()
df"actual"=data
df.index=pd.date_range(start='1/1/2004', periods=20, freq='3M')
df"mv_avg"=df"actual".rolling(4).mean()
df"trend"=seasonal_decompose(df"actual",two_sided=False).trend
df"seasonal"=seasonal_decompose(df"actual",two_sided=False).seasonal
df"cycle"=seasonal_decompose(df"actual",two_sided=False).resid
def rmse(predictions, targets):
return np.sqrt(((predictions - targets) ** 2).mean())
rmse_values=rmse(np.array(6.3,5.4,4.9,6.3),np.array(6.8,5.1,4.7,6.5))
plt.style.use("bmh")
plot_df=df.ilocNo InterWiki reference defined in properties for Wiki called ""!
plt.plot(plot_df.index,plot_df"actual")
plt.plot(plot_df.index,plot_df"mv_avg")
plt.plot(plot_df.index,plot_df"trend")
plt.plot(df.ilocNo InterWiki reference defined in properties for Wiki called "-4"!.index,6.3,5.4,4.9,6.3)
plt.legend("actual","mv_avg","trend","predictions")
Therefore, the Cycle Factor Forecast is 0.13,0.13,0.13,0.13 and the Overall Forecast is 6.3,5.4,4.9,6.3.
Learn more about the Cycle Factor Forecast here:
https://brainly.com/question/32348366.
#SPJ4
"Your question is incomplete, probably the complete question/missing part is:"
A tanning parlor located in a major shopping center near a large New England city has the following history of customers over the last four years (data are in hundreds of customers):
a. Construct a table in which you show the actual data (given in the table), the centered moving average, the centered moving-average trend, the seasonal factors, and the cycle factors for every quarter for which they can be calculated in years 1 through 4.
b. Determine the seasonal index for each quarter.
c. Project the cycle factor through 2008.
d. Make a forecast for each quarter of 2008.
e. The actual numbers of customers served per quarter in 2008 were 6.8, 5.1, 4.7 and 6.5 for quarters 1 through 4, respectively (numbers are in hundreds). Calculate the RMSE for 2008.
f. Prepare a time-series plot of the actual data, the centered moving averages, the long-term trend, and the values predicted by your model for 2004 through 2008 (where data are available).
Which function is most likely graphed on the coordinate plane below?
a) f(x) = 3x – 11
b) f(x) = –4x + 12
c) f(x) = 4x + 13
d) f(x) = –5x – 19
Based on the characteristics of the given graph, the function that is most likely graphed is f(x) = -4x + 12. This function has a slope of -4, indicating a decreasing line, and a y-intercept of 12, matching the starting point of the graph.The correct answer is option B.
To determine which function is most likely graphed, we can compare the slope and y-intercept of each function with the given graph.
The slope of a linear function represents the rate of change of the function. It determines whether the graph is increasing or decreasing. In this case, the slope is the coefficient of x in each function.
The y-intercept of a linear function is the value of y when x is equal to 0. It determines where the graph intersects the y-axis.
Looking at the given graph, we can observe that it starts at the point (0, 12) and decreases as x increases.
Let's analyze each option to see if it matches the characteristics of the given graph:
a) f(x) = 3x - 11:
- Slope: 3
- Y-intercept: -11
b) f(x) = -4x + 12:
- Slope: -4
- Y-intercept: 12
c) f(x) = 4x + 13:
- Slope: 4
- Y-intercept: 13
d) f(x) = -5x - 19:
- Slope: -5
- Y-intercept: -19
Comparing the slope and y-intercept of each function with the characteristics of the given graph, we can see that option b) f(x) = -4x + 12 matches the graph. The slope of -4 indicates a decreasing line, and the y-intercept of 12 matches the starting point of the graph.
Therefore, the function most likely graphed on the coordinate plane is f(x) = -4x + 12.
For more such questions function,Click on
https://brainly.com/question/11624077
#SPJ8
Answer:
It's D.
Step-by-step explanation:
Edge 2020;)
Suppose that $\mu$ is a finite measure on $(X ,cal{A})$.
Find and prove a corresponding formula for the measure of the union
of n sets.
The required corresponding formula for the measure of the union
of n sets is μ(A₁ ∪ A₂ ∪ ... ∪ Aₙ) = ∑ μ(Aᵢ) - ∑ μ(Aᵢ ∩ Aⱼ) + ∑ μ(Aᵢ ∩ Aⱼ ∩ Aₖ) - ... + (-1)^(n+1) μ(A₁ ∩ A₂ ∩ ... ∩ Aₙ)
The measure of the union of n sets, denoted as μ(A₁ ∪ A₂ ∪ ... ∪ Aₙ), can be computed using the inclusion-exclusion principle. The formula for the measure of the union of n sets is given by:
μ(A₁ ∪ A₂ ∪ ... ∪ Aₙ) = ∑ μ(Aᵢ) - ∑ μ(Aᵢ ∩ Aⱼ) + ∑ μ(Aᵢ ∩ Aⱼ ∩ Aₖ) - ... + (-1)^(n+1) μ(A₁ ∩ A₂ ∩ ... ∩ Aₙ)
This formula accounts for the overlapping regions between the sets to avoid double-counting and ensures that the measure is computed correctly.
To prove the formula, we can use mathematical induction. The base case for n = 2 can be established using the definition of the measure. For the inductive step, assume the formula holds for n sets, and consider the union of n+1 sets:
μ(A₁ ∪ A₂ ∪ ... ∪ Aₙ₊₁)
Using the formula for the union of two sets, we can rewrite this as:
μ((A₁ ∪ A₂ ∪ ... ∪ Aₙ) ∪ Aₙ₊₁)
By the induction hypothesis, we know that:
μ(A₁ ∪ A₂ ∪ ... ∪ Aₙ) = ∑ μ(Aᵢ) - ∑ μ(Aᵢ ∩ Aⱼ) + ∑ μ(Aᵢ ∩ Aⱼ ∩ Aₖ) - ... + (-1)^(n+1) μ(A₁ ∩ A₂ ∩ ... ∩ Aₙ)
Using the inclusion-exclusion principle, we can expand the above expression to include the measure of the intersection of each set with Aₙ₊₁:
∑ μ(Aᵢ) - ∑ μ(Aᵢ ∩ Aⱼ) + ∑ μ(Aᵢ ∩ Aⱼ ∩ Aₖ) - ... + (-1)^(n+1) μ(A₁ ∩ A₂ ∩ ... ∩ Aₙ) + μ(A₁ ∩ Aₙ₊₁) - μ(A₂ ∩ Aₙ₊₁) + μ(A₁ ∩ A₂ ∩ Aₙ₊₁) - ...
Simplifying this expression, we obtain the formula for the measure of the union of n+1 sets. Thus, by mathematical induction, we have proven the corresponding formula for the measure of the union of n sets.
Learn more about mathematical induction here:
brainly.com/question/29503103
#SPJ11
Olam Question # 2 Revisit How to attempt? Question : Think a Number Bob and Alice play a game in which Bob gives Alice a challenge to think of any number M between 1 to N. Bob then tells Alice a number X. Alice has to confirm whether X is greater or smaller than number M or equal to number M. This continues till Bob finds the number correctly. Your task is to find the maximum number of attempts Bob needs to guess the number thought of by Alice. Input Specification: input1: N, the upper limit of the number guessed by Alice. (1<=N<=108) Output Specification: Your function should return the maximum number of attempts required to find the number M(1<=M<=N).
In the given question, Bob and Alice play a game in which Bob gives Alice a challenge to think of any number M between 1 to N. Bob then tells Alice a number X. Alice has to confirm whether X is greater or smaller than number M or equal to number M.
This continues till Bob finds the number correctly. The input is given as N, the upper limit of the number guessed by Alice. We have to find the maximum number of attempts Bob needs to guess the number thought of by Alice.So, in order to find the maximum number of attempts required to find the number M(1<=M<=N), we can use binary search approach. The idea is to start with middle number of 1 and N i.e., (N+1)/2. We check whether the number is greater or smaller than the given number.
If the number is smaller, we update the range and set L as mid + 1. If the number is greater, we update the range and set R as mid – 1. We do this until the number is found. We can consider the worst case in which number of attempts required to find the number M is the maximum number of attempts that Bob needs to guess the number thought of by Alice.
The maximum number of attempts Bob needs to guess the number thought of by Alice is log2(N) + 1.Explanation:Binary Search is a technique which is used for searching for an element in a sorted list. We first start with finding the mid-point of the list. If the element is present in the mid-point, we return the index of the mid-point. If the element is smaller than the mid-point, we repeat the search on the lower half of the list.
If the element is greater than the mid-point, we repeat the search on the upper half of the list. We do this until we either find the element or we are left with an empty list. The time complexity of binary search is O(log n), where n is the size of the list.
To know more about confirm visit:
https://brainly.com/question/32246938
#SPJ11
Calculate the double integral. 6x/(1 + xy) dA, R = [0, 6] x [0, 1]
The value of the double integral ∬R (6x/(1 + xy)) dA over the region
R = [0, 6] × [0, 1] is 6 ln(7).
To calculate the double integral ∬R (6x/(1 + xy)) dA over the region
R = [0, 6] × [0, 1], we can integrate with respect to x and y using the limits of the region.
The integral can be written as:
∬R (6x/(1 + xy)) dA = [tex]\int\limits^1_0\int\limits^6_0[/tex] (6x/(1 + xy)) dx dy
Let's start by integrating with respect to x:
[tex]\int\limits^6_0[/tex](6x/(1 + xy)) dx
To evaluate this integral, we can use a substitution.
Let u = 1 + xy,
du/dx = y.
When x = 0,
u = 1 + 0y = 1.
When x = 6,
u = 1 + 6y
= 1 + 6
= 7.
Using this substitution, the integral becomes:
[tex]\int\limits^7_1[/tex] (6x/(1 + xy)) dx = [tex]\int\limits^7_1[/tex](6/u) du
Integrating, we have:
= 6 ln|7| - 6 ln|1|
= 6 ln(7)
Now, we can integrate with respect to y:
= [tex]\int\limits^1_0[/tex] (6 ln(7)) dy
= 6 ln(7) - 0
= 6 ln(7)
Therefore, the value of the double integral ∬R (6x/(1 + xy)) dA over the region R = [0, 6] × [0, 1] is 6 ln(7).
Learn more about double integral here:
brainly.com/question/15072988
#SPJ4
The value of the double integral [tex]\int\limits^1_0\int\limits^6_0 \frac{6x}{(1 + xy)} dA[/tex], over the given region [0, 6] x [0, 1] is (343/3)ln(7).
Now, for the double integral [tex]\int\limits^1_0\int\limits^6_0 \frac{6x}{(1 + xy)} dA[/tex], use the standard method of integration.
First, find the antiderivative of the function 6x/(1 + xy) with respect to x.
By integrating with respect to x, we get:
∫(6x/(1 + xy)) dx = 3ln(1 + xy) + C₁
where C₁ is the constant of integration.
Now, we apply the definite integral over x, considering the limits of integration [0, 6]:
[tex]\int\limits^6_0 (3 ln (1 + xy) + C_{1} ) dx[/tex]
To proceed further, substitute the limits of integration into the equation:
[3ln(1 + 6y) + C₁] - [3ln(1 + 0y) + C₁]
Since ln(1 + 0y) is equal to ln(1), which is 0, simplify the expression to:
3ln(1 + 6y) + C₁
Now, integrate this expression with respect to y, considering the limits of integration [0, 1]:
[tex]\int\limits^1_0 (3 ln (1 + 6y) + C_{1} ) dy[/tex]
To integrate the function, we use the property of logarithms:
[tex]\int\limits^1_0 ( ln (1 + 6y))^3 + C_{1} ) dy[/tex]
Applying the power rule of integration, this becomes:
[(1/3)(1 + 6y)³ln(1 + 6y) + C₂] evaluated from 0 to 1,
where C₂ is the constant of integration.
Now, we substitute the limits of integration into the equation:
(1/3)(1 + 6(1))³ln(1 + 6(1)) + C₂ - (1/3)(1 + 6(0))³ln(1 + 6(0)) - C₂
Simplifying further:
(343/3)ln(7) + C₂ - C₂
(343/3)ln(7)
So, the value of the double integral [tex]\int\limits^1_0\int\limits^6_0 \frac{6x}{(1 + xy)} dA[/tex], over the given region [0, 6] x [0, 1] is (343/3)ln(7).
To learn more about integration visit :
brainly.com/question/18125359
#SPJ4
a) perform a linear search by hand for the array [20,−20,10,0,15], loching for 0 , and showing each iteration one line at a time b) perform a binary search by hand fo the array [20,0,10,15,20], looking for 0 , and showing each iteration one line at a time c) perform a bubble surt by hand for the array [20,−20,10,0,15], shouing each iteration one line at a time d) perform a selection sort by hand for the array [20,−20,10,0,15], showing eah iteration one line at a time
In the linear search, the array [20, -20, 10, 0, 15] is iterated sequentially until the element 0 is found, The binary search for the array [20, 0, 10, 15, 20] finds the element 0 by dividing the search space in half at each iteration, The bubble sort iteratively swaps adjacent elements until the array [20, -20, 10, 0, 15] is sorted in ascending order and The selection sort swaps the smallest unsorted element with the first unsorted element, resulting in the sorted array [20, -20, 10, 0, 15].
The array is now sorted: [-20, 0, 10, 15, 20]
a) Linear Search for 0 in the array [20, -20, 10, 0, 15]:
Iteration 1: Compare 20 with 0. Not a match.
Iteration 2: Compare -20 with 0. Not a match.
Iteration 3: Compare 10 with 0. Not a match.
Iteration 4: Compare 0 with 0. Match found! Exit the search.
b) Binary Search for 0 in the sorted array [0, 10, 15, 20, 20]:
Iteration 1: Compare middle element 15 with 0. 0 is smaller, so search the left half.
Iteration 2: Compare middle element 10 with 0. 0 is smaller, so search the left half.
Iteration 3: Compare middle element 0 with 0. Match found! Exit the search.
c) Bubble Sort for the array [20, -20, 10, 0, 15]:
Iteration 1: Compare 20 and -20. Swap them: [-20, 20, 10, 0, 15]
Iteration 2: Compare 20 and 10. No swap needed: [-20, 10, 20, 0, 15]
Iteration 3: Compare 20 and 0. Swap them: [-20, 10, 0, 20, 15]
Iteration 4: Compare 20 and 15. No swap needed: [-20, 10, 0, 15, 20]
The array is now sorted: [-20, 10, 0, 15, 20]
d) Selection Sort for the array [20, -20, 10, 0, 15]:
Iteration 1: Find the minimum element, -20, and swap it with the first element: [-20, 20, 10, 0, 15]
Iteration 2: Find the minimum element, 0, and swap it with the second element: [-20, 0, 10, 20, 15]
Iteration 3: Find the minimum element, 10, and swap it with the third element: [-20, 0, 10, 20, 15]
Iteration 4: Find the minimum element, 15, and swap it with the fourth element: [-20, 0, 10, 15, 20]
To know more about Iteration refer to-
https://brainly.com/question/31197563
#SPJ11
Let f(x)=e^x+1g(x)=x^2−2h(x)=−3x+8 1) Find the asea between the x-axis and f(x) as x goes from 0 to 3
Therefore, the area between the x-axis and f(x) as x goes from 0 to 3 is [tex]e^3 + 2.[/tex]
To find the area between the x-axis and the function f(x) as x goes from 0 to 3, we can integrate the absolute value of f(x) over that interval. The absolute value of f(x) is |[tex]e^x + 1[/tex]|. To find the area, we can integrate |[tex]e^x + 1[/tex]| from x = 0 to x = 3:
Area = ∫[0, 3] |[tex]e^x + 1[/tex]| dx
Since [tex]e^x + 1[/tex] is positive for all x, we can simplify the absolute value:
Area = ∫[0, 3] [tex](e^x + 1) dx[/tex]
Integrating this function over the interval [0, 3], we have:
Area = [tex][e^x + x][/tex] evaluated from 0 to 3
[tex]= (e^3 + 3) - (e^0 + 0)\\= e^3 + 3 - 1\\= e^3 + 2\\[/tex]
To know more about area,
https://brainly.com/question/32639626
#SPJ11
If (a,b) and (c,d) are solutions of the system x^2−y=1&x+y=18, the a+b+c+d= Note: Write vour answer correct to 0 decimal place.
To find the values of a, b, c, and d, we can solve the given system of equations:
x^2 - y = 1 ...(1)
x + y = 18 ...(2)
From equation (2), we can isolate y and express it in terms of x:
y = 18 - x
Substituting this value of y into equation (1), we get:
x^2 - (18 - x) = 1
x^2 - 18 + x = 1
x^2 + x - 17 = 0
Now we can solve this quadratic equation to find the values of x:
(x + 4)(x - 3) = 0
So we have two possible solutions:
x = -4 and x = 3
For x = -4:
y = 18 - (-4) = 22
For x = 3:
y = 18 - 3 = 15
Therefore, the solutions to the system of equations are (-4, 22) and (3, 15).
The sum of a, b, c, and d is:
a + b + c + d = -4 + 22 + 3 + 15 = 36
Therefore, a + b + c + d = 36.
Learn more about quadratic equation here:
https://brainly.com/question/29269455
#SPJ11
Solve the given differential equation: (a) y′+(1/x)y=3cos2x, x>0
(b) xy′+2y=e^x , x>0
(a) The solution to the differential equation is y = (3/2)(sin(2x)/|x|) + C/|x|, where C is a constant.
(b) The solution to the differential equation is y = ((x^2 - 2x + 2)e^x + C)/x^3, where C is a constant.
(a) To solve the differential equation y' + (1/x)y = 3cos(2x), we can use the method of integrating factors. The integrating factor is given by μ(x) = e^(∫(1/x)dx) = e^(ln|x|) = |x|. Multiplying both sides of the equation by |x|, we have |x|y' + y = 3xcos(2x). Now, we can rewrite the left side as (|x|y)' = 3xcos(2x). Integrating both sides with respect to x, we get |x|y = ∫(3xcos(2x))dx. Evaluating the integral and simplifying, we obtain |x|y = (3/2)sin(2x) + C, where C is the constant of integration. Dividing both sides by |x|, we finally have y = (3/2)(sin(2x)/|x|) + C/|x|.
(b) To solve the differential equation xy' + 2y = e^x, we can use the method of integrating factors. The integrating factor is given by μ(x) = e^(∫(2/x)dx) = e^(2ln|x|) = |x|^2. Multiplying both sides of the equation by |x|^2, we have x^3y' + 2x^2y = x^2e^x. Now, we can rewrite the left side as (x^3y)' = x^2e^x. Integrating both sides with respect to x, we get x^3y = ∫(x^2e^x)dx. Evaluating the integral and simplifying, we obtain x^3y = (x^2 - 2x + 2)e^x + C, where C is the constant of integration. Dividing both sides by x^3, we finally have y = ((x^2 - 2x + 2)e^x + C)/x^3.
Learn more about differential equation here :-
https://brainly.com/question/32645495
#SPJ11
On April 5, 2022, Janeen Camoct took out an 8 1/2% loan for $20,000. The loan is due March 9, 2023. Use ordinary interest to calculate the interest.
What total amount will Janeen pay on March 9, 2023? (Ignore leap year.) (Use Days in a year table.)
Note: Do not round intermediate calculations. Round your answer to the nearest cent.
The total amount Janeen will pay on March 9, 2023, rounded to the nearest cent is $21,685.67
To calculate the interest on the loan, we need to determine the interest amount for the period from April 5, 2022, to March 9, 2023, using ordinary interest.
First, let's calculate the number of days between the two dates:
April 5, 2022, to March 9, 2023:
- April: 30 days
- May: 31 days
- June: 30 days
- July: 31 days
- August: 31 days
- September: 30 days
- October: 31 days
- November: 30 days
- December: 31 days
- January: 31 days
- February: 28 days (assuming non-leap year)
- March (up to the 9th): 9 days
Total days = 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31 + 31 + 28 + 9 = 353 days
Next, let's calculate the interest amount using the ordinary interest formula:
Interest = Principal × Rate × Time
Principal = $20,000
Rate = 8.5% or 0.085 (decimal form)
Time = 353 days
Interest = $20,000 × 0.085 × (353/365)
= $1,685.674
Now, let's calculate the total amount Janeen will pay on March 9, 2023:
Total amount = Principal + Interest
Total amount = $20,000 + $1,685.674
= $21,685.674
= $21,685.67
To learn more about interest: https://brainly.com/question/29451175
#SPJ11
A street vendor has a total of 350 short and long sleeve T-shirts. If she sells the short sleeve shirts for $12 each and the long sleeve shirts for $16 each, how many of each did she sell if she sold
The problem is not solvable as stated, since the number of short sleeve T-shirts sold cannot be larger than the total number of shirts available.
Let x be the number of short sleeve T-shirts sold, and y be the number of long sleeve T-shirts sold. Then we have two equations based on the information given in the problem:
x + y = 350 (equation 1, since the vendor has a total of 350 shirts)
12x + 16y = 5000 (equation 2, since the total revenue from selling x short sleeve shirts and y long sleeve shirts is $5000)
We can use equation 1 to solve for y in terms of x:
y = 350 - x
Substituting this into equation 2, we get:
12x + 16(350 - x) = 5000
Simplifying and solving for x, we get:
4x = 1800
x = 450
Since x represents the number of short sleeve T-shirts sold, and we know that the vendor sold a total of 350 shirts, we can see that x is too large. Therefore, there is no solution to this problem that satisfies the conditions given.
In other words, the problem is not solvable as stated, since the number of short sleeve T-shirts sold cannot be larger than the total number of shirts available.
Learn more about " equations" : https://brainly.com/question/29174899
#SPJ11
Find the volumes of the solids generated by revolving the region in the first quadrant bounded by the curve x=y−y^3
and the y-axis about the given axes. a. The x-axis b. The line y=1 a. The volume is (Type an exact answer in terms of π.)
So, the volume of the solid generated by revolving the region about the x-axis is 2π/3.
To find the volume of the solid generated by revolving the region in the first quadrant bounded by the curve [tex]x = y - y^3[/tex] and the y-axis about the x-axis, we can use the method of cylindrical shells.
The equation [tex]x = y - y^3[/tex] can be rewritten as [tex]y = x + x^3.[/tex]
We need to find the limits of integration. Since the region is in the first quadrant and bounded by the y-axis, we can set the limits of integration as y = 0 to y = 1.
The volume of the solid can be calculated using the formula:
V = ∫[a, b] 2πx * h(x) dx
where a and b are the limits of integration, and h(x) represents the height of the cylindrical shell at each x-coordinate.
In this case, h(x) is the distance from the x-axis to the curve [tex]y = x + x^3[/tex], which is simply x.
Therefore, the volume can be calculated as:
V = ∫[0, 1] 2πx * x dx
V = 2π ∫[0, 1] [tex]x^2 dx[/tex]
Integrating, we get:
V = 2π[tex][x^3/3][/tex] from 0 to 1
V = 2π * (1/3 - 0/3)
V = 2π/3
To know more about volume,
https://brainly.com/question/33630070
#SPJ11
The average number of misprints per page in a magazine is whixch follows a Poisson's Probability distribution. What is the probability that the number of misprints on a particular page of that magazine is 2?
The probability that a particular book is free from misprints is 0.2231. option D is correct.
The average number of misprints per page (λ) is given as 1.5.
The probability of having no misprints (k = 0) can be calculated using the Poisson probability mass function:
[tex]P(X = 0) = (e^{-\lambda}\times \lambda^k) / k![/tex]
Substituting the values:
P(X = 0) = [tex](e^{-1.5} \times 1.5^0) / 0![/tex]
Since 0! (zero factorial) is equal to 1, we have:
P(X = 0) = [tex]e^{-1.5}[/tex]
Calculating this value, we find:
P(X = 0) = 0.2231
Therefore, the probability that a particular book is free from misprints is approximately 0.2231.
To learn more on probability click:
https://brainly.com/question/11234923
#SPJ4
Question 13: The average number of misprints per page of a book is 1.5.Assuming the distribution of number of misprints to be Poisson. The probability that a particular book is free from misprints,is B. 0.435 D. 0.2231 A. 0.329 C. 0.549
differentiate the function
y=(x²+4x+3 y=x²+4x+3) /√x
differentiate the function
f(x)=[(1/x²) -(3/x^4)](x+5x³)
The derivative of the function y = (x² + 4x + 3)/(√x) is shown below:
Given function,y = (x² + 4x + 3)/(√x)We can rewrite the given function as y = (x² + 4x + 3) * x^(-1/2)
Hence, y = (x² + 4x + 3) * x^(-1/2)
We can use the Quotient Rule of Differentiation to differentiate the above function.
Hence, the derivative of the given function y = (x² + 4x + 3)/(√x) is
dy/dx = [(2x + 4) * x^(1/2) - (x² + 4x + 3) * (1/2) * x^(-1/2)] / x = [2x(x + 2) - (x² + 4x + 3)] / [2x^(3/2)]
We simplify the expression, dy/dx = (x - 1) / [x^(3/2)]
Hence, the derivative of the given function y = (x² + 4x + 3)/(√x) is
(x - 1) / [x^(3/2)].
The derivative of the function f(x) = [(1/x²) - (3/x^4)](x + 5x³) is shown below:
Given function, f(x) = [(1/x²) - (3/x^4)](x + 5x³)
We can use the Product Rule of Differentiation to differentiate the above function.
Hence, the derivative of the given function f(x) = [(1/x²) - (3/x^4)](x + 5x³) is
df/dx = [(1/x²) - (3/x^4)] * (3x² + 1) + [(1/x²) - (3/x^4)] * 15x²
We simplify the expression, df/dx = [(1/x²) - (3/x^4)] * [3x² + 1 + 15x²]
Hence, the derivative of the given function f(x) = [(1/x²) - (3/x^4)](x + 5x³) is
[(1/x²) - (3/x^4)] * [3x² + 1 + 15x²].
To know more about differentiation visit:
https://brainly.com/question/25324584
#SPJ11
Producers of a certain brand of refrigerator will make 1000 refrigerators available when the unit price is $ 410 . At a unit price of $ 450,5000 refrigerators will be marketed. Find the e
The following is the given data for the brand of refrigerator.
Let "x" be the unit price of the refrigerator in dollars, and "y" be the number of refrigerators produced.
Suppose that the producers of a certain brand of the refrigerator make 1000 refrigerators available when the unit price is $410.
This implies that:
y = 1000x = 410
When the unit price of the refrigerator is $450, 5000 refrigerators will be marketed.
This implies that:
y = 5000x = 450
To find the equation of the line that represents the relationship between price and quantity, we need to solve the system of equations for x and y:
1000x = 410
5000x = 450
We can solve the first equation for x as follows:
x = 410/1000 = 0.41
For the second equation, we can solve for x as follows:
x = 450/5000 = 0.09
The slope of the line that represents the relationship between price and quantity is given by:
m = (y2 - y1)/(x2 - x1)
Where (x1, y1) = (0.41, 1000) and (x2, y2) = (0.09, 5000)
m = (5000 - 1000)/(0.09 - 0.41) = -10000
Therefore, the equation of the line that represents the relationship between price and quantity is:
y - y1 = m(x - x1)
Substituting m, x1, and y1 into the equation, we get:
y - 1000 = -10000(x - 0.41)
Simplifying the equation:
y - 1000 = -10000x + 4100
y = -10000x + 5100
This is the equation of the line that represents the relationship between price and quantity.
to find the equation of the line:
https://brainly.com/question/33645095
#SPJ11
Classification using Nearest Neighbour and Bayes theorem As output from an imaging system we get a measurement that depends on what we are seeing. For three different classes of objects we get the following measurements. Class 1 : 0.4003,0.3985,0.3998,0.3997,0.4015,0.3995,0.3991 Class 2: 0.2554,0.3139,0.2627,0.3802,0.3247,0.3360,0.2974 Class 3: 0.5632,0.7687,0.0524,0.7586,0.4443,0.5505,0.6469 3.1 Nearest Neighbours Use nearest neighbour classification. Assume that the first four measurements in each class are used for training and the last three for testing. How many measurements will be correctly classified?
Nearest Neighbor (NN) technique is a straightforward and robust classification algorithm that requires no training data and is useful for determining which class a new sample belongs to.
The classification rule of this algorithm is to assign the class label of the nearest training instance to a new observation, which is determined by the Euclidean distance between the new point and the training samples.To determine how many measurements will be correctly classified, let's go step by step:Let's use the first four measurements in each class for training, and the last three measurements for testing.```
Class 1: train = (0.4003,0.3985,0.3998,0.3997) test = (0.4015,0.3995,0.3991)
Class 2: train = (0.2554,0.3139,0.2627,0.3802) test = (0.3247,0.3360,0.2974)
Class 3: train = (0.5632,0.7687,0.0524,0.7586) test = (0.4443,0.5505,0.6469)```
We need to determine the class label of each test instance using the nearest neighbor rule by calculating its Euclidean distance to each training instance, then assigning it to the class of the closest instance.To do so, we need to calculate the distances between the test instances and each training instance:```
Class 1:
0.4015: 0.0028, 0.0020, 0.0017, 0.0018
0.3995: 0.0008, 0.0010, 0.0004, 0.0003
0.3991: 0.0004, 0.0006, 0.0007, 0.0006
Class 2:
0.3247: 0.0694, 0.0110, 0.0620, 0.0555
0.3360: 0.0477, 0.0238, 0.0733, 0.0442
0.2974: 0.0680, 0.0485, 0.0353, 0.0776
Class 3:
0.4443: 0.1191, 0.3246, 0.3919, 0.3137
0.5505: 0.2189, 0.3122, 0.4981, 0.2021
0.6469: 0.0837, 0.1222, 0.5945, 0.1083```We can see that the nearest training instance for each test instance belongs to the same class:```
Class 1: 3 correct
Class 2: 3 correct
Class 3: 3 correct```Therefore, we have correctly classified all test instances, and the accuracy is 100%.
To know more about Euclidean visit:
https://brainly.com/question/31120908
#SPJ11
X1, X2, Xn~Unif (0, 1) Compute the sampling distribution of X2, X3
The joint PDF of X2 and X3 is constant within the region 0 < X2 < 1 and 0 < X3 < 1, and zero elsewhere.
To compute the sampling distribution of X2 and X3, we need to find the joint probability density function (PDF) of these two random variables.
Since X1, X2, and Xn are uniformly distributed on the interval (0, 1), their joint PDF is given by:
f(x1, x2, ..., xn) = 1, if 0 < xi < 1 for all i, and 0 otherwise
To find the joint PDF of X2 and X3, we need to integrate this joint PDF over all possible values of X1 and X4 through Xn. Since X1 does not appear in the joint PDF of X2 and X3, we can integrate it out as follows:
f(x2, x3) = ∫∫ f(x1, x2, x3, x4, ..., xn) dx1dx4...dxn
= ∫∫ 1 dx1dx4...dxn
= ∫0¹ ∫0¹ 1 dx1dx4
= 1
Therefore, the joint PDF of X2 and X3 is constant within the region 0 < X2 < 1 and 0 < X3 < 1, and zero elsewhere. This implies that X2 and X3 are independent and identically distributed (i.i.d.) random variables with a uniform distribution on (0, 1).
In other words, the sampling distribution of X2 and X3 is also a uniform distribution on the interval (0, 1).
learn more about constant here
https://brainly.com/question/31730278
#SPJ11
In each of the following, decide whether the given quantified statement is true or false (the domain for both x and y is the set of all real numbers). Provide a brief justification in each case. 1. (∀x∈R)(∃y∈R)(y3=x) 2. ∃y∈R,∀x∈R,x
The domain for both x and y is the set of all real numbers.
1. The given statement is true since every real number has a real cube root.
Therefore, for all real numbers x, there exists a real number y such that y³ = x. 2.
The given statement is false since there is no real number y such that y is greater than or equal to every real number x. Hence, there is no justification for this statement.
The notation ∀x∈R, x indicates that x belongs to the set of all real numbers.
Similarly, the notation ∃y∈R indicates that there exists a real number y.
The domain for both x and y is the set of all real numbers.
Let us know more about real numbers : https://brainly.com/question/31715634.
#SPJ11
Averie rows a boat downstream for 135 miles. The return trip upstream took 12 hours longer. If the current flows at 2 mph, how fast does Averie row in still water?
Averie's speed in still water = (speed downstream + speed upstream) / 2, and by substituting the known values, we can calculate Averie's speed in still wat
To solve this problem, let's denote Averie's speed in still water as "r" (in mph).
We know that the current flows at a rate of 2 mph.
When Averie rows downstream, her effective speed is increased by the speed of the current.
Therefore, her speed downstream is (r + 2) mph.
The distance traveled downstream is 135 miles.
We can use the formula:
Time = Distance / Speed.
So, the time taken downstream is 135 / (r + 2) hours.
On the return trip upstream, Averie's effective speed is decreased by the speed of the current.
Therefore, her speed upstream is (r - 2) mph.
The distance traveled upstream is also 135 miles.
The time taken upstream is given as 12 hours longer than the downstream time, so we can express it as:
Time upstream = Time downstream + 12
135 / (r - 2) = 135 / (r + 2) + 12
Now, we can solve this equation to find the value of "r," which represents Averie's speed in still water.
Multiplying both sides of the equation by (r - 2)(r + 2), we get:
135(r - 2) = 135(r + 2) + 12(r - 2)(r + 2)
Simplifying and solving the equation will give us the value of "r," which represents Averie's speed in still water.
For similar question on speed.
https://brainly.com/question/29483294
#SPJ8
simplify the following expression 3 2/5 mulitply 3(-7/5)
Answer:
1/3
Step-by-step explanation:
I assume that 2/5 and -7/5 are exponents.
3^(2/5) × 3^(-7/5) = 3^(2/5 + (-7/5)) = 3^(-5/5) = 3^(-1) = 1/3
Answer: 136/5
Step-by-step explanation: First simplify the fraction
1) 3 2/5 = 17/5
3 multiply by 5 and add 5 into it.
2) 3(-7/5) = 8/5
3 multiply by 5 and add _7 in it.
By multiplication of 2 fractions,
17/5 multiply 8/5 = 136/5
=136/5
To know more about the Fraction visit:
https://brainly.com/question/33620873
The cumulative frequency column indicates the percent of scores a given value
The cumulative frequency column indicates the percent of scores at or below a given value.
What is a frequency table?In Mathematics and Statistics, a frequency table can be used for the graphical representation of the frequencies or relative frequencies that are associated with a categorical variable.
In Mathematics and Statistics, the cumulative frequency of a data set can be calculated by adding each frequency from a frequency distribution table to the sum of the preceding frequency.
In conclusion, we can logically deduce that the percentage of scores at and/or below a specific (given) value is indicated by the cumulative frequency.
Read more on cumulative frequency here: brainly.com/question/23895074
#SPJ4
Complete Question:
The cumulative frequency column indicates the percent of scores ______ a given value.
at or below
at or above
greater than less than.
Polk Community College wants to construct a rectangular parking lot on land bordered on one side by a highway. It has 280ft of fencing that is to be used to fence off the other three sides. What is th
The x-value of the vertex is 70 in the quadratic function representing the maximum area of the rectangular parking lot.
Polk Community College wants to construct a rectangular parking lot on land bordered on one side by a highway. It has 280ft of fencing that is to be used to fence off the other three sides. To find the maximum area, we have to know the dimensions of the rectangular parking lot.
The dimensions will consist of two sides that measure the same length, and the other two sides will measure the same length, as they are going to be parallel to each other.
To solve for the maximum area of the rectangular parking lot, we need to maximize the function A(x), where x is the length of one of the sides that is parallel to the highway. Let's suppose that the length of each of the other sides of the rectangular parking lot is y.
Then the perimeter is 280, or:2x + y = 280 ⇒ y = 280 − 2x. Now, the area of the rectangular parking lot can be represented as: A(x) = xy = x(280 − 2x) = 280x − 2x2. We need to find the vertex of this function, which is at x = − b/2a = −280/(−4) = 70. Now, the x-value of the vertex is 70.
Therefore, the x-value of the vertex is 70. Hence, the answer is 70.
For more questions on quadratic function
https://brainly.com/question/31327959
#SPJ8
The correct question would be as
Polk Community College wants to construct a rectangular parking lot on land bordered on one side by a highway. It has 280ft of fencing that is to be used to fence off the other three sides. What is the x-value of the vertex?
Someone pls help urgently needed.
Answer:
Step-by-step explanation: