if you decrease length of pendulum to half of the original and increase mass to double of original, what will happen to its period on earth? chegg

Answers

Answer 1

The period of the pendulum (T') will be the same as the original period (T).

If you decrease the length of a pendulum to half of its original length and increase the mass to double its original mass, the period of the pendulum will remain unchanged on Earth.

The period of a simple pendulum is dependent on the length of the pendulum and the acceleration due to gravity, but it is independent of the mass of the pendulum.

The formula for the period of a simple pendulum is given by:

T = 2π√(L/g)

Where:

T = Period of the pendulum

L = Length of the pendulum

g = Acceleration due to gravity

If you decrease the length of the pendulum to half (L/2) and double the mass (2m), the formula for the period becomes:

T' = 2π√((L/2)/g)

However, since the acceleration due to gravity remains constant on Earth, the value of 'g' does not change. Therefore, the period of the pendulum (T') will be the same as the original period (T).

know more about acceleration here

https://brainly.com/question/16204180#

#SPJ11


Related Questions

(b) What If? What is the resistance of a 100W lightbulb?

Answers

Once we have the voltage, we can plug in the values into the formula to calculate the resistance. Please provide the voltage at which the lightbulb operates, and I will be able to assist you further.

To calculate the resistance of a lightbulb, we need to use the formula:

Resistance (R) = (Voltage (V)^2) / Power (P)

Given that the power of the lightbulb is 100W, we need additional information to calculate the resistance. We need to know the voltage at which the lightbulb operates. The resistance of a lightbulb depends on the voltage applied across it.

To know more about voltage visit:

brainly.com/question/32002804

#SPJ11

a wheel has a constant angular acceleration of 7.0 rad/s2 starting frm rest it turns through 400 rad

Answers

It takes approximately 10.69 seconds for the wheel to turn through 400 rad.

To find the time it takes for the wheel to turn through 400 rad, we can use the kinematic equation for angular displacement:

θ = ω₀t + (1/2)αt²

where θ is the angular displacement, ω₀ is the initial angular velocity, α is the angular acceleration, and t is the time.

Given:

Angular acceleration (α) = 7.0 rad/s²

Angular displacement (θ) = 400 rad

Initial angular velocity (ω₀) = 0 rad/s (starting from rest)

Rearranging the equation to solve for time (t):

θ = (1/2)αt²

400 rad = (1/2)(7.0 rad/s²)t²

800 rad = 7.0 rad/s²t²

t² = 800 rad / (7.0 rad/s²)

t² ≈ 114.29 s²

t ≈ √(114.29) s

t ≈ 10.69 s

Learn more about angular acceleration here:

https://brainly.com/question/13014974

#SPJ11

Q|C Monochromatic coherent light of amplitude E₀ and angular frequency Ω passes through three parallel slits, each separated by a distance d from its neighbor. (a) Show that the time-averaged intensity as a function of the angle θ isI(θ) = Imax [1+2cos (2πd sinθ / λ)]²

Answers

The time-averaged intensity as a function of the angle θ is given by I(θ) = Imax [1 + 2cos²(2πd sinθ / λ)], where Imax is the maximum intensity.

To derive the expression for the time-averaged intensity as a function of the angle θ, we can consider the interference pattern formed by the three parallel slits. The intensity at a point on the screen is determined by the superposition of the wavefronts from each slit.

Each slit acts as a point source of coherent light, and the waves from the slits interfere with each other. The phase difference between the waves from adjacent slits depends on the path difference traveled by the waves.

The path difference can be determined using the geometry of the setup. If d is the distance between adjacent slits and λ is the wavelength of the light, then the path difference between adjacent slits is given by 2πd sinθ / λ, where θ is the angle of observation.

The interference pattern is characterized by constructive and destructive interference. Constructive interference occurs when the path difference is an integer multiple of the wavelength, leading to an intensity maximum. Destructive interference occurs when the path difference is a half-integer multiple of the wavelength, resulting in an intensity minimum.

The time-averaged intensity can be obtained by considering the square of the superposition of the waves. Using trigonometric identities, we can simplify the expression to I(θ) = Imax [1 + 2cos²(2πd sinθ / λ)].

In summary, the derived expression shows that the time-averaged intensity as a function of the angle θ in the interference pattern of three parallel slits is given by I(θ) = Imax [1 + 2cos²(2πd sinθ / λ)]. This equation provides insight into the intensity distribution and the constructive and destructive interference pattern observed in the experiment.

Learn more about interference here: brainly.com/question/22320785

#SPJ11

An electron that has an energy of approximately 6 eV moves between infinitely high walls 1.00 nm apart. Find(a) the quantum number n for the energy state the electron occupies.

Answers

The quantum number n for the energy state the electron occupies is 2.

The quantum number n corresponds to the principal energy level or shell in which an electron is located. In this case, we have an electron with an energy of approximately 6 eV moving between infinitely high walls that are 1.00 nm apart.

Calculate the potential energy difference between the walls:

The potential energy difference between the walls can be calculated using the formula ΔPE = qΔV, where q is the charge of the electron and ΔV is the potential difference between the walls. Since the walls are infinitely high, the electron is confined within this region, creating a potential energy difference.

Convert the energy to joules:

To determine the quantum number n, we need to convert the given energy of approximately 6 eV to joules. Since 1 eV is equivalent to 1.6 x 10^-19 joules, multiplying 6 eV by this conversion factor gives us the energy in joules.

Determine the energy level using the equation for energy in a quantum system:

The energy levels in a quantum system are quantized and can be expressed using the formula E = -(13.6 eV)/n^2, where E is the energy of the electron and n is the quantum number representing the energy state. By rearranging the equation and substituting the known values, we can solve for n.

Substituting the energy value in joules obtained in Step 2 into the equation, we can find the quantum number n that corresponds to the energy state occupied by the electron.

Learn more about quantum number

brainly.com/question/32773003

#SPJ11

Collimators that automatically restrict the beam to the size of the cassette have a feature called automatic collimation or:

Answers

Collimators that automatically restrict the beam to the size of the cassette have a feature called "Automatic Collimation A collimator is a device that controls the spread of radiation.

The primary aim of a collimator is to reduce the radiation dose by restricting the size of the X-ray beam.A collimator has a light source that illuminates the area being examined in certain types of X-ray examinations. It allows the operator to adjust the collimator settings to the size of the body part being tested in certain instances.

The light source is gravity in most situations to highlight the edges of the field being examined. Automatic collimation is a feature in certain collimators that automatically restricts the beam to the size of the cassette. The purpose of automatic collimation is to lower radiation exposure while increasing imaging quality. In conclusion, collimators that automatically restrict the beam to the size of the cassette have a feature called automatic collimation.

To know more about gravity visit :

https://brainly.com/question/31321801

#SPJ11

A circular loop with radius b has line charge density of PL. Use Coulomb's Law and symmetry of problem and find electric field on height h on z axis. At what height h the electric field is maximum?

Answers

The electric field is maximum at a height of h = 0 on the z-axis.

To find the height h at which the electric field is maximum, we can differentiate the electric field expression with respect to h and set it equal to zero. Let's differentiate the electric field expression and solve for h:

E = (k * λ * b) / √(b² + h²)

To differentiate this expression with respect to h, we can use the quotient rule:

dE/dh = [(k * λ * b) * (d/dh(√(b² + h²))) - (√(b² + h²)) * (d/dh(k * λ * b))] / (b² + h²)

The derivative of √(b^2 + h^2) with respect to h can be found using the chain rule:

d/dh(√(b² + h²)) = (1/2) * (b² + h²)^(-1/2) * 2h = h / √(b² + h²)

The derivative of k * λ * b with respect to h is zero because it does not depend on h.

Substituting these derivatives back into the expression:

dE/dh = [(k * λ * b) * (h / √(b² + h²)) - (√(b² + h²)) * 0] / (b² + h²)

dE/dh = (k * λ * b * h) / ((b² + h²)^(3/2))

Now, we set dE/dh equal to zero and solve for h

(k * λ * b * h) / ((b² + h²)^(3/2)) = 0

Since k, λ, and b are constants, the only way for the expression to be zero is when h = 0. Therefore, the electric field is maximum at h = 0.

In conclusion, the electric field is maximum at a height of h = 0 on the z-axis.

Learn more about electric field at: https://brainly.com/question/19878202

#SPJ11

When a 2.50-v battery is connected to the plates of a capacitor, it stores a charge of 21.0 C. What is the value of the capacitance?

Answers

The capacitance of a capacitor can be determined using the equation Q = CV, where Q is the charge stored in the capacitor, C is the capacitance, and V is the voltage across the capacitor. Therefore, the value of the capacitance is 8.4 F.


In this case, the voltage across the capacitor is given as 2.50 V and the charge stored is 21.0 C. Plugging these values into the equation, we have:

21.0 C = C * 2.50 V

To find the value of capacitance, we can rearrange the equation as follows:

C = 21.0 C / 2.50 V

C = 8.4 F

Therefore, the value of the capacitance is 8.4 F.

It is important to note that capacitance is measured in Farads (F), which is a large unit. In practical applications, capacitors are often measured in microfarads ([tex]µF[/tex]) or picofarads ([tex]pF[/tex]), which are smaller units.

To know more about capacitor visit:

https://brainly.com/question/31627158

#SPJ11

A concave spherical mirror has a radius of curvature of magnitude 20.0cm . (b) real or virtual.

Answers

In the case of a concave spherical mirror with a radius of curvature of magnitude 20.0 cm, the mirror will create a real image if the object is located beyond 20.0 cm from the mirror's surface. If the object is located within 20.0 cm from the mirror, the image will be virtual.

To determine whether a concave spherical mirror creates a real or virtual image, we need to consider the location of the object with respect to the mirror and the curvature of the mirror.

In a concave spherical mirror, the center of curvature (C) and the radius of curvature (R) are positive values. The focal point (F) is located halfway between the center of curvature and the mirror's surface, at a distance of R/2.

If the object is located beyond the center of curvature (C), the image formed by the concave mirror will be real. A real image is formed when the reflected light rays actually converge and can be projected onto a screen. The real image is located in front of the mirror, on the opposite side of the object.

If the object is located between the mirror's surface and the center of curvature (C), the image formed by the concave mirror will be virtual. A virtual image is formed when the reflected light rays only appear to converge when extended backward. The virtual image cannot be projected onto a screen and is located behind the mirror, on the same side as the object.

Note: The sign convention for mirrors is typically used, where distances measured towards the mirror are positive, and distances measured away from the mirror are negative. The use of the term "magnitude" in the question suggests that the radius of curvature is positive, indicating a concave mirror.

to know more about concave visit:

brainly.com/question/31541552

#SPJ11

you must hook up an led such that current runs in the same direction as the arrow on its snap circuit surface. describe one way that you can know that you are hooking the led up in the correct direction.

Answers

To ensure that you are hooking up an LED in the correct direction, you can use a simple method called the "Longer Leg" or "Anode" identification. LED stands for Light Emitting Diode, which is a polarized electronic component. It has two leads: a longer one called the anode (+) and a shorter one called the cathode (-).

One way to identify the correct direction is by observing the LED itself. The anode lead is typically longer than the cathode lead. By examining the LED closely, you can notice that one lead is slightly longer than the other. This longer lead corresponds to the arrow on the snap circuit surface, indicating the direction of the current flow.

When connecting the LED, ensure that the longer lead is connected to the positive (+) terminal of the power source, such as the battery or the positive rail of the snap circuit surface. Similarly, the shorter lead should be connected to the negative (-) terminal or the negative rail.

This method is widely used because it provides a visual indicator for correct polarity. By following this approach, you can be confident that the LED is correctly connected, and the current flows in the same direction as the arrow on the snap circuit surface.

You can learn more about Light Emitting Diode at: brainly.com/question/30871146

#SPJ11

Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, the first having a mass of 164000 kg and a velocity of 0.324 m/s, and the second having a mass of 95000 kg and a velocity of -0.096 m/s. (The minus indicates direction of motion.) What is their final velocity

Answers

When two train cars collide, they will couple together by being bumped into each other. In this case, we have two loaded train cars moving toward one another, with the first car having a mass of 164000 kg and a velocity of 0.324 m/s, and the second car having a mass of 95000 kg and a velocity of -0.096 m/s (the minus indicates direction of motion).

To determine their final velocity after collision, we need to apply the principle of conservation of momentum. The total momentum before the collision equals the total momentum after the collision. Therefore, we have:m1v1 + m2v2 = (m1 + m2)vfwhere m1 and v1 are the mass and velocity of the first car, m2 and v2 are the mass and velocity of the second car, and vf is their final velocity.

Substituting the given values, we get:(164000 kg)(0.324 m/s) + (95000 kg)(-0.096 m/s) = (164000 kg + 95000 kg)vf53592 - 9120 = 259000 kgvfvf = (53592 - 9120) / 259000 kgvf = 0.161 m/sTherefore, their final velocity is 0.161 m/s.

To know more about train visit:

https://brainly.com/question/21218609

#SPJ11

What will be the approximate distance between the points where the ion enters and exits the magnetic field?

Answers

The distance between the points where the ion enters and exits the magnetic field depends on several factors, including the strength of the magnetic field, the speed of the ion, and the angle at which the ion enters the field.

To calculate the approximate distance, we can use the formula:

d = v * t

Where:
- d is the distance
- v is the velocity of the ion
- t is the time taken for the ion to travel through the magnetic field

First, we need to determine the time taken for the ion to travel through the field. This can be found using the formula:

t = 2 * π * m / (q * B)

Where:
- t is the time
- π is a constant (approximately 3.14159)
- m is the mass of the ion
- q is the charge of the ion
- B is the magnetic field strength

Once we have the time, we can use it to calculate the distance. However, it's important to note that if the ion enters the magnetic field at an angle, the actual distance between the entry and exit points will be longer than the distance traveled in the magnetic field.

To know more about distance visit:

https://brainly.com/question/31713805

#SPJ11

if you place a pipe over the end of a wrench when trying to rotate a stubborn bolt, effectively making the wrench handle twice as long, you'll multiply the torque by group of answer choices two. four. eight.

Answers

When you place a pipe over the end of a wrench to make the handle twice as long, you effectively multiply the torque by a factor of two.

In physics and mechanics, torque is the rotational analog of linear force. It is also referred to as the moment of force (also abbreviated to moment ). It describes the rate of change of angular momentum that would be imparted to an isolated body.

Torque is a special case of moment in that it relates to the axis of the rotation driving the rotation, whereas moment relates to being driven by an external force to cause the rotation.

To learn more about torque, visit:

https://brainly.com/question/30338175

#SPJ11

In astronomy, the term bipolar refers to outflows that Choose one: A. rotate about a polar axis. B. point in opposite directions. C. alternate between expanding and collapsing. D. show spiral structure.

Answers

Option B is the correct answer. Bipolar outflows are often observed in various astronomical phenomena, such as young stellar objects, planetary nebulae, and active galactic nuclei.

These outflows are characterized by the ejection of material in two opposite directions along a common axis. They typically originate from a central source, such as a protostar or an active galactic nucleus, and exhibit a symmetric structure with lobes extending in opposite directions.

Bipolar outflows play a crucial role in the process of star formation and the evolution of galaxies. They are thought to be driven by energetic processes, such as accretion disks, jets, or the interaction between stellar winds and the surrounding medium. These outflows help transport angular momentum, remove excess mass, and influence the surrounding environment, shaping the structure and dynamics of the systems in which they occur.

To know more about Nuclei visit.

https://brainly.com/question/32368659

#SPJ11

Which best describes the result of moving the charge to the point marked x? its electric potential energy increases because it has the same electric field. its electric potential energy increases because the electric field increases. its electric potential energy stays the same because the electric field increases. its electric potential energy stays the same because it has the same electric potential.

Answers

Moving the charge to the point marked x would result in its electric potential energy increasing because the electric field increases.

The electric potential energy of a charged object is directly related to the electric field surrounding it. When the charge is moved to a point where the electric field increases, its electric potential energy also increases. This is because the electric potential energy is dependent on the interaction between the charge and the electric field. As the electric field becomes stronger, more work is required to move the charge against the increased force exerted by the field. Therefore, the electric potential energy of the charge increases.

It is important to note that the electric potential energy and electric potential are not the same. The electric potential energy is a measure of the stored energy of a charged object in an electric field, while the electric potential is a measure of the electric potential energy per unit charge at a particular point in the field.

To learn more about Electric Field click here:

brainly.com/question/26446532

#SPJ11

A piece of metal was placed on a balance and found to have a mass of 15.93 g. what type of number is this?

Answers

The type of number representing the mass of the piece of metal is a positive rational number.

The number 15.93 g is a measurement of the mass of the piece of metal. In this case, it is a real number. Real numbers are a set of numbers that can be represented on a number line. They include both rational and irrational numbers.

The measurement of the mass of the metal is given in grams (g). Grams are a unit of mass commonly used in the metric system.

To determine the type of number, we need to consider the characteristics of real numbers. Real numbers can be positive, negative, or zero. They can also be expressed as fractions, decimals, or integers.

In this case, the number 15.93 is a positive decimal. It is a rational number because it can be expressed as a finite decimal. Rational numbers can be written as fractions, where the numerator and denominator are both integers. In this case, 15.93 can be written as the fraction 1593/100.

To learn more about rational number

https://brainly.com/question/17450097

#SPJ11

In water of uniform depth, a wide pier is supported on pilings in several parallel rows 2.80 m apart. Ocean waves of uniform wavelength roll in, moving in a direction that makes an angle of 80.0⁰ with the rows of pilings. Find the three longest wavelengths of waves that are strongly reflected by the pilings.

Answers

Given a wide pier supported on pilings in parallel rows, with ocean waves of uniform wavelength rolling in at an angle of 80.0⁰ to the rows, we can determine the three longest wavelengths of waves that are strongly reflected by the pilings.

When waves encounter obstacles such as pilings, they can be reflected. The condition for strong reflection is constructive interference, which occurs when the path difference between the waves reflected from adjacent pilings is equal to a whole number of wavelengths.

In this case, the waves are incident at an angle of 80.0⁰ to the rows of pilings. The path difference between waves reflected from adjacent pilings can be determined by considering the geometry of the situation.

The path difference, Δd, can be calculated as Δd = d * sin(80.0⁰), where d is the spacing between the pilings.

To find the three longest wavelengths that result in strong reflection, we need to identify the wavelengths that correspond to integer multiples of the path difference.

Let λ be the wavelength of the incident waves. Then, the three longest wavelengths that are strongly reflected can be expressed as λ = n * (2 * Δd), where n is an integer representing the number of wavelengths.

By substituting the given values of d = 2.80 m and solving for the three longest wavelengths, we can determine the desired result.

learn more about wavelength here:  

https://brainly.com/question/12290582

#SPJ11

Why is the following situation impossible? A softball pitcher has a strange technique: she begins with her hand at rest at the highest point she can reach and then quickly rotates her arm backward so that the ball moves through a half-circle path. She releases the ball when her hand reaches the bottom of the path. The pitcher maintains a component of force on the 0.180 -kg ball of constant magnitude 12.0 N in the direction of motion around the complete path. As the ball arrives at the bottom of the path, it leaves her hand with a speed of 25.0 m/s.

Answers

The situation described is impossible because it violates the principle of conservation of energy. According to this principle, the total mechanical energy of a system remains constant if no external forces are acting on it.


In the given situation, the pitcher is applying a constant force on the ball to maintain its motion around the half-circle path. However, as the ball reaches the bottom of the path and leaves the pitcher's hand with a speed of 25.0 m/s, it gains kinetic energy. This means that the mechanical energy of the system has increased.
Since no external forces are acting on the system, the total mechanical energy should remain constant. Therefore, it is impossible for the ball to gain kinetic energy in this situation.
To make the situation possible, the pitcher would need to apply additional forces or modify her technique to account for the change in mechanical energy.

Know more about conservation of energy here,

https://brainly.com/question/14688403

#SPJ11

Where is the velocity zero?
A
B
C D
E

Answers

what is natinal burget

Explanation:

vhuhwavho

If you were given a planet's average distance from the Sun, then using Kepler's third law it should be possible to calculate _______.

Answers

Kepler's third law, which is also known as the harmonic law, relates to the period of a planet's orbit and its distance from the sun. The third law of Kepler states that the square of the time period of a planet's orbit is proportional to the cube of its average distance from the sun.

If the average distance of a planet from the Sun is given, it is possible to calculate the planet's orbital period using Kepler's third law. Kepler's third law can be used to calculate the distance of a planet from the Sun if its orbital period is known. In other words, if a planet's orbital period or its average distance from the sun is known, it is possible to calculate the other quantity using Kepler's third law.

The relation between a planet's orbital period, average distance from the Sun, and mass of the Sun is given by the following equation:T² = (4π²a³)/GM where T is the period of the planet's orbit, a is the average distance of the planet from the Sun, G is the gravitational constant, and M is the mass of the Sun. Therefore, the answer to the question is the planet's orbital period using Kepler's third law.

To know more about Kepler's visit:

https://brainly.com/question/12666455

#SPJ11

A telephone line that transmits signals from one station to another directly along a wire without the use of radio waves is the definition of: (3.1.3)

Answers

A telephone line that transmits signals directly along a wire without the use of radio waves is known as a wired telephone line.

Wired telephone lines are physical connections, typically composed of copper or fiber optic cables, that facilitate the transmission of voice and data signals between two stations. Unlike wireless communication, which relies on the use of radio waves, wired telephone lines offer a direct and secure connection between the sender and receiver. These lines are capable of carrying analog or digital signals, allowing for clear and reliable communication over long distances. Wired telephone lines have been widely used for many years and continue to play a crucial role in telecommunications infrastructure, providing a dependable means of communication for various applications.

Learn more about telephone here:

https://brainly.com/question/28347858

#SPJ11

A vibrating system of natural frequency 500cyicles /s is forced to vibrate with a periodic force / unit mass of amplitude 100 x 10-5 n/kg in the presence of damping per unit mass of 0.01 x 10-3 rad/s. calculate the maximum amplitude of vibration of the system 11) a 20gm oscillator with natural angular frequency 10 rad/s is vibrati

Answers

The maximum amplitude of vibration of a forced vibrating system can be calculated using the equation:

[tex]Amax = F0 / m * sqrt(1 / (w0^2 - w^2)^2 + (2ξw / w0)^2)[/tex]

where:
Amax is the maximum amplitude of vibration,
F0 is the amplitude of the periodic force per unit mass,
m is the mass of the system,
w0 is the natural angular frequency of the system,
w is the angular frequency of the forced vibration,
and ξ is the damping per unit mass.

In this case, we are given:
F0 = 100 x 10^(-5) N/kg,
w0 = 500 x 2π rad/s,
and ξ = 0.01 x 10^(-3) rad/s.

Let's calculate the maximum amplitude of vibration using the provided values:

Amax =[tex](100 x 10^(-5)[/tex] N/kg) / (m) * sqrt(1 / [tex]((500 x 2π)^2 - w^2)^2[/tex] + (2 x 0.01 x [tex]10^(-3)[/tex]x w /[tex](500 x 2π))^2)[/tex]

To know more about amplitude visit:

https://brainly.com/question/9525052

#SPJ11

The relationship between the heat capacity of a sample and the specific heat of the sample material is discussed in Section 20.2. Consider a sample containing 2.00 mol of an ideal diatomic gas. Assuming the molecules rotate but do not vibrate, find(c) What If? Repeat parts (a) and (b), assuming the molecules both rotate and vibrate.

Answers

The heat capacity of a sample depends on the specific heat of the material and its molecular properties. When considering an ideal diatomic gas with rotational motion but no vibrational motion, the heat capacity can be calculated using certain formulas. If both rotational and vibrational motion are taken into account, the heat capacity will be different.

In the case where the diatomic gas molecules only rotate and do not vibrate, the heat capacity can be calculated using the equipartition theorem. According to this theorem, each degree of freedom contributes (1/2)kT to the total energy of the gas, where k is the Boltzmann constant and T is the temperature. For a diatomic gas, there are three translational degrees of freedom and two rotational degrees of freedom, resulting in a total of five degrees of freedom. Therefore, the heat capacity at constant volume (Cv) is given by Cv = (5/2)R, where R is the gas constant.

However, if we consider that the diatomic gas molecules can also vibrate, the heat capacity will change. In this case, there are additional vibrational degrees of freedom, resulting in a higher heat capacity. The total number of degrees of freedom for a diatomic gas with both rotational and vibrational motion is given by seven: three translational, two rotational, and two vibrational. Thus, the heat capacity at constant volume (Cv) becomes Cv = (7/2)R.

In summary, when considering an ideal diatomic gas with rotational motion but no vibrational motion, the heat capacity is Cv = (5/2)R. However, if both rotational and vibrational motion are taken into account, the heat capacity increases to Cv = (7/2)R. The inclusion of vibrational motion provides additional degrees of freedom, resulting in a higher heat capacity for the sample.

Learn more about heat capacity here:

https://brainly.com/question/1747943

#SPJ11

Two handheld radio transceivers with dipole antennas are separated by a large, fixed distance. If the transmitting antenna is vertical, what fraction of the maximum received power will appear in the receiving antenna when it is inclined from the vertical (c) By 90.0⁰?

Answers

when the receiving antenna is inclined at a 90.0⁰ angle from the vertical, no power will be received from the transmitting antenna.

When two dipole antennas are separated by a large distance and one antenna is transmitting while the other is receiving, the fraction of maximum received power depends on the relative orientation of the antennas. In this case, if the transmitting antenna is vertical and the receiving antenna is inclined at a 90.0⁰ angle from the vertical, the antennas are orthogonal to each other.

Orthogonal antennas have no direct coupling between them, which means that there is no energy transfer from the transmitting antenna to the receiving antenna.

Therefore, no power will be received in the inclined receiving antenna when it is positioned perpendicular to the transmitting antenna, resulting in a fraction of zero for the maximum received power.

To learn more about power click brainly.com/question/11569624

#SPJ11

An oscillating LC circuit consisting of a 1.4 nF capacitor and a 2.5 mH coil has a maximum voltage of 5.5 V.

Answers

a) The maximum charge on the capacitor is approximately 7.7 nC, b) the maximum current through the circuit is approximately 2.65 mA, and c) the maximum energy stored in the magnetic field of the coil is approximately 8.79 µJ.

a) For calculating the maximum charge on the capacitor,  formula is:

Q = CV,

where Q represents the charge, C is the capacitance, and V is the voltage. Substituting the given values,

Q = (1.4 nF)(5.5 V) = 7.7 nC.

b) For calculating the maximum current through the circuit, formula is:

[tex]I = \sqrt(2C/ L) V[/tex]

where I represents the current, C is the capacitance, L is the inductance, and V is the voltage. Substituting the given values:

[tex]I = \sqrt (2)(1.4 nF)/(2.5 mH) (5.5 V) \approx 2.65 mA[/tex]

c) For calculating the maximum energy stored in the magnetic field of the coil,  formula is:

[tex]E = (1/2) LI^2[/tex]

where E represents the energy, L is the inductance, and I is the current. Substituting the given values:

[tex]E = (1/2)(2.5 mH)(2.65 mA)^2 \approx 8.79 \mu J[/tex]

In summary, the maximum charge on the capacitor is approximately 7.7 nC, the maximum current through the circuit is approximately 2.65 mA, and the maximum energy stored in the magnetic field of the coil is approximately 8.79 µJ.

Learn more about magnetic field here:

https://brainly.com/question/30331791

#SPJ11

The complete question is:

An oscillating LC circuit consisting of a 1.4 nF capacitor and a 2.5 mH coil has a maximum voltage of 5.5 V.

a) What is the maximum charge on the capacitor?

b) What is the maximum current through the circuit?

c) What is the maximum energy stored in the magnetic field of the coil?

Vector a with rightwards arrow on top = -1.00i + (-2.00)j and vector b with rightwards arrow on top = 3.00i+ 4.00j. what are the magnitude and direction of vector c with rightwards arrow on top = 3.00a with rightwards arrow on top + 2.00b with rightwards arrow on top?

Answers

The magnitude of vector c is 10 units, and its direction is approximately 63.4 degrees above the negative x-axis.

To find the magnitude of vector c, we can use the formula for vector addition. Vector c is obtained by multiplying vector a by 3 and vector b by 2, and then adding the resulting vectors together. The components of vector c are calculated as follows:

c_x = 3(−1.00) + 2(3.00) = −1.00 + 6.00 = 5.00

c_y = 3(−2.00) + 2(4.00) = −6.00 + 8.00 = 2.00

The magnitude of vector c can be found using the Pythagorean theorem, which states that the magnitude squared is equal to the sum of the squares of the individual components:

|c| = sqrt(c_[tex]x^2[/tex] + c_[tex]y^2[/tex]) = sqrt(5.0[tex]0^2[/tex] + [tex]2.00^2[/tex]) = sqrt(25.00 + 4.00) = sqrt(29.00) ≈ 5.39

To determine the direction of vector c, we can use trigonometry. The angle θ can be found using the inverse tangent function:

θ = arctan(c_y / c_x) = arctan(2.00 / 5.00) ≈ 22.62 degrees

However, this angle is measured with respect to the positive x-axis. To obtain the angle above the negative x-axis, we subtract this value from 180 degrees:

θ' = 180 - θ ≈ 157.38 degrees

Therefore, the direction of vector c is approximately 157.38 degrees above the negative x-axis.

Learn more about magnitude here:

https://brainly.com/question/31022175

#SPJ11

coulomb's law for the magnitude of the force f between two particles with charges q and q′ separated by a distance d is |f|

Answers

The magnitude of the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. This equation is used to calculate the electrostatic force between charged particles.


Coulomb's law is a fundamental principle in electrostatics that describes the interaction between charged particles. It provides a mathematical relationship between the magnitude of the force and the properties of the charges and their separation distance. The equation states that the magnitude of the force (F) is directly proportional to the product of the charges (q and q') and inversely proportional to the square of the distance (d) between them.

The constant of proportionality, k, is known as the electrostatic constant and its value depends on the units used. In SI units, k is approximately equal to 8.99 × 10^9 N m^2/C^2. The equation is given by |F| = k * |q * q'| / d^2.

This equation highlights some important concepts. First, the force between two charges is attractive if they have opposite signs (one positive and one negative) and repulsive if they have the same sign (both positive or both negative). The force is stronger for larger charges and decreases rapidly as the distance between them increases.

To know more about Propotional visit.

https://brainly.com/question/30179809

#SPJ11

A neutral metal sphere is brought close to a charged insulating sphere. The electrostatic force between the metal sphere and insulating sphere is:

Answers

When the neutral metal sphere is brought close to the charged insulating sphere, the charged insulating sphere induces opposite charges on the surface of the neutral metal sphere.

This happens because the electric field from the charged insulating sphere polarizes the charges in the metal sphere. As a result, an attractive electrostatic force is created between the induced opposite charges on the metal sphere and the charges on the insulating sphere. This force tends to pull the two spheres together. The presence of the charged insulating sphere induces opposite charges on the neutral metal sphere, leading to an attractive electrostatic force between the two spheres. This phenomenon is a result of charge polarization and occurs due to the electric field created by the charged insulating sphere.

Learn more about charges here : brainly.com/question/28721069
#SPJ11

how many molecules of water are in the world's oceans, which have an estimated total mass of 1.6 ✕ 1021 kg?

Answers

There are approximately 5.35 × [tex]10^{46}[/tex] molecules of water in the world's oceans.

To determine the number of water molecules in the world's oceans, we can use the concept of moles and Avogadro's number.

1 mole of any substance contains 6.022 × [tex]10^{23}[/tex] particles, which is known as Avogadro's number (NA).

Given:

Total mass of the world's oceans = 1.6 × [tex]10^{21}[/tex] kg

We need to convert the mass of water into moles by dividing it by the molar mass of water. The molar mass of water (H2O) is approximately 18.015 g/mol.

First, let's convert the mass of the oceans into grams:

Mass of the world's oceans = 1.6 × [tex]10^{21}[/tex] kg × 1000 g/kg

= 1.6 × [tex]10^{24}[/tex] g

Now, we can calculate the number of moles:

Number of moles = (Mass of the oceans) / (Molar mass of water)

= (1.6 × [tex]10^{24}[/tex] g) / (18.015 g/mol)

≈ 8.88 × [tex]10^{22}[/tex] mol

Finally, to find the number of water molecules, we multiply the number of moles by Avogadro's number:

Number of water molecules = (Number of moles) × Avogadro's number

= (8.88 × [tex]10^{22}[/tex] mol) × (6.022 × [tex]10^{23}[/tex] molecules/mol)

≈ 5.35 × [tex]10^{46}[/tex] molecules

Therefore, there are approximately 5.35 × [tex]10^{46}[/tex] molecules of water in the world's oceans.

Learn more about Avogadro's number here:  https://brainly.com/question/24175158

#SPJ11

what the farmer sows in the spring he reaps in the fall. in the spring he sows $8-per- bushel soybeans. therefore, in the fall he will reap $8-per-bushel soybeans.

Answers

According to the given statement, when a farmer sows soybeans in the spring at a cost of $8 per bushel, they expect to harvest the same soybeans in the fall and sell them at the same price of $8 per bushel.

The statement suggests that the price of soybeans remains constant throughout the time period from sowing in the spring to harvesting in the fall. This implies that the market conditions or any fluctuations in soybean prices do not affect the price at which the farmer sells their harvested soybeans.

Therefore, regardless of any external factors, the farmer anticipates receiving a fixed price of $8 per bushel for the soybeans they sow in the spring when they harvest and sell them in the fall. This assumption simplifies the farmer's expectations and financial calculations, as they can rely on a consistent price per bushel for their soybean crop.

To learn more about price click here: brainly.com/question/29023044

#SPJ11

The relative frequency of people who strongly disagree with the statement is __________.

a. 40.3%

b. 68%

c. 22.7%

d. 10.7%

Answers

The relative frequency of people who strongly disagree with the statement is 10.7%. This means that out of all the people surveyed or considered, 10.7% of them strongly disagree with the statement.

To calculate the relative frequency, we need to know the total number of people surveyed or considered and the number of people who strongly disagree. Let's say that out of 1000 people surveyed, 107 of them strongly disagree with the statement.

To calculate the relative frequency, we divide the number of people who strongly disagree by the total number of people surveyed and multiply by 100. In this case, (107 / 1000) * 100 = 10.7%.

The answer is d. 10.7%, which represents the relative frequency of people who strongly disagree with the statement.

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

Other Questions
"Intelligent Life in the Universe? Catholic Belief and the Search for Extraterrestrial Intelligent Life The table shows the time it takes a computer program to run, given the number of files used as input. Using a cubic model, what do you predict the run time will be if the input consists of 1000 files?FilesTime(s)1000.52000.93003.54008.250014.8Error while snipping. Write down 10 things that you learned from watching this documentaryHow earth was made? how much time is needed for an initial investment to triple in value if it is invested at 8% compounded continuously We always see the same face of the Moon because the rotation of the Moon on its axis matches the rate at which it revolves around Earth. Does it follow that an observer on the Moon always sees the same face of Earth Correctly designed and installed three compartment sink must have which type of backflow prevention? Which of these activities is an example of city planning which is true regarding naoh and mg(oh)2? group of answer choices none of these are true naoh is more basic than mg(oh)2 because it's more soluble in water both naoh and mg(oh)2 are strong bases because both contain oh- mg(oh)2 is more basic than naoh because it dissociates to produce 2 oh- groups per unit dissolved, where naoh dissociates to produce only one oh- group per unit dissolved John winthrop referred to anne hutchinson and her followers as antinomians, people who believed that:_______ According to the vsepr theory, the molecular geometry of ammonia is:_____.a. linear.b. trigonal planar.c. bent.d. tetrahedral.e. trigonal pyramidal. which findings should raise suspicion to the nurse that a head-injured client may be experiencing diabetes insipidus? select all that apply. _______ can be done at three levels: product attributes, benefits, and beliefs and values. ANSWER Unselected Brand name selection Unselected Brand positioning Unselected Brand sponsorship Unselected Brand development Unselected I DON'T KNOW YET Suppose+an+exxon+corporation+bond+will+pay+$4,500+ten+years+from+now.+if+the+going+interest+rate+on+safe+10-year+bonds+is+5.60%,+how+much+is+the+bond+worth+today? In the context of cultural values, the _____ index refers to the preference for behavior that promotes one's self-interest. What are the three major objectives of technological investments at fis? what are the major risks involved with these investments? Draw a square A B C D with opposite vertices at A(2,-4) and C(10,4) .c. Show that the measure of each angle inside the square is equal to 90 . If the results of an experiment contradict the hypothesis, you have _____ the hypothesis. A wire 26.0 cm long lies along the z-axis and carries a current of 8.50 A in the z-direction. The magnetic field is uniform and has components Bx Sales for the year for Victor Company were $ 1,000,000,70 percent of which were on credit. The average gross profit on sales was 40 percent. Additional account balances were:Required:Compute the turnover for the accounts receivable and inventory, the average days to collect receivables, and the average days to sell inventory. In F, G K=14 and m G H K = 142 . Find each measure. Round to the nearest hundredth. m KM