Answer:
Newtons third law of motion: Balanced forces
Every action has a corresponding and opposing response, according to Newton's third law of motion. As a result, forces always work in pairs. Once more, tug-of-war is a prime illustration.
What force in opposite direction follow newton law?The third law of motion by Newton states that equal, but diametrically opposed forces always act in pairs. There is an equal but opposite reaction to every action, to put it another way.
The forces are balanced if the pullers are exerting equal force but going in the opposite direction on either side of the rope. There is hence no motion.
Although equal and opposite in nature, action and reaction forces cannot be balanced since they act on separate things and do not cancel one another out.
Therefore, This means that when you push against a wall, the wall pushes back against you with an equal amount of force.
Learn more about newton law here:
https://brainly.com/question/15280051
#SPJ2
Find the value of T1 if 1 = 30°, 2 = 60°, and the weight of the object is 139.3 newtons.
A.
69.58 newtons
B.
45.05 newtons
C.
25 newtons
D.
98.26 newtons
Answer:
Option A (69.56 newtons) is the appropriate solution.
Explanation:
According to the question,
On the X-axis,
⇒ [tex]T_1Cos30^{\circ}-T_2Cos60^{\circ}=0[/tex]
or,
[tex]T_1Cos 30^{\circ}=T_2Cos60^{\circ}[/tex]
On substituting the values, we get
[tex]T_1\times \frac{\sqrt{3} }{2}=T_2\times \frac{1}{2}[/tex]
[tex]T_1\times \sqrt{3} =T_2[/tex]....(equation 1)
On the Y-axis,
⇒ [tex]T_1Sin30^{\circ}+T_2Sin60^{\circ}=139.3 \ N[/tex]
[tex]\frac{T_1}{2} +\frac{\sqrt{3} }{2} =139.2 \ N[/tex]
[tex]T_1+\sqrt{3}T_2=139.2\times 2[/tex]
From equation 1, we get
[tex]T_1+\sqrt{3}\times \sqrt{3}T_1 =278.4 \ N[/tex]
[tex]T_1+3T_1=278.4 \ N[/tex]
[tex]4T_1=278.4 \ N[/tex]
[tex]T_1=\frac{278.4}{4}[/tex]
[tex]=69.6 \ N[/tex]
Answer:
69.58
Explanation:
If the child has a mass of 13.9 kg, calculate the magnitude of the force in newtons the mother exerts on the child under the following conditions. (b) The elevator accelerates upward at 0.898 m/s2. 148.702 N
The elevator accelerates upward at an acceleration, then the magnitude of the force is 148.84 N.
What is Force?The force is the action of push or pull which makes an object to move or stop.
Given the mass of child m =13.9 kg, acceleration a =0.898 m/s², then the force will be given by
F = m(g-a)
F = 13.9 x (9.81 - (-0.898))
F = 148.84 N
Thus, the magnitude of the force is 148.84 N.
Learn more about force.
https://brainly.com/question/13191643
#SPJ2
You want to produce a magnetic field of magnitude 5.50 x 10¹ T at a distance of 0.0 6 m from a long, straight wire's center. (a) What current is required to produce this field? (b) With the current found in part (a), how strong is the magnetic field 8.00 cm from the wire's center?
Answer:
(a) I = 1650000 A
(b) 4.125 T
Explanation:
Magnetic field, B = 5.5 T
distance, r = 0.06 m
(a) Let the current is I.
The magnetic field due to a long wire is given by
[tex]B =\frac{\mu o}{4\pi }\frac{2 I}{r}\\5.5= 10^{-7}\times \frac{2\times I}{0.06}\\I =1650000 A[/tex]
(b) Let the magnetic field is B' at distance r = 0.08 m.
[tex]B =\frac{\mu o}{4\pi }\frac{2 I}{r}\\B = 10^{-7}\times \frac{2\times 1650000}{0.08}\\B'= 4.125 T[/tex]
What is the speed acquired by a freely falling object 4 seconds after being dropped from a rest position? Use units of meter per second (m/s) and assume acceleration from gravity is 10 m/s2.
speed = 40 m/s
Explanation:
Since the object is dropped, V0y = 0.
Vy = V0y - gt
= -(10 m/s^2)(4 s)
= -40 m/s
This means that its velocity is 40 m/s downwards. Its speed is simply 40 m/s.
The speed acquired by a freely falling object 4 seconds after being dropped from a rest position would be 40 meters/seconds.
What are the three equations of motion?There are three equations of motion given by Newton
The first equation is given as follows
v = u + at
the second equation is given as follows
S = ut + 1/2×a×t²
the third equation is given as follows
v² - u² = 2×a×s
Keep in mind that these calculations only apply to uniform acceleration.
As given in the problem, we have to find the speed acquired by a freely falling object 4 seconds after being dropped from a rest position,
By using the first equation of motion,
v = u + at
initial velocity(u) = 0 m/s
acceleration(a) = 10 m/s²
v = 0 + 10×4
v = 40 meters/seconds
Thus, the speed acquired by a freely falling object 4 seconds after being dropped from a rest position would be 40 meters/seconds.
Learn more about equations of motion from here,
brainly.com/question/5955789
#SPJ2
What is sieving? Give an example where this method is used. (2)
Answer:
sieving is when you separate particles of different sizes.
Explanation:
separating sand mixtures
separating chaffs from local garri
Which statement is true?
a particle of violet light has less energy than a particle of red light
a particle of violet light has more energy than a particle of red light
a particle of violet light has exactly the same energy as a particle of red light
particles of light do not have any energy, regardless of what color the light is
a particle of violet light has exactly the same energy as a particle of red light
Given this relationship, if you and your twin sibling (assuming you have the same mass) were to be separated by three times your original distance, what is the new gravitational force between you?
Answer:
The new force becomes (1/9)th of the original force.
Explanation:
The gravitational force between two masses is given by :
[tex]F=G\dfrac{m_1m_2}{r^2}[/tex]
Where
r is the distance between masses,
If the new distance is, r' = 3r
The new force is given by :
[tex]F'=G\dfrac{m_1m_2}{r'^2}\\\\F'=G\dfrac{m_1m_2}{(3r)^2}\\\\F'=\dfrac{1}{9}\times G\dfrac{m_1m_2}{r^2}\\\\F'=\dfrac{F}{9}[/tex]
So, the new force becomes (1/9)th of the original force.
A metallic circular plate with radius r is fixed to a tabletop. An identical circular plate supported from above by a cable is fixed in place a distance d above the first plate. Assume that d is much smaller than r. The two plates are attached by wires to a battery that supplies voltage V.
Required:
a. What is the tension in the cable?
b. Compute the energy stored in the electric field after the top plate was raised.
Answer:
A) F = V²E_o•πr²/2d²
B) U = E_o•Aπr²V²/2d
Explanation:
A) Since we have two circular plates, the formula for the electric field is expressed as;
E = V/d
Where;
V is voltage
d is distance
However, the net electric field produced is given by;
E' = V/2d
The tension in the cable can then be expressed as;
F = qE'
Where q is charge
Thus;
F = qV/2d - - - (eq 1)
We also know that;
C = q/V = E_o•A/d
A is area = πr²
Thus;
q/V = E_o•πr²/d
q = VE_o•πr²/d
Let's put VE_o•πr²/d for q in eq 1 to get;
F = V²E_o•πr²/2d²
B) formula for the energy stored in the electric field is;
U = ½CV²
From earlier, we saw that; C = E_o•A/d
Thus;
U = ½E_o•AV²/d
A = πr²
Thus;
U = E_o•Aπr²V²/2d
what is the light synthesis ?
Answer:
Photosynthesis, the process by which green plants and certain other organisms transform light energy into chemical energy. ... During photosynthesis in green plants, light energy is captured and used to convert water, carbon dioxide, and minerals into oxygen and energy-rich organic compounds.
Explanation:
thank me later
Consider an electron confined in a region of nuclear dimensions (about 5 fm). Find its minimumpossible kinetic energy in MeV. Treat this problem as one-dimensional, and use the relativistic relationbetweenEandp. Give your answer to 2 significant figures. (The large value you will find is a strongargument against the presence of electrons inside nuclei, since no known mechanism could contain anelectron with this much energy.)
Answer:
39.40 MeV
Explanation:
Determine the minimum possible Kinetic energy
width of region = 5 fm
From Heisenberg's uncertainty relation below
ΔxΔp ≥ h/2 , where : 2Δx = 5fm , Δpc = hc/2Δx = 39.4 MeV
when we apply this values using the relativistic energy-momentum relation
E^2 = ( mc^2)^2 + ( pc )^2 = 39.4 MeV ( right answer ) because the energy grows quadratically in nonrelativistic approximation,
Also in a nuclear confinement ( E, P >> mc )
while The large value will portray a Non-relativistic limit as calculated below
K = h^2 / 2ma^2 = 1.52 GeV
Which of these is NOT an effect of humor?
strengthened immune system
reduced stress levels
reduced feelings of anxiety
feelings of jealousy and envy
5N
5 N
19 N
19 N
Pls help look at the pic
Answer:
b. is the correct answer ....
compare the time period of two pendulums of length 4m and 9m
area= length × length
area = 4m × 9m
ans 36
In an experiment, a student brings up the rotational speed of a piece of laboratory apparatus to 24 rpm. She then allows the apparatus to slow down uniformly on its own, and counts 236 revolutions before the apparatus comes to a stop. The moment of inertia of the apparatus is known to be 0.076 kg m2. What is the magnitude of the torque on the apparatus
Answer:
T = 6.43 x 10⁻⁵ N.m
Explanation:
First, we will calculate the deceleration of the apparatus by using the third equation of motion:
[tex]2\alpha \theta = \omega_f^2-\omega_i^2[/tex]
where,
α = angular decelration = ?
θ = angular displacement = (236 rev)(2π rad/rev) = 1482.83 rad
ωi = initial angular speed = (24 rpm)(2π rad/1 rev)(1 min/ 60 s) = 2.51 rad/s
ωf = final angular speed = 0 rad/s
Therefore,
[tex]2\alpha(1482.83\ rad) = (0\ rad/s)^2-(2.51\ rad/s)^2\\\\\alpha = -\frac{(2.51\ rad/s)^2}{2965.66\ rad} \\\\\alpha = - 8.46\ x\ 10^{-4}\ rad/s^2[/tex]
negative sign shows deceleration
Now, for torque:
T = Iα
where,
T = Torque = ?
I = moment of inertia = 0.076 kg.m²
Therefore,
T = (0.076 kg.m²)(8.46 x 10⁻⁴ N.m)
T = 6.43 x 10⁻⁵ N.m