"If two angles are vertical angles, then they are congruent."
Which of the following is the inverse of the statement above?
If two angles are congruent, then they are vertical.
If two angles are not vertical, then they are not congruent.
O If two angles are congruent, then they are not vertical.
O If two angles are not congruent, then they are not vertical.

"If Two Angles Are Vertical Angles, Then They Are Congruent."Which Of The Following Is The Inverse Of

Answers

Answer 1
The inverse of a conditional statement involves negating both the hypothesis and the conclusion. In this case, the original statement is: "If two angles are vertical angles, then they are congruent."

To find the inverse, we negate both parts: "If two angles are not vertical angles, then they are not congruent."

So, the correct answer is: "If two angles are not vertical, then they are not congruent."

Related Questions

6. For the system below, find the eigenvalues and eigenvectors. Write the general solution and sketch a phase portrait with at least 4 trajectories. Determine the stability of the node and discuss the behavior of the manifolds. X ′
=( 4
2

1
3

)X

Answers

The node at the origin is stable. The manifolds are given by the eigenvectors. The eigenvector [2, 1] represents the unstable manifold and the eigenvector [-1, 1] represents the stable manifold.

Given a system of linear differential equation,

X' = AX

where X= [x₁, x₂]

and A=  [[4, 2], [1, 3]].

The solution of the system can be found by finding the eigenvalues and eigenvectors.

So, we need to find the eigenvalues and eigenvectors.

To find the eigenvalues, we need to solve the characteristic equation which is given by

|A-λI|=0

where, I is the identity matrix

and λ is the eigenvalue.

So, we have |A-λI| = |4-λ, 2|  |1, 3-λ| = (4-λ)(3-λ)-2= λ² -7λ+10=0

On solving, we get

λ=5, 2.

Thus, the eigenvalues are λ₁=5, λ₂=2.

To find the eigenvectors, we need to solve the system

(A-λI)X=0.

For λ₁=5,A-λ₁I= [[-1, 2], [1, -2]] and

for λ₂=2,A-λ₂I= [[2, 2], [1, 1]]

For λ₁=5, we get the eigenvector [2, 1].

For λ₂=2, we get the eigenvector [-1, 1].

Therefore, the eigenvalues of the system are λ₁=5, λ₂=2 and the eigenvectors are [2, 1] and [-1, 1].

The general solution of the system is given by

X(t) = c₁[2,1]e⁵ᵗ + c₂[-1,1]e²ᵗ

where c₁, c₂ are arbitrary constants.

Now, we need to sketch a phase portrait with at least 4 trajectories.

The phase portrait of the system is shown below:

Thus, we can see that all the trajectories move towards the node at the origin. Therefore, the node at the origin is stable. The manifolds are given by the eigenvectors. The eigenvector [2, 1] represents the unstable manifold and the eigenvector [-1, 1] represents the stable manifold.

Learn more about eigenvalues and eigenvectors:

https://brainly.com/question/31391960

#SPJ11

Question 2 0.2 pts what does the scope of a variable relate to

Answers

The variable has a global scope and is related to mathematical expressions or equations for representing the unknown value.

In mathematics, the concept of scope is not directly applicable to variables in the same way it is in computer programming. In mathematics, variables typically have a global scope, meaning they are valid and accessible throughout the entire mathematical expression or equation in which they are defined.

Mathematical variables are used to represent unknown values or quantities, and their scope is typically determined by the mathematical expression or equation in which they are used. Variables in mathematics can be used within their defined context, such as an equation or formula, to represent specific values or relationships between quantities. They do not have the same localized scope as variables in programming, where their visibility is limited to specific parts of a program.

In summary, in mathematics, variables typically have a global scope, and their scope is determined by the mathematical expression or equation in which they are used.

Learn more about variables here:

https://brainly.com/question/15078630

#SPJ4

Give an example of a function whose domain is (−[infinity],3)∪(3,[infinity]) (that
is, all real numbers except 3).

Answers

A function whose domain is (−∞,3)∪(3,∞) is defined by the equation f(x) = x² - 4x + 3. This is because the function is defined for all real numbers except 3.The domain of a function is the set of all possible input values (independent variable) for which the function is defined.

In this case, the function is not defined for x = 3, so the domain is all real numbers except 3. Thus, the function whose domain is (−∞,3)∪(3,∞) is defined by the equation f(x) = x² - 4x + 3.

A detailed solution to this problem is shown below.

Let f(x) = x² - 4x + 3 be a function defined over the real numbers except 3.

We must show that the domain of f is (-∞, 3) ∪ (3, ∞).i.e., f(x) is defined for all x < 3 and x > 3.Now, we know that the domain of a function is the set of all possible input values (independent variable) for which the function is defined.

So, let's consider f(x) = x² - 4x + 3 .To find the domain of the function, we need to make sure that the denominator of the function is not zero.To check this, we need to solve the equation x - 3 = 0 which yields x = 3.

Therefore, the function is not defined for x = 3. Thus, the domain of f is (-∞, 3) ∪ (3, ∞).Hence, the function whose domain is (−∞,3)∪(3,∞) is defined by the equation f(x) = x² - 4x + 3.

To know more about domain visit:

https://brainly.com/question/30133157

#SPJ11

suppose that the manufacturing of an anxiety medication follows the normal probability law, with mean= 200mg andstudent submitted image, transcription available below=15mg of active ingredient. if the medication requires at least 200mg to be effective what is the probability that a random pill is effective?

Answers

The probability of z-score equal to zero is 0.5.Therefore, the probability that a random pill is effective is 0.5 or 50%.

The given data are:

Mean = μ = 200mg

Standard Deviation = σ = 15mg

We are supposed to find out the probability that a random pill is effective, given that the medication requires at least 200mg to be effective.

The mean of the normal probability distribution is the required minimum effective dose i.e. 200 mg. The standard deviation is 15 mg. Therefore, z-score can be calculated as follows:

z = (x - μ) / σ

where x is the minimum required effective dose of 200 mg.

Substituting the values, we get:

z = (200 - 200) / 15 = 0

According to the standard normal distribution table, the probability of z-score equal to zero is 0.5.Therefore, the probability that a random pill is effective is 0.5 or 50%.

Learn more about z-score visit:

brainly.com/question/31871890

#SPJ11

. Given that X∼N(0,σ 2
) and Y=X 2
, find f Y

(y). b. Given that X∼Expo(λ) and Y= 1−X
X

, find f Y

(y). c. Given that f X

(x)= 1+x 2
1/π

;∣x∣<α and, Y= X
1

. Find f Y

(y).

Answers

a. The probability density function (PDF) of Y, X∼N(0,σ 2) and Y=X 2, f_Y(y) = (1 / (2√y)) * (φ(√y) + φ(-√y)).

b. If X∼Expo(λ) and Y= 1−X, f_Y(y) = λ / ((y + 1)^2) * exp(-λ / (y + 1)).

c. For f_X(x) = (1 + x²) / π

a. To find the probability density function (PDF) of Y, where Y = X², we can use the method of transformation.

We start with the cumulative distribution function (CDF) of Y:

F_Y(y) = P(Y ≤ y)

Since Y = X², we have:

F_Y(y) = P(X² ≤ y)

Since X follows a normal distribution with mean 0 and variance σ^2, we can write this as:

F_Y(y) = P(-√y ≤ X ≤ √y)

Using the CDF of the standard normal distribution, we can write this as:

F_Y(y) = Φ(√y) - Φ(-√y)

Differentiating both sides with respect to y, we get the PDF of Y:

f_Y(y) = d/dy [Φ(√y) - Φ(-√y)]

Simplifying further, we get:

f_Y(y) = (1 / (2√y)) * (φ(√y) + φ(-√y))

Where φ(x) represents the PDF of the standard normal distribution.

b. Given that X follows an exponential distribution with rate parameter λ, we want to find the PDF of Y, where Y = (1 - X) / X.

To find the PDF of Y, we can again use the method of transformation.

We start with the cumulative distribution function (CDF) of Y:

F_Y(y) = P(Y ≤ y)

Since Y = (1 - X) / X, we have:

F_Y(y) = P((1 - X) / X ≤ y)

Simplifying the inequality, we get:

F_Y(y) = P(1 - X ≤ yX)

Dividing both sides by yX and considering that X > 0, we have:

F_Y(y) = P(1 / (y + 1) ≤ X)

The exponential distribution is defined for positive values only, so we can write this as:

F_Y(y) = P(X ≥ 1 / (y + 1))

Using the complementary cumulative distribution function (CCDF) of the exponential distribution, we have:

F_Y(y) = 1 - exp(-λ / (y + 1))

Differentiating both sides with respect to y, we get the PDF of Y:

f_Y(y) = d/dy [1 - exp(-λ / (y + 1))]

Simplifying further, we get:

f_Y(y) = λ / ((y + 1)²) * exp(-λ / (y + 1))

c. Given that f_X(x) = (1 + x²) / π, where |x| < α, and Y = X^(1/2), we want to find the PDF of Y.

To find the PDF of Y, we can again use the method of transformation.

We start with the cumulative distribution function (CDF) of Y:

F_Y(y) = P(Y ≤ y)

Since Y = X^(1/2), we have:

F_Y(y) = P(X^(1/2) ≤ y)

Squaring both sides of the inequality, we get:

F_Y(y) = P(X ≤ y²)

Integrating the PDF of X over the appropriate range, we get:

F_Y(y) = ∫[from -y² to y²] (1 + x²) / π dx

Evaluating the integral, we have:

F_Y(y) = [arctan(y²) - arctan(-y²)] / π

Differentiating both sides with respect to y, we get the PDF of Y:

f_Y(y) = d/dy [arctan(y²) - arctan(-y²)] / π

Simplifying further, we get:

f_Y(y) = (2y) / (π * (1 + y⁴))

Note that the range of y depends on the value of α, which is not provided in the question.

To know more about exponential distribution, visit:

https://brainly.com/question/28256132

#SPJ11

What will be the output of the following program: clc; clear; x=1; for ii=1:1:5 for jj=1:1:3 x=x+3; end x=x+2; end fprintf ( ′
%g ′
,x); What will be the output of the following program: clc; clear; x=0; for ii=1:1:5 for jj=1:1:3 x=x+3; break; end x=x+2; end fprintf ( ′
%g ′
,x);

Answers

The outputs of the two programs will be:

Program 1: 46

Program 2: 5

Let's analyze the two programs and determine the output for each.

Program 1:

clc;

clear;

x = 1;

for ii = 1:1:5

   for jj = 1:1:3

       x = x + 3;

   end

   x = x + 2;

end

fprintf('%g', x);

In this program, we have nested loops.

The outer loop ii runs from 1 to 5, and the inner loop jj runs from 1 to 3. Inside the inner loop, x is incremented by 3 for each iteration.

After the inner loop, x is incremented by 1.

This process repeats for the number of iterations specified in the loops.

The final value of x is determined by the number of times the inner and outer loops run and the increments applied.

Program 2:

clc;

clear;

x = 0;

for ii = 1:1:5

   for jj = 1:1:3

       x = x + 3;

       break;

   end

   x = x + 2;

end

fprintf('%g', x);

This program is similar to the first program, but it includes a break statement inside the inner loop.

This break statement causes the inner loop to terminate after the first iteration, regardless of the number of iterations specified in the loop.

Now let's evaluate the outputs of the two programs:

Program 1 Output:

The final value of x in program 1 will be 46.

Program 2 Output:

The final value of x in program 2 will be 5.

For similar question on outputs.

https://brainly.com/question/30724559

#SPJ8  

Given the points V(5,1) and Q(6,-3). Find the slope (gradient ) of the straight line passing through points V and Q.

Answers

The slope (gradient) of the straight line passing through points V and Q is -4 .

The slope (gradient) of the straight line passing through points V( 5, 1 ) and Q( 6, -3 )

we can use the formula of slope

slope = (change in y-coordinates) / (change in x-coordinates)

Let's calculate the slope using the given points:

change in y-coordinates = -3 - 1 = -4

change in x-coordinates = 6 - 5 = 1

slope = (-4) / (1)

slope = -4

Therefore, the slope (gradient) of the straight line passing through points V and Q is -4.

To know more about slope (gradient) click here :

https://brainly.com/question/27589132

#SPJ4

Let n∈N. Prove the following inequalities. (a) 1+1/2+1/3+⋯+1/n≥2n/n+1 (b) (2^(n)−1)²≥n²⋅2^(1n−1)

Answers

(a) The inequality 1 + 1/2 + 1/3 + ⋯ + 1/n ≥ 2n/(n + 1) holds for all n ∈ N.

(b) The inequality (2^n - 1)^2 ≥ n^2 * 2^((1/n) - 1) holds for all n ∈ N.

(a) To prove the inequality 1 + 1/2 + 1/3 + ⋯ + 1/n ≥ 2n/(n + 1), we can use mathematical induction.

For n = 1, the inequality becomes 1 ≥ 2(1)/(1 + 1), which simplifies to 1 ≥ 1. This is true.

Assume the inequality holds for some positive integer k, i.e., 1 + 1/2 + 1/3 + ⋯ + 1/k ≥ 2k/(k + 1).

We need to prove that the inequality also holds for k + 1, i.e., 1 + 1/2 + 1/3 + ⋯ + 1/(k + 1) ≥ 2(k + 1)/((k + 1) + 1).

Adding 1/(k + 1) to both sides of the inductive hypothesis:

1 + 1/2 + 1/3 + ⋯ + 1/k + 1/(k + 1) ≥ 2k/(k + 1) + 1/(k + 1).

Combining the fractions on the right side:

1 + 1/2 + 1/3 + ⋯ + 1/k + 1/(k + 1) ≥ (2k + 1)/(k + 1).

Simplifying the left side:

(1 + 1/2 + 1/3 + ⋯ + 1/k) + 1/(k + 1) ≥ (2k + 1)/(k + 1).

Using the inductive hypothesis:

(2k/(k + 1)) + 1/(k + 1) ≥ (2k + 1)/(k + 1).

Combining the fractions on the left side:

(2k + 1)/(k + 1) ≥ (2k + 1)/(k + 1).

Since (2k + 1)/(k + 1) is equal to (2k + 1)/(k + 1), the inequality holds for k + 1.

By mathematical induction, the inequality 1 + 1/2 + 1/3 + ⋯ + 1/n ≥ 2n/(n + 1) holds for all n ∈ N.

(b) To prove the inequality (2^n - 1)^2 ≥ n^2 * 2^((1/n) - 1), we can simplify the expression on the left side and compare it to the expression on the right side.

Expanding the left side:

(2^n - 1)^2 = 4^n - 2 * 2^n + 1.

Rearranging the right side:

n^2 * 2^((1/n) - 1) = n^2 * (2^(1/n) * 2^(-1)) = n^2 * (2^(1/n) / 2).

Comparing the two expressions:

4^n - 2 * 2^n + 1 ≥ n^2 * (2^(1/n) / 2).

We can simplify this further by dividing both sides by 2^n:

2^n - 1 + 1/2^n ≥ n^2 * (2^(1/n) / 2^(n - 1)).

Using the fact that 2^n > n^2 for all n > 4, we can conclude that the inequality holds for n > 4.

(a) The inequality 1 + 1/2 + 1/3 + ⋯ + 1/n ≥ 2n/(n + 1) holds for all n ∈ N.

(b) The inequality (2^n - 1)^2 ≥ n^2 * 2^((1/n) - 1) holds for n > 4.

To know more about inequality, visit;
https://brainly.com/question/25944814
#SPJ11

Brandon has a cup of quarters and dimes with a total value of $12.55. The number of quarters is 73 less than 4 times the number of dimes. How many quarters and how many dimes does Brandon have?

Answers

The number of quarters and dimes Brandon has is 31 and 28 respectively.

Let x be the number of dimes Brandon has.

Let y be the number of quarters Brandon has.

According to the problem:

1. y = 4x - 732. 0.25y + 0.10x = 12.55

We'll use equation (1) to find the number of quarters in terms of dimes:

y = 4x - 73

Now substitute y = 4x - 73 in equation (2) and solve for x.

0.25(4x - 73) + 0.10x = 12.551.00x - 18.25 + 0.10x = 12.551.

10x = 30.80x = 28

Therefore, Brandon has 28 dimes.

To find the number of quarters, we'll substitute x = 28 in equation (1).

y = 4x - 73y = 4(28) - 73y = 31

Therefore, Brandon has 31 quarters.

Answer: Brandon has 28 dimes and 31 quarters.

To know more about number refer here:

https://brainly.com/question/16882938

#SPJ11

The probability of a call center receiving over 400 calls on any given day is 0.2. If it does receive this number of calls, the probability of the center missing the day’s target on average caller waiting times is 0.7. If 400 calls or less are received, the probability of missing this target is 0.1. The probability that the target will be missed on a given day is:

0.70
0.20
0.22
0.14

Answers

Therefore, the probability that the target will be missed on a given day is 0.22, or 22%.

To calculate the probability that the target will be missed on a given day, we need to consider the two scenarios: receiving over 400 calls and receiving 400 calls or less.

Scenario 1: Receiving over 400 calls

The probability of receiving over 400 calls is given as 0.2, and the probability of missing the target in this case is 0.7.

P(Missed Target | Over 400 calls) = 0.7

Scenario 2: Receiving 400 calls or less

The probability of receiving 400 calls or less is the complement of receiving over 400 calls, which is 1 - 0.2 = 0.8. The probability of missing the target in this case is 0.1.

P(Missed Target | 400 calls or less) = 0.1

Now, we can calculate the overall probability of missing the target on a given day by considering both scenarios:

P(Missed Target) = P(Over 400 calls) * P(Missed Target | Over 400 calls) + P(400 calls or less) * P(Missed Target | 400 calls or less)

P(Missed Target) = 0.2 * 0.7 + 0.8 * 0.1

P(Missed Target) = 0.14 + 0.08

P(Missed Target) = 0.22

Learn more about probability  here

https://brainly.com/question/31828911

#SPJ11

State the definition of commensurable and incommensurable numbers. Are (a) 7 and 8/9 (b) 7 and , (c) and commensurable or not? Mimic Pythagoras's proof to show that the diagonal of a rectangles with one side the double of the other is not commensurable with either side. Hint: At some point you will obtain that h ∧ 2=5a ∧ 2. You should convince yourself that if h ∧ 2 is divisible by 5 , then also h is divisible by 5 . [Please write your answer here]

Answers

The numbers 7 and 8/9 are incommensurable. The numbers 7 and √2 are incommensurable. The diagonal of a rectangle with one side being the double of the other is not commensurable with either side.

Commensurable numbers are rational numbers that can be expressed as a ratio of two integers. Incommensurable numbers are irrational numbers that cannot be expressed as a ratio of two integers.

(a) The numbers 7 and 8/9 are incommensurable because 8/9 cannot be expressed as a ratio of two integers.

(b) The numbers 7 and √2 are incommensurable since √2 is irrational and cannot be expressed as a ratio of two integers.

To mimic Pythagoras's proof, let's consider a rectangle with sides a and 2a. According to the Pythagorean theorem, the diagonal (h) satisfies the equation h^2 = a^2 + (2a)^2 = 5a^2. If h^2 is divisible by 5, then h must also be divisible by 5. However, since a is an arbitrary positive integer, there are no values of a for which h is divisible by 5. Therefore, the diagonal of the rectangle (h) is not commensurable with either side (a or 2a).

Learn more about Commensurable here : brainly.com/question/17269143

#SPJ11

A man of mass 70kg jumps out of a boat of mass 150kg which was originally at rest, if the component of the mans velocity along the horizontal just before leaving the boat is (10m)/(s)to the right, det

Answers

The horizontal component of the boat's velocity just after the man jumps out is -4.67 m/s to the left.

To solve this problem, we can use the principle of conservation of momentum. The total momentum before the man jumps out of the boat is equal to the total momentum after he jumps out.

The momentum of an object is given by the product of its mass and velocity.

Mass of the man (m1) = 70 kg

Mass of the boat (m2) = 150 kg

Velocity of the man along the horizontal just before leaving the boat (v1) = 10 m/s to the right

Velocity of the boat along the horizontal just before the man jumps out (v2) = 0 m/s (since the boat was originally at rest)

Before the man jumps out:

Total momentum before = momentum of the man + momentum of the boat

                         = (m1 * v1) + (m2 * v2)

                         = (70 kg * 10 m/s) + (150 kg * 0 m/s)

                         = 700 kg m/s

After the man jumps out:

Let the velocity of the boat just after the man jumps out be v3 (to the left).

Total momentum after = momentum of the man + momentum of the boat

                         = (m1 * v1') + (m2 * v3)

Since the boat and man are in opposite directions, we have:

m1 * v1' + m2 * v3 = 0

Substituting the given values:

70 kg * 10 m/s + 150 kg * v3 = 0

Simplifying the equation:

700 kg m/s + 150 kg * v3 = 0

150 kg * v3 = -700 kg m/s

v3 = (-700 kg m/s) / (150 kg)

v3 ≈ -4.67 m/s

Therefore, the horizontal component of the boat's velocity just after the man jumps out is approximately -4.67 m/s to the left.

To know more about horizontal component follow the link:

https://brainly.com/question/29103279

#SPJ11

The red blood cell counts (in millions of cells per microliter) for a population of adult males can be approximated by a normal distribution, with a mean of 5.4 million cells per microliter and a standard deviation of 0.4 million cells per microliter. (a) What is the minimum red blood cell count that can be in the top 28% of counts? (b) What is the maximum red blood cell count that can be in the bottom 10% of counts? (a) The minimum red blood cell count is million cells per microliter. (Round to two decimal places as needed.) (b) The maximum red blood cell count is million cells per microliter. (Round to two decimal places as needed.)

Answers

The maximum red blood cell count that can be in the bottom 10% of counts is approximately 4.89 million cells per microliter.

(a) To find the minimum red blood cell count that can be in the top 28% of counts, we need to find the z-score corresponding to the 28th percentile and then convert it back to the original scale.

Step 1: Find the z-score corresponding to the 28th percentile:

z = NORM.INV(0.28, 0, 1)

Step 2: Convert the z-score back to the original scale:

minimum count = mean + (z * standard deviation)

Substituting the values:

minimum count = 5.4 + (z * 0.4)

Calculating the minimum count:

minimum count ≈ 5.4 + (0.5616 * 0.4) ≈ 5.4 + 0.2246 ≈ 5.62

Therefore, the minimum red blood cell count that can be in the top 28% of counts is approximately 5.62 million cells per microliter.

(b) To find the maximum red blood cell count that can be in the bottom 10% of counts, we follow a similar approach.

Step 1: Find the z-score corresponding to the 10th percentile:

z = NORM.INV(0.10, 0, 1)

Step 2: Convert the z-score back to the original scale:

maximum count = mean + (z * standard deviation)

Substituting the values:

maximum count = 5.4 + (z * 0.4)

Calculating the maximum count:

maximum count ≈ 5.4 + (-1.2816 * 0.4) ≈ 5.4 - 0.5126 ≈ 4.89

Therefore, the maximum red blood cell count that can be in the bottom 10% of counts is approximately 4.89 million cells per microliter.

Learn more about red blood cell  here:

https://brainly.com/question/12265786

#SPJ11

It is known that 20% of households have a dog. If 10 houses are chosen at random, what is the probability that: a. Three will have a dog - b. No more than three will have a dog.

Answers

To solve these probability problems, we can use the binomial probability formula.

The binomial probability formula is:

P(X = k) = (nCk) * p^k * (1 - p)^(n - k)

Where:

P(X = k) is the probability of getting exactly k successes

n is the total number of trials (number of houses chosen)

k is the number of successes (number of houses with a dog)

p is the probability of success (probability of a household having a dog)

(1 - p) is the probability of failure (probability of a household not having a dog)

nCk represents the number of combinations of n items taken k at a time (n choose k)

a. Probability that three houses will have a dog:

P(X = 3) = (10C3) * (0.2)^3 * (0.8)^(10 - 3)

Using the binomial probability formula, we can calculate this probability.

b. Probability that no more than three houses will have a dog:

P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

Using the binomial probability formula, we can calculate each individual probability and sum them up.

Note: To evaluate (nCk), we can use the formula: (nCk) = n! / (k! * (n - k)!), where ! denotes factorial.

Let's calculate the probabilities:

a. Probability that three houses will have a dog:

P(X = 3) = (10C3) * (0.2)^3 * (0.8)^(10 - 3)

b. Probability that no more than three houses will have a dog:

P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

Note: We need to evaluate each individual probability using the binomial probability formula.

Learn more about binomial probability here:

https://brainly.com/question/33174773

#SPJ11

If X has the cumulative distribution function F(x)= ⎩



0
4
1

2
1

4
3

1

for x<−1
for −1≤x<1
for 1≤x<3
for 3≤x<5
for x≥5

find (a) P(−0.4

Answers

So, the probability P(-0.4 < X < 2) is 1/2, using the cumulative distribution function

To find the probability P(-0.4 < X < 2), we can use the cumulative distribution function (CDF) F(x) for the given random variable X.

We know that:

F(x) = 0 for x < -1

F(x) = 1/4 for -1 ≤ x < 1

F(x) = 2/4 for 1 ≤ x < 3

F(x) = 3/4 for 3 ≤ x < 5

F(x) = 1 for x ≥ 5

To find P(-0.4 < X < 2), we can calculate F(2) - F(-0.4).

F(2) = 3/4 (as 2 is in the range 1 ≤ x < 3)

F(-0.4) = 1/4 (as -0.4 is in the range -1 ≤ x < 1)

Therefore, P(-0.4 < X < 2) = F(2) - F(-0.4) = (3/4) - (1/4) = 2/4 = 1/2.

So, the probability P(-0.4 < X < 2) is 1/2.

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

Scores of an 1Q test have a bell-shaped distribution with a mean of 100 and a standard deviation of 15 . Use the empirical rule to determine the following. (a) What percentage of people has an 1Q score botween 85 and 115 ? (b) What percentage of people has an IQ score less than 55 or greater than 145 ? (c) What percentage of people has an IQ score greater than 145 ?

Answers

The percentage of people with an IQ score greater than 145 is approximately 0.3%.

The empirical rule, also known as the 68-95-99.7 rule, states that for a bell-shaped distribution, approximately:

68% of the data falls within one standard deviation of the mean,

95% falls within two standard deviations,

99.7% falls within three standard deviations.

Using this rule, we can calculate the probabilities for the given scenarios:

(a) What percentage of people have an IQ score between 85 and 115?

First, let's calculate the z-scores for the values 85 and 115 using the formula: z = (x - μ) / σ, where x is the score, μ is the mean, and σ is the standard deviation.

For x = 85:

z = (85 - 100) / 15 = -1

For x = 115:

z = (115 - 100) / 15 = 1

Using the empirical rule, we know that approximately 68% of the data falls within one standard deviation of the mean. Therefore, the percentage of people with an IQ score between 85 and 115 is approximately 68%.

(b) What percentage of people have an IQ score less than 55 or greater than 145?

To calculate the percentage of people with an IQ score less than 55 or greater than 145, we need to consider the areas outside two standard deviations from the mean.

For x = 55:

z = (55 - 100) / 15 = -3

For x = 145:

z = (145 - 100) / 15 = 3

Using the empirical rule, we know that approximately 95% of the data falls within two standard deviations of the mean. Therefore, the percentage of people with an IQ score less than 55 or greater than 145 is approximately 100% - 95% = 5%.

(c) What percentage of people have an IQ score greater than 145?

Using the same z-score as in part (b), we know that the percentage of people with an IQ score greater than 145 is approximately 100% - 99.7% = 0.3%.

Therefore, the percentage of people with an IQ score greater than 145 is approximately 0.3%.

To know more about percentage, visit:

https://brainly.com/question/32197511

#SPJ11

An 8-output demultiplexer has ( ) select inputs. A. 2 B. 3 C. 4 D. 5

Answers

The correct answer is C.4. A demultiplexer is a combinational circuit that takes one input and distributes it to multiple outputs based on the select inputs.

In the case of an 8-output demultiplexer, it means that the circuit has 8 output lines. To select which output line the input should be directed to, we need to use select inputs.

The number of select inputs required in a demultiplexer is determined by the formula 2^n, where n is the number of select inputs. In this case, we have 8 output lines, which can be represented by 2^3 (since 2^3 = 8). Therefore, we need 3 select inputs to address all 8 output lines.

Looking at the given options, the correct answer is C. 4 select inputs. However, it is worth noting that a demultiplexer can also be implemented with fewer select inputs (e.g., using a combination of multiple demultiplexers). But in the context of the question, the standard configuration of an 8-output demultiplexer would indeed require 4 select inputs.

Learn more about demultiplexers here:

brainly.com/question/32997892

#SPJ11

Given the function
$$
f(x)=3 x^2-4 x-1
$$
Find the average rate of change of $f$ on $[-1,4]$ :

Answers

Average rate of change is 5

To find the average rate of change of a function on an interval, we need to calculate the difference in function values at the endpoints of the interval and divide it by the difference in the input values.

Let's find the values of $f(x)$ at the endpoints of the interval $[-1, 4]$ and then calculate the average rate of change.

For $x = -1$:

$$f(-1) = 3(-1)^2 - 4(-1) - 1 = 3 + 4 - 1 = 6.$$

For $x = 4$:

$$f(4) = 3(4)^2 - 4(4) - 1 = 48 - 16 - 1 = 31.$$

Now we can calculate the average rate of change using the formula:

$$\text{Average Rate of Change} = \frac{f(4) - f(-1)}{4 - (-1)}.$$

Substituting the values we found:

$$\text{Average Rate of Change} =[tex]\frac{31 - 6}{4 - (-1)}[/tex] = \frac{25}{5} = 5.$$

Learn more about Function:https://brainly.com/question/11624077

#SPJ11

Compute the mean of the following data set. Express your answer as a decimal rounded to 1 decimal place. 89,91,55,7,20,99,25,81,19,82,60 Compute the median of the following data set: 89,91,55,7,20,99,25,81,19,82,60 Compute the range of the following data set: 89,91,55,7,20,99,25,81,19,82,60 Compute the variance of the following data set. Express your answer as a decimal rounded to 1 decimal place. 89,91,55,7,20,99,25,81,19,82,60 Compute the standard deviation of the following data set. Express your answer as a decimal rounded to 1 decimal place. 89,91,55,7,20,99,25,81,19,82,60

Answers

It  simplified to 57.1. Hence, the Mean of the given data set is 57.1.

Mean of the data set is: 54.9

Solution:Given data set is89,91,55,7,20,99,25,81,19,82,60

To find the Mean, we need to sum up all the values in the data set and divide the sum by the number of values in the data set.

Adding all the values in the given data set, we get:89+91+55+7+20+99+25+81+19+82+60 = 628

Therefore, the sum of values in the data set is 628.There are total 11 values in the given data set.

So, Mean of the given data set = Sum of values / Number of values

= 628/11= 57.09

So, the Mean of the given data set is 57.1.

Therefore, the Mean of the given data set is 57.1. The mean of the given data set is calculated by adding up all the values in the data set and dividing it by the number of values in the data set. In this case, the sum of the values in the given data set is 628 and there are total 11 values in the data set. So, the mean of the data set is calculated by:

Mean of data set = Sum of values / Number of values

= 628/11= 57.09.

This can be simplified to 57.1. Hence, the Mean of the given data set is 57.1.

The Mean of the given data set is 57.1.

To know more about data set visit:

brainly.com/question/29011762

#SPJ11

Find the limit, if it exists.
lim h→0 (x+h)³-x³/h a. 0 b. Does not exist
c. 3x²
d. 3x²+3xh+h²

Answers

The limit of lim h→0 (x + h)³ - x³ / h is 3x².

To find the limit of lim h→0 (x + h)³ - x³ / h, we can simplify the expression as follows:

(x + h)³ - x³ / h = (x³ + 3x²h + 3xh² + h³ - x³) / h

Simplifying further, we get:

= 3x² + 3xh + h²

Now, we can take the limit as h approaches 0:

lim h→0 (3x² + 3xh + h²) = 3x² + 0 + 0 = 3x²

Learn more about limit here :-

https://brainly.com/question/12207539

#SPJ11

solve please
Complete the balanced neutralization equation for the reaction below. Be sure to include the proper phases for all species within the reaction. {KOH}({aq})+{H}_{2} {SO}_

Answers

The proper phases for all species within the reaction. {KOH}({aq})+{H}_{2} {SO}_  aqueous potassium hydroxide (KOH) reacts with aqueous sulfuric acid (H2SO4) to produce aqueous potassium sulfate (K2SO4) and liquid water (H2O).

To balance the neutralization equation for the reaction between potassium hydroxide (KOH) and sulfuric acid (H2SO4), we need to ensure that the number of atoms of each element is equal on both sides of the equation.

The balanced neutralization equation is as follows:

2 KOH(aq) + H2SO4(aq) → K2SO4(aq) + 2 H2O(l)

In this equation, aqueous potassium hydroxide (KOH) reacts with aqueous sulfuric acid (H2SO4) to produce aqueous potassium sulfate (K2SO4) and liquid water (H2O).

To know more about potassium refer here:

https://brainly.com/question/13321031#

#SPJ11

You are to construct an appropriate statistical process control chart for the average time (in seconds) taken in the execution of a set of computerized protocols. Data was collected for 30 samples each of size 40, and the mean of all sample means was found to be 50. What is the LCL of a 3.6 control chart? The standard deviation of the sample-means was known to be 4.5 seconds.

Answers

The Lower Control Limit (LCL) of a 3.6 control chart is 44.1.

To construct an appropriate statistical process control chart for the average time taken in the execution of a set of computerized protocols, data was collected for 30 samples each of size 40, and the mean of all sample means was found to be 50. The standard deviation of the sample-means was known to be 4.5 seconds.

A control chart is a statistical tool used to differentiate between common-cause variation and assignable-cause variation in a process. Control charts are designed to detect when process performance is stable, indicating that the process is under control. When the process is in a stable state, decision-makers can make informed judgments and decisions on whether or not to change the process.

For a sample size of 40, the LCL formula for the x-bar chart is: LCL = x-bar-bar - 3.6 * σ/√n

Where: x-bar-bar is the mean of the means

σ is the standard deviation of the mean

n is the sample size

Putting the values, we have: LCL = 50 - 3.6 * 4.5/√40

LCL = 50 - 2.138

LCL = 47.862 or 44.1 (approximated to one decimal place)

Therefore, the LCL of a 3.6 control chart is 44.1.

Know more about control chart here,

https://brainly.com/question/33504670

#SPJ11

twelve luxury cars (5 VW, 3 BMW and 4 Mercedes Benz) are booked by their owners for service at a workshop in Randburg. Suppose the mechanic services one car at any given time. In how many different ways may the cars be serviced in such a way that all three BMW cars are serviced consecutively?

Answers

So, there are 21,772,800 different ways to service the cars in such a way that all three BMW cars are serviced consecutively.

To determine the number of ways the cars can be serviced with the three BMW cars serviced consecutively, we can treat the three BMW cars as a single entity.

So, we have a total of 10 entities: 5 VW cars, 1 entity (BMW cars considered as a single entity), and 4 Mercedes Benz cars.

The number of ways to arrange these 10 entities can be calculated as 10!.

However, within each entity (BMW cars), there are 3! ways to arrange the cars themselves.

Therefore, the total number of ways to service the cars with the three BMW cars consecutively is given by:

10! × 3!

= 3,628,800 × 6

= 21,772,800

Learn more about service  here

https://brainly.com/question/30418810

#SPJ11

Question 1: A $8000.00 investment matures in five years, three months. Find the maturity value if interest is 12% p. a. compounded quarterly. Question 2. Boston Holdings offers a savings account at 1.2% compounded monthly while Albany Secure Savings offers premium savings at 1.236% compounded yearly. Suppose you have $8100.00 to invest for two years: a) Which deposit will earn more interest? b) What is the difference in the amount of interest? Question 3 A 11-year $8000.00 promissory note, with interest at 8.4% compounded monthly, is discounted at 6.5% compounded semi-annually yielding proceeds of $14631.15. How many months before the due date was the date of discount? Question 4 : Mr. Hughes has contrbuted $4000.00 per year for the last ten years into a RRSP account earning 9.00% compounded annually. Suppose he leaves the accumulated contributions for another five years in the RRSP at the same rate of interest: a) How much will Mr. Hughes have in total in his RRSP account? b) How much did Mr. Hughes contribute? c) How much will be interest?

Answers

Question 1:

To find the maturity value of the $8000.00 investment compounded quarterly at an interest rate of 12% p.a., we need to use the formula for compound interest:

Maturity Value = Principal Amount * (1 + (interest rate / n))^(n*t)

Where:

Principal Amount = $8000.00

Interest rate = 12% p.a. = 0.12

n = number of compounding periods per year = 4 (since it is compounded quarterly)

t = time in years = 5.25 (five years and three months)

Maturity Value = $8000.00 * (1 + (0.12 / 4))^(4 * 5.25)

Maturity Value = $8000.00 * (1 + 0.03)^21

Maturity Value = $8000.00 * (1.03)^21

Maturity Value ≈ $12,319.97

Therefore, the maturity value of the investment after five years and three months would be approximately $12,319.97.

Question 2:

a) To determine which deposit will earn more interest, we need to compare the interest earned using the formulas for compound interest for each account.

For Boston Holdings savings account compounded monthly:

Interest = Principal Amount * [(1 + (interest rate / n))^(n*t) - 1]

Interest = $8100.00 * [(1 + (0.012 / 12))^(12 * 2) - 1]

For Albany Secure Savings premium savings compounded yearly:

Interest = Principal Amount * (1 + interest rate)^t

Interest = $8100.00 * (1 + 0.01236)^2

Calculate the interest earned for each account to determine which is higher.

b) To find the difference in the amount of interest, subtract the interest earned in the Boston Holdings account from the interest earned in the Albany Secure Savings account.

Question 3:

To determine how many months before the due date the date of discount was for the $8000.00 promissory note, we need to use the formula for the present value of a discounted amount:

Present Value = Future Value / (1 + (interest rate / n))^(n*t)

Where:

Future Value = $14631.15

Interest rate = 6.5% compounded semi-annually = 0.065

n = number of compounding periods per year = 2 (since it is compounded semi-annually)

t = time in years = 11

Substitute the values into the formula and solve for t.

Question 4:

a) To find the total amount in Mr. Hughes' RRSP account after leaving the accumulated contributions for another five years, we can use the formula for compound interest:

Total Amount = (Principal Amount * (1 + interest rate)^t) + (Annual Contribution * ((1 + interest rate)^t - 1))

Where:

Principal Amount = $4000.00 per year * 10 years = $40,000.00

Interest rate = 9.00% compounded annually = 0.09

t = time in years = 5

b) The total contribution made by Mr. Hughes over the ten years is $4000.00 per year * 10 years = $40,000.00.

c) To find the interest earned, subtract the total contribution from the total amount in the RRSP account.

Learn more about compound interest here

https://brainly.com/question/14295570

#SPJ11

The theatre sold Adult and Children tickets. For Adults, they sold 8 less than 3 times the amount as children tickets. They sold a TOTAL of 152 tickets. How many adult and children tickets did they sell?

Answers

To solve the given problem we need to use two-variable linear equations. Here, the problem states that the theater sold adult and children's tickets. The adults' tickets sold were 8 less than 3 times the children's tickets, and the total number of tickets sold is 152. We have to find out the number of adult and children tickets sold.

Let x be the number of children's tickets sold, and y be the number of adult tickets sold.

Using the given data, we get the following equation: x + y = 152 (Total number of tickets sold)   .......(1)

The adults' tickets sold were 8 less than 3 times the children's tickets. The equation can be formed as y = 3x - 8 .....(2) (Equation involving adult's tickets sold)

Equations (1) and (2) represent linear equations in two variables.

Substitute y = 3x - 8 in x + y = 152 to find the value of x.

⇒x + (3x - 8) = 152

⇒4x = 160

⇒x = 40

The number of children's tickets sold is 40.

Now, use x = 40 to find y.

⇒y = 3x - 8 = 3(40) - 8 = 112

Thus, the number of adult tickets sold is 112.

Finally, we conclude that the theater sold 112 adult tickets and 40 children's tickets.

Learn more about linear equations in two variables here: https://brainly.com/question/19803308

#SPJ11

A t-shirt that cost AED 200 last month is now on sale for AED 100. Describe the change in price.

Answers

The T-shirt's price may have decreased for a number of reasons. It can be that the store wants to get rid of its stock to make place for new merchandise, or perhaps there is less demand for the T-shirt now than there was a month ago.

The change in price of a T-shirt that cost AED 200 last month and is now on sale for AED 100 can be described as a decrease. The decrease is calculated as the difference between the original price and the sale price, which in this case is AED 200 - AED 100 = AED 100.

The percentage decrease can be calculated using the following formula:

Percentage decrease = (Decrease in price / Original price) x 100

Substituting the values, we get:

Percentage decrease = (100 / 200) x 100

Percentage decrease = 50%

This means that the price of the T-shirt has decreased by 50% since last month.

There could be several reasons why the price of the T-shirt has decreased. It could be because the store wants to clear its inventory and make room for new stock, or it could be because there is less demand for the T-shirt now compared to last month.

Whatever the reason, the decrease in price is good news for customers who can now purchase the T-shirt at a lower price. It is important to note, however, that not all sale prices are good deals. Customers should still do their research to ensure that the sale price is indeed a good deal and not just a marketing ploy to attract customers.

To know more about price refer here :

https://brainly.com/question/33097741#

#SPJ11

Let U,V,W be finite dimensional vector spaces over F. Let S∈L(U,V) and T∈L(V,W). Prove that rank(TS)≤min{rank(T),rank(S)}. 3. Let V be a vector space, T∈L(V,V) such that T∘T=T.

Answers

We have proved the statement that if V is a vector space, T ∈ L(V,V) such that T∘T = T. To prove the given statements, we'll use the properties of linear transformations and the rank-nullity theorem.

1. Proving rank(TS) ≤ min{rank(T), rank(S)}:

Let's denote the rank of a linear transformation X as rank(X). We need to show that rank(TS) is less than or equal to the minimum of rank(T) and rank(S).

First, consider the composition TS. We know that the rank of a linear transformation represents the dimension of its range or image. Let's denote the range of a linear transformation X as range(X).

Since S ∈ L(U,V), the range of S, denoted as range(S), is a subspace of V. Similarly, since T ∈ L(V,W), the range of T, denoted as range(T), is a subspace of W.

Now, consider the composition TS. The range of TS, denoted as range(TS), is a subspace of W.

By the rank-nullity theorem, we have:

rank(T) = dim(range(T)) + dim(nullity(T))

rank(S) = dim(range(S)) + dim(nullity(S))

Since range(S) is a subspace of V, and S maps U to V, we have:

dim(range(S)) ≤ dim(V) = dim(U)

Similarly, since range(T) is a subspace of W, and T maps V to W, we have:

dim(range(T)) ≤ dim(W)

Now, consider the composition TS. The range of TS, denoted as range(TS), is a subspace of W. Therefore, we have:

dim(range(TS)) ≤ dim(W)

Using the rank-nullity theorem for TS, we get:

rank(TS) = dim(range(TS)) + dim(nullity(TS))

Since nullity(TS) is a non-negative value, we can conclude that:

rank(TS) ≤ dim(range(TS)) ≤ dim(W)

Combining the results, we have:

rank(TS) ≤ dim(W) ≤ rank(T)

Similarly, we have:

rank(TS) ≤ dim(W) ≤ rank(S)

Taking the minimum of these two inequalities, we get:

rank(TS) ≤ min{rank(T), rank(S)}

Therefore, we have proved that rank(TS) ≤ min{rank(T), rank(S)}.

2. Let V be a vector space, T ∈ L(V,V) such that T∘T = T.

To prove this statement, we need to show that the linear transformation T satisfies T∘T = T.

Let's consider the composition T∘T. For any vector v ∈ V, we have:

(T∘T)(v) = T(T(v))

Since T is a linear transformation, T(v) ∈ V. Therefore, we can apply T to T(v), resulting in T(T(v)).

However, we are given that T∘T = T. This implies that for any vector v ∈ V, we must have:

(T∘T)(v) = T(T(v)) = T(v)

Hence, we can conclude that T∘T = T for the given linear transformation T.

Therefore, we have proved the statement that if V is a vector space, T ∈ L(V,V) such that T∘T = T.

Learn more about rank-nullity theorem here:

https://brainly.com/question/32674032

#SPJ11

4. Find the analytic domain and the derivative of f(z)=z^{2}+\frac{1}{z^{2}+1} in the analytic domain.

Answers

The analytic domain of the function is the entire complex plane except for the simple poles at z=±i.

In order to find the analytic domain of the function f(z)=z2+1/(z2+1), we must first identify the singular points and determine whether or not they are removable or non-removable. The denominator of the function has two roots, z=±i, which are simple poles.

For a function to be analytic at a point, it must be differentiable at that point. The function is differentiable at all points except for the poles. The poles are not removable, and therefore the analytic domain of the function is the complex plane minus the poles.

Thus, the analytic domain is given by D={z: z∈C and z≠±i}.

The derivative of f(z)=z2+1/(z2+1) can be found using the quotient rule of differentiation. Using this rule, we get,

f′(z)=2z−2z(z2+1)−2/(z2+1)2=f′(z)=2z−2z(z2+1)−2/(z2+1)2.

The derivative exists at all points in the analytic domain of the function.

Hence, the analytic domain of the function is the entire complex plane except for the simple poles at z=±i. It should be noted that the derivative exists at all points in the analytic domain, including the poles, where it takes infinite values.

Know more about quotient rule here,

https://brainly.com/question/30278964

#SPJ11

1. Find the arc length of y=\frac{2}{3}(x+5)^{\frac{3}{2}} over the closed interval [-1,4]

Answers

The arc length of the function y = (2/3)(x + 5)^(3/2) over the closed interval [-1, 4] is approximately 33.87 units.

To find the arc length of a curve, we use the arc length formula:

L = ∫√(1 + (dy/dx)²) dx

In this case, the function y = (2/3)(x + 5)^(3/2) is given over the interval [-1, 4]. We need to find dy/dx and substitute it into the arc length formula.

Taking the derivative of y with respect to x, we get:

dy/dx = (2/3) * (3/2) * (x + 5)^(3/2 - 1) * 1

      = (1/3) * (x + 5)^(1/2)

Next, we substitute the derivative into the arc length formula and integrate over the interval [-1, 4]:

L = ∫[-1,4] √(1 + ((1/3) * (x + 5)^(1/2))²) dx

This integral can be evaluated using various techniques, such as substitution or integration by parts. After performing the integration, we find that the arc length L is approximately 33.87 units.

Therefore, the arc length of y = (2/3)(x + 5)^(3/2) over the closed interval [-1, 4] is approximately 33.87 units.

Learn more about arc length here:

brainly.com/question/31762064

#SPJ11

Find an equation of the plane. The plane that passes through the point (−3,1,2) and contains the line of intersection of the planes x+y−z=1 and 4x−y+5z=3

Answers

To find an equation of the plane that passes through the point (-3, 1, 2) and contains the line of intersection of the planes x+y-z=1 and 4x-y+5z=3, we can use the following steps:

1. Find the line of intersection between the two given planes by solving the system of equations formed by equating the two plane equations.

2. Once the line of intersection is found, we can use the point (-3, 1, 2) through which the plane passes to determine the equation of the plane.

By solving the system of equations, we find that the line of intersection is given by the parametric equations:

x = -1 + t

y = 0 + t

z = 2 + t

Now, we can substitute the coordinates of the given point (-3, 1, 2) into the equation of the line to find the value of the parameter t. Substituting these values, we get:

-3 = -1 + t

1 = 0 + t

2 = 2 + t

Simplifying these equations, we find that t = -2, which means the point (-3, 1, 2) lies on the line of intersection.

Therefore, the equation of the plane passing through (-3, 1, 2) and containing the line of intersection is:

x = -1 - 2t

y = t

z = 2 + t

Alternatively, we can express the equation in the form Ax + By + Cz + D = 0 by isolating t in terms of x, y, and z from the parametric equations of the line and substituting into the plane equation. However, the resulting equation may not be as simple as the parameterized form mentioned above.

Learn more about equation here: brainly.com/question/30130739

#SPJ11

Other Questions
Select ALL the correct answers.Which three statements are correct about the Pendleton Act?00It covered 15 percent of civil service appointments.There was strong support for it in Congress.It required people to pass a test proving their competence.It is an early example of government reform.Most Gilded Age presidents supported its goals.ResetNext true or false: many nonspontaneous biochemical reactions couple with other reactions which supply enough free energy to drive them all. Answer questions 1 and 2 for problem number 6 from section 2.1 in the book. 1. Give the corners of the feasible set. a. (0,0),(0,8),(5,0) b. (0,8),(2,3),(5,0) c. (0,0),(8,0),(3,2) Before you move on to Chapter 3 , try out the skills you learned from this chapter by completing the following exercises: 1. Navigate to /usr/share/metasploit-framework/data/wordlists. This is a directory of multiple wordlists that can be to brute force passwords in various password-protected devices using Metasploit, the most popular pentesting and hacking framework. 2. Use the cat command to view the contents of the file password.lst. 3. Use the more command to display the file password.lst. 4. Use the less command to view the file password.lst. 5. Now use the nl command to place line numbers on the passwords in password.lst. There should be around 88,396 passwords. 6. Use the tail command to see the last 20 passwords in password.lst. 7. Use the cat command to display password.lst and pipe it to find all the passwords that contain 123. Which physical security threat includes heat and humidity? Biological Weather Structural failure Earth movement concurrent validation is the most dependable way to validate a selection test.true or false? Which of the following is true about leadership trait theories? Trait theories focus on how organizational situations influence leader effectiveness. Trait theories focus on the personal characteristics of a leader. Trait theories focus on how the leader can be substituted or neutralized. Trait theories focus on how leader behavior leads to effective leadership. Trait theories focus on theory X and theory Y. A high school student volunteers to present a report to the administration about the types of lunches students prefer. He surveys members of his class and records their choices. What type of sampling did the student use? 1 - yi 2 - er 3 - san 4 - si 5 - wu 6 - liu 7 - qi 8 - ba 9 - jiu 10 - shi To count numbers over 10, use the following rules: For numbers 11 through 19 , it is shi followed by the digit above: 11 - shi yi 12 - shi er 13 - shi san etc. For numbers 20 through 99, it is the first digit followed by shi followed by the second digit (except 0): 33 - san shi san 52 - wu shi er 80 - ba shi For numbers over a hundred, it follows the same pattern. 167 in Mandarin is literally " 1 hundreds, 6 tens, 7 " or "yi bai liu shi qi .420 in Mandarin is "4 hundreds 2 tens" or "si bai er shi". Sane goes for thousands - 1234 is literally "one thousand 2 hundred three ten four" or "yi qian er bai san shi si". And so forth for wan (10,000s). Don't worry about digits over wan. 100 - bai 1000 - qian 10000 - wan ERROR CHECKING: If the user ever makes an error on input, print "BAD INPUT!" to the screen and quit. Types of errors: 1) Typing in something not an integer 2) Having the start be higher than the end 3) Having negative numbers 4) Having numbers over 99999 5) Having a step size of 0 or less For example, if you want to count to 10 , starting at one, with a step size of two, your program will output this: 1yi 3san 5wu 7qi 9jiu We will not output anything past this, since the next number is over 10. Mandarin Dictionary: 0 - ling 1yi 2 - er 3 - san 4 - si 5 - wu 6 liu 7qi 8 - ba 9 - jiu 10 - shi o count numbers over 10 , use the following rules: if the gas in exercise 23 is initially at room temperature (20c) and is heated in an isobaric (constant-pressure) process, then what will be the temperautre of the gas in degress celsius when it has expanded to a volume of 0.700m Use numbers to fill in blanks for total return definition is-25%33.33%percentage increasepercentage decreasefinal balance700015000200003years5years14.69yearsThe total return of the investment is____ It represents the_______ of the_________ The friend's investment grew from______to________ over__________ Which of the following structures (G,) are groups? (a) G=P(X),AB=AB (symmetric difference); (b) G=P(X),AB=AB; (c) G=P(X),AB=A\B (difference); (d) G=R,xy=xy; (e) G is the set of positive real numbers, xy=xy; (f) G={zC:z=1},xy=xy; (g) G is the interval (c,c), xy= x+y/(1+xy/c)[this example describes the addition of velocities in Special Relativity]; Kenzie purchases a small popcorn for $3.25 and one ticket for $6.50 each time she goes to the movie theater. Write an equation that will find how 6.50+3.25x=25.00 many times she can visit the movie th Cual es el capital final de $1200al 8% anual durante 8 aos? a body mass index between 18.5 and 24.9 is an acceptable, healthy range. a) true b) false Waterway Industries reported the following year-end information: beginning work in process inventory, $170000; cost of goods manufactured, $866000; beginning finished goods inventory, $232000; ending work in process inventory, $210000; and ending finished goods inventory, $254000. Waterway Industries's cost of goods sold for the year is? a.$844000. (beginning finish good inventory 232,000+866000 cost of good manufacture =1098000- (254000) ending finish good inventory= 844000 )b.$826000.c.$888000.d.$612000.correct answer:a If a shift in aggregate demand only affects real gross domesticproduct (GDP), then the short-run aggregate supply (SRAS) curveis:1. verticle2. upward slopping3. horizonatl4. downward slopping Brenda has $20 to spend on five raffle tickets. After buying them she had $5. How much did each raffle ticket cost? raising the volume of your radio, air conditioning or drinking coffee will help you stay awake while driving. what are some of the likely questions on proof of stirling'sformula?