The answer of the given question based on the margin of error is , we can see that the margin of error would be larger with a smaller sample size of 155.
In part (a), the sample size is 175.
To calculate the margin of error, we use the formula ,
Margin of Error = (Z* σ)/√n , where Z is the z-score of the confidence level, σ is the population standard deviation (or an estimate of it), and n is the sample size.
If the sample size were 155 rather than 175, the margin of error would be larger than the result in part (a).
This is because the margin of error is inversely proportional to the square root of the sample size. In other words, as the sample size increases, the margin of error decreases and vice versa.
Since 155 is a smaller sample size than 175, the margin of error would be larger in this case.
For example, let's assume that the population standard deviation is 5, and
we are calculating a 95% confidence interval with a sample size of 175.
Using a z-score of 1.96 (corresponding to a 95% confidence level), the margin of error would be:
Margin of Error = (1.96 * 5) / √175
= 0.7476 or approximately 0.75 ,
If the sample size were 155 instead, the margin of error would be:
Margin of Error = (1.96 * 5) / √155
= 0.8438 or approximately 0.84
Thus, we can see that the margin of error would be larger with a smaller sample size of 155.
To know more about Margin of error visit:
https://brainly.com/question/17588303
#SPJ11
Private nonprofit four-year colleges charge, on average, $27,996 per year in tuition and fees. The standard deviation is $7,440. Assume the distribution is normal. Let X be the cost for a randomly selected college. Round all answers to 4 decimal places where possible. a. What is the distribution of X? X - N( b. Find the probability that a randomly selected Private nonprofit four-year college will cost less than 30,116 per year. c. Find the 79th percentile for this distribution.
a. The distribution of X is X - N(27,996, 7,440²).
b. The probability that a randomly selected college will cost less than $30,116 per year is 0.7807.
c. The 79th percentile for this distribution is $32,341.87.
b. What is the likelihood of a college costing less than $30,116 per year?c. What is the value below which 79% distribution of colleges fall?a. The distribution of X, the cost for a randomly selected college, follows a normal distribution with a mean (μ) of $27,996 and a standard deviation (σ) of $7,440. This means that the majority of college costs are centered around the mean, and the distribution is symmetrical.
b. To find the probability that a randomly selected college will cost less than $30,116 per year, we need to calculate the z-score corresponding to this value. By subtracting the mean from $30,116 and dividing the result by the standard deviation, we find a z-score of 0.2696. Using a standard normal distribution table or a calculator, we can determine that the probability of a college costing less than $30,116 per year is approximately 0.7807.
c. The 79th percentile represents the value below which 79% of colleges fall. To find this value, we need to determine the z-score corresponding to the 79th percentile. Using a standard normal distribution table or a calculator, we find that the z-score is approximately 0.8332. Multiplying this z-score by the standard deviation and adding it to the mean, we obtain the 79th percentile value of $32,341.87.
Learn more about distribution
brainly.com/question/29664127
#SPJ11
The average salary for American college graduates is $42,000. You suspect that the average is less for graduates from your college. The 41 randomly selected graduates from your college had an average salary of $36,376 and a standard deviation of $16,090. What can be concluded at the α = 0.10 level of significance?
For this study, we should use Select an answer z-test for a population proportion t-test for a population mean
The null and alternative hypotheses would be:
H0:H0: ? μ p Select an answer < > = ≠
H1:H1: ? μ p Select an answer > < = ≠
The test statistic ? z t = (please show your answer to 3 decimal places.)
The p-value = (Please show your answer to 4 decimal places.)
The p-value is ? > ≤ αα
Based on this, we should Select an answer accept reject fail to reject the null hypothesis.
Thus, the final conclusion is that ...
The data suggest that the sample mean is not significantly less than 42,000 at αα = 0.10, so there is statistically insignificant evidence to conclude that the sample mean salary for graduates from your college is less than 36,376.
The data suggest that the populaton mean is significantly less than 42,000 at αα = 0.10, so there is statistically significant evidence to conclude that the population mean salary for graduates from your college is less than 42,000.
The data suggest that the population mean is not significantly less than 42,000 at αα = 0.10, so there is statistically insignificant evidence to conclude that the population mean salary for graduates from your college is less than 42,000.
Interpret the p-value in the context of the study.
If the population mean salary for graduates from your college is $42,000 and if another 41 graduates from your college are surveyed then there would be a 1.54254458% chance that the sample mean for these 41 graduates from your college would be less than $36,376.
There is a 1.54254458% chance of a Type I error.
There is a 1.54254458% chance that the population mean salary for graduates from your college is less than $42,000.
If the population mean salary for graduates from your college is $42,000 and if another 41 graduates from your college are surveyed then there would be a 1.54254458% chance that the population mean salary for graduates from your college would be less than $42,000.
Interpret the level of significance in the context of the study.
There is a 10% chance that your won't graduate, so what's the point?
There is a 10% chance that the population mean salary for graduates from your college is less than $42,000.
If the population population mean salary for graduates from your college is less than $42,000 and if another 41 graduates from your college are surveyed then there would be a 10% chance that we would end up falsely concluding that the population mean salary for graduates from your college is equal to $42,000.
If the population mean salary for graduates from your college is $42,000 and if another 41 graduates from your college are surveyed then there would be a 10% chance that we would end up falsely concluding that the population mean salary for graduates from your college is less than $42,000.
For this study, we should use a t-test for a population mean.
The null and alternative hypotheses would be:
H0: μ = 42,000H1: μ < 42,000
The test statistic t = -1.84 (to 3 decimal places).
The p-value = 0.0385 (to 4 decimal places).
The p-value is p < α, since 0.0385 < 0.10.
Based on this, we should reject the null hypothesis.
Thus, the final conclusion is that the data suggest that the population mean is significantly less than 42,000 at α = 0.10, so there is statistically significant evidence to conclude that the population means salary for graduates from your college is less than 42,000.
Interpretation of the p-value in the context of the study is that if the population mean salary for graduates from your college is $42,000 and if another 41 graduates from your college are surveyed then there would be a 0.0385 chance that the sample mean for these 41 graduates from your college would be less than $36,376.
The level of significance in the context of the study is that there is a 10% chance that we would end up falsely concluding that the population means the salary for graduates from your college is equal to $42,000.
Learn more About the Level of Significance
https://brainly.com/question/31519103
#SPJ11
You may need to use the appropriate appendix table or technology to answer this question. The 92 million Americans of age 50 and over control 50 percent of all discretionary income. AARP estimates that the average annual expenditure on restaurants and carryout food was $1,873 for individuals in this age group. Suppose this estimate is based on a sample of 90 persons and that the sample standard deviation is $750. (a) At 95% confidence, what is the margin of error in dollars? (Round your answer to the nearest dollar)
(b) What is the 95% confidence interval for the population mean amount spent in dollars on restaurants and carryout food? (Round your answers to the nearest dollar.) (c) What is your estimate of the total amount spent in millions of dollars by Americans of age 50 and over on restaurants and carryout food? (Round your answer to the nearest million dollars.) (d) If the amount spent on restaurants and carryout food is skewed to the right, would you expect the median amount spent to be greater or less than $1,873? A. We would expect the median to be greater than the mean of $1,873. The few individuals that spend much less than the average cause the mean to be smaller than the median.
B. We would expect the median to be less than the mean of $1,873. The few individuals that spend much less than the average cause the mean to be larger than the median C. We would expect the median to be greater than the mean of $1,873. The few individuals that spend much more than the average cause the mean to be smaller than the median. D. We would expect the median to be less than the mean of $1,873. The few individuals that spend much more than the average cause the mean to be larger than the median
(a) The margin of error is $154
(b) The 95% confidence interval for the population mean is ($1,719, $2,027)
(c) The estimate of the total amount spent in millions of dollars is $172,316 million
(d) We would expect the median to be less than the mean of $1,873. The few individuals that spend much more than the average cause the mean to be larger than the median.
How to calculate the margin of errorThe margin of error is calculated as
Margin of Error = 1.96 * (750 / √90)
So, we have
Margin of Error ≈ 1.96 * 750 / 9.4868
Margin of Error ≈ 154.80
Hence, the margin of error is approximately $154 (rounded to the nearest dollar).
How to calculate the confidence intervalTo calculate the confidence interval, we can use:
CI = Mean ± Margin of Error
Given that:
Sample mean: $1,873Margin of Error: $154So, we have
Confidence Interval = $1,873 ± $154
Confidence Interval ≈ ($1,719, $2,027)
Hence, the 95% confidence interval for the population mean amount spent on restaurants and carryout food is approximately ($1,719, $2,027) (rounded to the nearest dollar).
Estimating the total amount spentTo estimate the total amount spent in millions of dollars by Americans of age 50 and over on restaurants and carryout food,
We can multiply the estimated average annual expenditure by the estimated number of Americans in that age group:
So, we have
Estimated total amount spent = (Estimated average annual expenditure) * (Estimated number of Americans in that age group)
Given:
Estimated average annual expenditure: $1,873Estimated number of Americans in that age group: 92 millionEstimated total amount spent = $1,873 * 92 million
Estimated total amount spent ≈ $172,316 million
Hence, the estimate of the total amount spent in millions of dollars by Americans of age 50 and over on restaurants and carryout food is approximately $172,316 million (rounded to the nearest million dollars).
The conclusion on the medianSince the amount spent on restaurants and carryout food is stated to be skewed to the right, we would expect the median to be less than the mean of $1,873.
The few individuals that spend much more than the average (outliers) would cause the mean to be larger than the median.
Therefore, the correct answer is: (d)
We would expect the median to be less than the mean of $1,873. The few individuals that spend much more than the average cause the mean to be larger than the median.
Read more on median here
https://brainly.com/question/26177250
#SPJ4
6. For each of the following, find the interior, boundary and closure of each set. Is the set open, closed or neither? (6) {(x,y):0
Boundary of the set: Bd
({(x, y): 0 < x < 1 and 0 < y < 1}) = {(x, y): x = 0 or x = 1 or y = 0 or y = 1}
(since the points on the boundary cannot be contained within an open ball)
Closure of the set: Cl
({(x, y): 0 < x < 1 and 0 < y < 1}) = {(x, y): 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}
(since the closure of the set is the union of the set and its boundary)
Thus, the given set is neither open nor closed.
The given set is (6)
{(x, y): 0 < x < 1 and 0 < y < 1}.
To find the interior, boundary, and closure of each set, use the following definitions:Interior of a set:
Let S be a subset of a metric space. A point p is said to be in the interior of S if there exists an open ball centered at p that is contained entirely within S. The set of all interior points of S is called the interior of S and is denoted by Int(S).
Closure of a set:
The closure of a set S, denoted by Cl(S), is defined to be the union of S and its boundary. The boundary of a set is the set of points that are neither in the interior nor in the exterior of a set. Hence,Boundary of a set: The boundary of a set S is the set of points in the space which can be approached both from S and from the outside of S. The set of all boundary points of S is called the boundary of S and is denoted by Bd(S).
Thus, for the given set,Interior of the set:
Int({(x, y): 0 < x < 1 and 0 < y < 1}) = {(x, y): 0 < x < 1 and 0 < y < 1}
(since any point within the set can be contained within the open ball)
Boundary of the set: Bd
({(x, y): 0 < x < 1 and 0 < y < 1}) = {(x, y): x = 0 or x = 1 or y = 0 or y = 1}
(since the points on the boundary cannot be contained within an open ball)
Closure of the set: Cl
({(x, y): 0 < x < 1 and 0 < y < 1}) = {(x, y): 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}
(since the closure of the set is the union of the set and its boundary)
Thus, the given set is neither open nor closed.
To know more about Closure visit:
https://brainly.com/question/30895568
#SPJ11
There is a 5% discount for the customer if the bill is paid within 3 days. Calculate the discount to the nearest cent. $ (Make sure to add tax to the parts total only!) Item Quantity Needed Cost 30 inches $1.25 per foot colon Color 2 $0.84 each inch hose 5 inch hose clamps 8 4 inch hose inch hose clamps 24 inches $1.35 per foot 2 $0.84 each $5.65 each $4.50 each Thermostat with gasket 1 Pressure cap 1 Upper hose 1 Lower hose 1 $11.44 each $16.53 each Hose Clamps 4 $0.98 each 7% sales tax on parts only Job Labor Charge $39.50 $20.00 Remove, clean, and replace radiator Reverse flush block Replace heater hoses Replace thermostat and cap $10.00 N/C
Answer: The total cost of the item, not including the tax is $151.67. The total cost including tax is $162.38. The customer midpoint will get a 5% discount if the bill is paid within 3 days.
The discount will be $7.62. We are supposed to calculate the discount to the nearest cent.First, we need to find the total cost of the items. Using the information in the table provided, we can sum the cost of all the items. The cost of all items is:30 inches = 30 ft = $1.25/ft = 30 * 1.25 = $37.5color colon = 2 * 0.84 = $1.68inch hose = 5 inch hose clamps = 8 * $5.65 = $45.20inch hose clamps = 24 inches = 24 * $1.35 = $32.40
Total cost of the items = $151.67Now we need to calculate the sales tax. 7% sales tax on the parts only. This means we need to add the tax to the cost of all the parts.
To know more about midpoint visit:
https://brainly.com/question/28667736
#SPJ11
A firm manufactures headache pills in two sizes A and B. Size A contains 2 grains of aspirin, 5 of bicarbonate and 1 grain of codeine. Size B contains 1 grain of aspirin, 8 grains of grains of bic bicarbonate and 6 grains of codeine. It is und by users that it requires at least 12 grains of aspirin, 74 grains of bicarbonate, and 24 grains of codeine for providing an immediate effect. It requires to determine the least number of pills a patient should take to get immediate relief. Formulate the problem as a LP model. [5M]
Let's define the decision variables: Let x represent the number of size A pills to be taken. Let y represent the number of size B pills to be taken.
The objective is to minimize the total number of pills, which can be represented as the objective function: minimize x + y. We also have the following constraints: The total amount of aspirin should be at least 12 grains: 2x + y >= 12.
The total amount of bicarbonate should be at least 74 grains: 5x + 8y >= 74. The total amount of codeine should be at least 24 grains: x + 6y >= 24. Since we cannot take a fractional number of pills, x and y should be non-negative integers: x, y >= 0.
The LP model can be formulated as follows:
Minimize: x + y
Subject to:
2x + y >= 12
5x + 8y >= 74
x + 6y >= 24
x, y >= 0
This model ensures that the patient meets the minimum required amounts of each ingredient while minimizing the total number of pills taken. By solving this linear programming problem, we can determine the least number of pills a patient should take to achieve immediate relief.
To learn more about decision variables click here:
brainly.com/question/32095138
#SPJ11
A dog food producer reduced the price of a dog food. With the price at $11 the average monthly sales has been 26000. When the price dropped to $10, the average monthly sales rose to 33000. Assume that monthly sales is linearly related to the price. What price would maximize revenue?
To determine the price that would maximize revenue, we need to find the price point at which the product of price and sales is highest. In this scenario, the relationship between the price and monthly sales is assumed to be linear.
Let's define the price as x and the monthly sales as y. We are given two data points: (11, 26000) and (10, 33000). We can use these points to find the equation of the line that represents the relationship between price and monthly sales.
Using the two-point form of a linear equation, we can calculate the equation of the line as:
(y - 26000) / (x - 11) = (33000 - 26000) / (10 - 11)
Simplifying the equation gives:
(y - 26000) / (x - 11) = 7000
Next, we can rearrange the equation to solve for y:
y - 26000 = 7000(x - 11)
y = 7000x - 77000 + 26000
y = 7000x - 51000
The equation y = 7000x - 51000 represents the relationship between price (x) and monthly sales (y). To maximize revenue, we need to find the price (x) that yields the highest value for the product of price and sales. Since revenue is given by the equation R = xy, we can substitute y = 7000x - 51000 into the equation to obtain R = x(7000x - 51000).
To find the price that maximizes revenue, we can differentiate the revenue equation with respect to x, set it equal to zero, and solve for x. The resulting value of x would correspond to the price that maximizes revenue.
Learn more about linear equation here: brainly.com/question/29111179
#SPJ11
What are the first 3 iterates of f(x) = −5x + 4 for an initial value of x₁ = 3? A 3, -11, 59 B-11, 59, -291 I C -1, -6, -11 D 59.-291. 1459
The first 3 iterates of the function f(x) = -5x + 4, starting with an initial value of x₁ = 3, the first 3 iterates of the function are A) 3, -11, 59.
To find the first three iterates of the function f(x) = -5x + 4 with an initial value of x₁ = 3, we can substitute the initial value into the function repeatedly.
First iterate:
x₂ = -5(3) + 4 = -11
Second iterate:
x₃ = -5(-11) + 4 = 59
Third iterate:
x₄ = -5(59) + 4 = -291
Therefore, the first three iterates of the function f(x) = -5x + 4, starting with x₁ = 3, are -11, 59, and -291.
The correct answer is B) -11, 59, -291.
To learn more about “iterates” refer to the https://brainly.com/question/28134937
#SPJ11
FOR EACH SEQUENCE OF NUMBERS, (i) WRITE THE nTH TERM EXPRESSION AND (ii) THE 100TH TERM.
a. -3, -7, -11, -15, . . . (i) .................... (ii) ....................
b. 10, 4, -2, -8, . . . (i) .................... (ii) ....................
c. -9, 2, 13, 24, . . . (i) .................... (ii) ....................
d. 4, 5, 6, 7, . . . (i) .................... (ii) ....................
e. 12, 9, 6, 3, . . . (i) .................... (ii) ....................
a) The nth term is Tn = -4n + 1. The 100th term is -399. b) The nth term is Tn = -6n + 16. The 100th term is -584. c) The nth term is Tn = 11n - 20. The 100th term is 1080. d) The nth term is Tn = n + 3. The 100th term is 103. e) The nth term is Tn = -3n + 15. The 100th term is -285.
For each sequence of numbers, the nth term expression and the 100th term are as follows:
a) -3, -7, -11, -15, . . .The nth term is Tn = -4n + 1. The 100th term can be found by substituting n = 100 in the nth term.
T100 = -4(100) + 1 = -399
b) 10, 4, -2, -8, . . .The nth term is Tn = -6n + 16. The 100th term can be found by substituting n = 100 in the nth term.T100 = -6(100) + 16 = -584
c) -9, 2, 13, 24, . . .The nth term is Tn = 11n - 20. The 100th term can be found by substituting n = 100 in the nth term.
T100 = 11(100) - 20 = 1080
d) 4, 5, 6, 7, . . .The nth term is Tn = n + 3. The 100th term can be found by substituting n = 100 in the nth term.
T100 = 100 + 3 = 103
e) 12, 9, 6, 3, . . .The nth term is Tn = -3n + 15. The 100th term can be found by substituting n = 100 in the nth term.
T100 = -3(100) + 15 = -285
You can learn more about sequence at: brainly.com/question/30262438
#SPJ11
Let r₁(t)= (3.-6.-20)+1(0.-4,-4) and r₂(s) = (15, 10,-16)+ s(4,0,-4). Find the point of intersection, P, of the two lines r₁ and r₂. P =
The point of intersection, P, is (3, 10, -4). To find the point of intersection, P, of the two lines represented by r₁(t) and r₂(s), we need to equate the corresponding x, y, and z coordinates of the two lines.
Equating the x-coordinates: 3 + t(0) = 15 + s(4),3 = 15 + 4s. Equating the y-coordinates: -6 + t(-4) = 10 + s(0), -6 - 4t = 10. Equating the z-coordinates:
-20 + t(-4) = -16 + s(-4), -20 - 4t = -16 - 4s. From the first equation, we have 3 = 15 + 4s, which gives us s = -3. Substituting s = -3 into the second equation, we have -6 - 4t = 10, which gives us t = -4.
Finally, substituting t = -4 and s = -3 into the third equation, we have -20 - 4(-4) = -16 - 4(-3), which is true. Therefore, the point of intersection, P, is obtained by substituting t = -4 into r₁(t) or s = -3 into r₂(s): P = r₁(-4) = (3, -6, -20) + (-4)(0, -4, -4), P = (3, -6, -20) + (0, 16, 16), P = (3, 10, -4). So, the point of intersection, P, is (3, 10, -4).
To learn more about intersection, click here: brainly.com/question/14217061
#SPJ11
Differentiate. Do Not Simplify.
a) f(x)=√3 cos(x) - e-²x
c) f(x) =cos(x)/ x
e) y = 3 ln(4-x+ 5x²)
b) f(x) = 5tan (√x)
d) f(x) = sin(cos(x²))
f) y = 5^x(x^5)
The derivative of f(x) = √3 cos(x) - [tex]e^{(-2x)[/tex] is f'(x) = -√3 sin(x) + 2[tex]e^{(-2x)[/tex]. The rest will be calculated below using chain rule.
a) To differentiate f(x) = √3 cos(x) - [tex]e^{(-2x)[/tex], we use the chain rule and power rule. The derivative of cos(x) is -sin(x), and the derivative of [tex]e^{(-2x)[/tex]is -2[tex]e^{(-2x)[/tex]). The derivative of √3 cos(x) is obtained by multiplying √3 with the derivative of cos(x), which gives -√3 sin(x). Combining these results, we get f'(x) = -√3 sin(x) + 2[tex]e^{(-2x)[/tex].
b) Differentiating f(x) = 5tan(√x) requires the chain rule and the derivative of tan(x), which is sec²(x). The chain rule states that if we have a composite function, f(g(x)), the derivative is f'(g(x)). g'(x). In this case, f'(g(x)) = 5sec²(√x), and g'(x) = (1/2√x). Multiplying these together, we get f'(x) = (5/2√x)sec²(√x).
c) For f(x) = cos(x)/(x e), we apply the quotient rule. The quotient rule states that if we have f(x) = g(x)/h(x), the derivative is (g'(x)h(x) - g(x)h'(x))/(h(x))². In this case, g(x) = cos(x), h(x) = xe, and their derivatives are g'(x) = -sin(x) and h'(x) = e - x. Plugging these values into the quotient rule, we get f'(x) = (-xsin(x)e - cos(x))/x²e.
d) To differentiate f(x) = sin(cos(x²)), we use the chain rule. The derivative of sin(x) is cos(x), and the derivative of cos(x²) is -2xsin(x²). Applying the chain rule, we multiply these together to obtain f'(x) = -2xcos(x²)sin(cos(x²)).
e) The derivative of y = 3 ln(4-x+5x²) can be found using the chain rule and the derivative of ln(x), which is 1/x. Applying the chain rule, we multiply the derivative of ln(4-x+5x²), which is (1/(4-x+5x²)) times the derivative of the expression inside the natural logarithm. The derivative of (4-x+5x²) is - -10x + 1. Combining these results, we get
y' = (-10x + 1)/(4 - x + 5x²).
f) For y = [tex]5^x(x^5)[/tex], we use the product rule and the power rule. The product rule states that if we have f(x) = g(x)h(x), the derivative is g'(x)h(x) + g(x)h'(x). In this case, g(x) = [tex]5^x[/tex] and h(x) = [tex]x^5[/tex]. The derivative of [tex]5^x[/tex] is obtained using the power rule and is [tex]5^xln(5)[/tex], and the derivative of [tex]x^5[/tex] is [tex]5x^4[/tex]. Applying the product rule, we get y' = [tex]5^x(x^5ln(5) + 5x^4)[/tex].
Learn more about chain rule here:
https://brainly.com/question/31585086
#SPJ11
Perform the rotation of axis to eliminate the xy-term in the quadratic equation 9x² + 4xy+9y²-20=0. Make it sure to specify: a) the new basis b) the quadratic equation in new coordinates c) the angle of rotation. d) draw the graph of the curve
The given quadratic equation is 9x² + 4xy + 9y² - 20 = 0. The rotation of axis is performed to eliminate the xy-term from the equation. The steps are given below.
a) New Basis: To find the new basis, we need to find the angle of rotation first. For that, we need to use the formula given below.tan2θ = (2C) / (A - B)Here, A = 9, B = 9, and C = 2We can substitute the values in the above equation.tan2θ = (2 x 2) / (9 - 9)tan2θ = 4 / 0tan2θ = Infinity. Therefore, 2θ = 90°θ = 45° (since we want the smallest possible value for θ)Now, the new basis is given by the formula given below. x = x'cosθ + y'sinθy = -x'sinθ + y'cosθWe can substitute the value of θ in the above formulas to obtain the new basis. x = x'cos45° + y'sin45°x = (1/√2)x' + (1/√2)y'y = -x'sin45° + y'cos45°y = (-1/√2)x' + (1/√2)y'
b) Quadratic Equation in New Coordinates: To obtain the quadratic equation in new coordinates, we need to substitute the new basis in the given equation.9x² + 4xy + 9y² - 20 = 09((1/√2)x' + (1/√2)y')² + 4((1/√2)x' + (1/√2)y')((-1/√2)x' + (1/√2)y') + 9((-1/√2)x' + (1/√2)y')² - 20 = 09(1/2)x'² + 4(1/2)xy' + 9(1/2)y'² - 20 = 04x'y' + 8.5x'² + 8.5y'² - 20 = 0Therefore, the quadratic equation in new coordinates is given by 4x'y' + 8.5x'² + 8.5y'² - 20 = 0
c) Angle of Rotation: The angle of rotation is 45°.
d) Graph of the Curve: The graph of the curve is shown below.
Learn more about quadratic equations:
https://brainly.com/question/1214333
#SPJ11
5. [Section 15.3] (a) Find the volume of the solid bounded by 2 = xy, x² = y, z² = 2y, y² = x, y² = 22 and 20. i.e. Wozy da ay dx dy where D = {(x,y) € R² y ≤ x² ≤ 2y. I ≤ y² < 2x}
To find the volume of the solid bounded by the given surfaces, we need to evaluate the double integral ∬D dz dx dy, where D represents the region bounded by the inequalities y ≤ x² ≤ 2y and I ≤ y² < 2x.
The given region D can be visualized as the area between the parabolic curve y = x² and the curve y = 2x. The bounds for x are determined by y, and the bounds for y are given by the interval [I, 22].
To evaluate the double integral, we integrate with respect to dz, then dx, and finally dy. The limits for integration are as follows: I ≤ y ≤ 22, x² ≤ 2y ≤ y².
Since the problem statement does not provide the exact value for I, it is necessary to have that information in order to perform the calculations and obtain the final volume.
Learn more about double integral here: brainly.com/question/27360126
#SPJ11
In a capital budgeting problem, if either project 1 or project 2 is selected, then project 5 cannot be selected. Which of the alternatives listed below correctly models this situation? Question 7 options: 1) x1 + x2 + x5 1 2) x1 + x2 + x5 1 3) x1 + x5 1, x2 + x5 1 4) x1 - x5 1, x2 - x5 1 5) x1 - x5 = 0, x2 - x5 = 0
The correct alternative that models the given situation is: x₁ + x₂ + x₅ ≤ 2, option (2) x₁ + x₂ + x₅ 1 is the correct answer for a capital budgeting problem, if either project 1 or project 2 is selected, then project 5 cannot be selected.
Let, X1, X2, X3, X4, X5 be the binary variables representing the projects.
Each project has a binary variable and a binary variable is either 1 or 0 depending on whether the project is selected or not.
So, we can represent the given information through the following equations:
If project 1 is selected, then project 5 cannot be selected.
This means that at least one of the projects will not be selected. Hence, x₁ + x₅ ≤ 1
If project 2 is selected, then project 5 cannot be selected.
This means that at least one of the projects will not be selected. Hence, x₂ + x₅ ≤ 1
Also, we have to choose one project either project 1 or project 2 or even both.
Hence, x₁ + x₂ ≤ 2
Therefore, combining all the above equations, we have;
x₁ + x₅ ≤ 1
x₂ + x₅ ≤ 1
x₁ + x₂ ≤ 2
Now, we need to find the option that represents the above three equations together.
The correct alternative that models the given situation is:
x₁ + x₂ + x₅ ≤ 2
Therefore, option (2) x₁ + x₂ + x₅ 1 is the correct answer.
To know more about budgeting, visit
https://brainly.in/question/51344101
#SPJ11
Question 2 (5 points) The equation that models the amount of time t, in minutes, that a bowl of soup has been cooling as a function of its temperature T, in °C, log (T-15) is t - . Round answers to 2
The equation that models the amount of time t, in minutes, that a bowl of soup has been cooling as a function of its temperature T, in °C, is given by t = log(T - 15).
The given equation t = log(T - 15) represents the relationship between the cooling time of a bowl of soup and its temperature. The equation uses the logarithmic function to calculate the time based on the temperature of the soup minus 15 degrees Celsius.
Logarithmic functions are useful in modeling phenomena where there is exponential decay or diminishing returns. In this case, as the temperature of the soup decreases, the rate at which it cools down gradually decreases as well. The logarithm allows us to capture this relationship by mapping the temperature to the cooling time.
By subtracting 15 from the temperature T, we adjust the scale so that the logarithm is defined only for positive values. This is because the logarithm function is undefined for negative numbers and zero. The resulting value is then passed through the logarithmic function, which compresses the range of values and provides a measure of the cooling time.
The logarithm function in this equation provides a way to quantify the relationship between temperature and cooling time. As the temperature decreases, the logarithm will approach negative infinity, indicating a longer cooling time. Conversely, as the temperature increases, the logarithm will approach positive infinity, representing a shorter cooling time.
By using this equation, we can estimate the cooling time of the soup based on its temperature, helping us understand the behavior of the cooling process more accurately.
Learn more about Logarithmic functions
brainly.com/question/30339782
#SPJ11
take θ1 = 47.5 ∘if θ2 = 17.1 ∘ , what is the refractive index n of the transparent slab?
The refractive index of the transparent slab is 2.511.
The formula for finding the refractive index is:
n = sin i/sin r
Here,sin i = sin θ1sin r = sin θ2
The angle of incidence is
i = θ1
= 47.5 °
The angle of refraction is
r = θ2
= 17.1 °
Using the above values, the refractive index can be found as:
n = sin i/sin r
= sin (47.5) / sin (17.1)
= 0.7351 / 0.2924
≈ 2.511
To know more about index visit:
https://brainly.com/question/83184
#SPJ11
Suppose H is a 3 x 3 matrix with entries hij. In terms of det (H
We can also use the following formula for matrices larger than 3 x 3:det(A) = a11A11 + a12A12 + … + a1nA1nwhere A11, A12, A1n are the cofactors of the first row.
Suppose H is a 3 x 3 matrix with entries hij. In terms of det (H), we can write that the determinant of matrix H is represented by the following equation:
det(H)
= h11(h22h33 − h23h32) − h12(h21h33 − h23h31) + h13(h21h32 − h22h31)
Therefore, we can say that det(H) is expressed as a sum of products of three elements from matrix H.
It can also be said that the determinant of a matrix is a scalar value that can be used to describe the linear transformation between two-dimensional spaces.
To calculate the determinant of a 3 x 3 matrix, we use the formula above.
We can also use the following formula for matrices larger than 3 x 3:det(A) = a11A11 + a12A12 + … + a1nA1nwhere A11, A12, A1n are the cofactors of the first row.
To know more about matrices visit:-
https://brainly.com/question/13260135
#SPJ11
Suppose the rule ₹[ƒ(−2,−1)+4ƒ(−2,0)+ ƒ(−2,1)+ƒ(2,−1)+4ƒ(2,0)+ƒ(2,1)] is applied to 12 solve ƒ(x, y) dx dy. Describe the form of the function ƒ(x, y) that are integrated -1-2 exactly by this rule and obtain the result of the integration by using this form.
the value of the integral of the function [tex]ƒ(x, y) = a + bx + cy + dxy[/tex] using the given rule is ₹[tex](56/45) [7a + 4b + c + (d/4)][/tex].
Thus, the result of the integration by using this form is ₹[tex](56/45) [7a + 4b + c + (d/4)][/tex].Hence, the answer is ₹[tex](56/45) [7a + 4b + c + (d/4)].[/tex]
Suppose the rule ₹[tex][ƒ(−2,−1)+4ƒ(−2,0)+ ƒ(−2,1)+ƒ(2,−1)+4ƒ(2,0)+ƒ(2,1)][/tex] is applied to 12 solve ƒ(x, y) dx dy.
Describe the form of the function ƒ(x, y) that are integrated -1-2 exactly by this rule and obtain the result of the integration by using this form.
The rule ₹[tex][ƒ(−2,−1)+4ƒ(−2,0)+ ƒ(−2,1)+ƒ(2,−1)+4ƒ(2,0)+ƒ(2,1)][/tex] is a type of quadrature that is also known as Gaussian Quadrature.
The function ƒ(x, y) that are integrated exactly by this rule are the functions of the form [tex]ƒ(x, y) = a + bx + cy + dxy[/tex], where a, b, c, and d are constants.
This is because this rule can exactly integrate functions up to degree three.
Thus, the most general form of the function that can be integrated exactly by this rule is:
[tex]$$\int_{-1}^{1} \int_{-2}^{2} f(x,y) dx dy \approx \frac{2}{45} [ 7f(-2,-1) + 32f(-2,0) + 7f(-2,1) + 7f(2,-1) + 32f(2,0) + 7f(2,1)]$$[/tex]
Using this rule, the value of the integral of the function
[tex]ƒ(x, y) = a + bx + cy + dxy[/tex] can be calculated as follows:
[tex]$$\int_{-1}^{1} \int_{-2}^{2} (a + bx + cy + dxy) dx dy \approx \frac{2}{45} [ 7(a - 2b + c - 2d) + 32(a + 2b) + 7(a + 2c + d) + 7(a + 2b - c - 2d) + 32(a - 2b) + 7(a - 2c + d)]$$$$= \frac{2}{45} [ 98a + 56b + 16c + 4d] = \frac{56}{45}(7a + 4b + c + \frac{d}{4})$$[/tex]
Therefore, the value of the integral of the function [tex]ƒ(x, y) = a + bx + cy + dxy[/tex]
using the given rule is ₹[tex](56/45) [7a + 4b + c + (d/4)][/tex].
Thus, the result of the integration by using this form is ₹[tex](56/45) [7a + 4b + c + (d/4)][/tex].Hence, the answer is ₹[tex](56/45) [7a + 4b + c + (d/4)].[/tex]
To know more about integral visit:
https://brainly.com/question/31059545
#SPJ11
If there are outliers in a sample, which of the following is always true?a. Mean > Median
b. Standard deviation is smaller than expected (smaller than if there were no outliers)
c. Mean < Median
d. Standard deviation is larger than expected (larger than if there were no outliers)
In the presence of outliers in a sample, the statement that is always true is d. Standard deviation is larger than expected (larger than if there were no outliers).
Outliers are extreme values that are significantly different from the other data points in a sample. These extreme values have a greater impact on the standard deviation compared to the mean or median. As a result, the standard deviation increases when outliers are present. Therefore, option d is the correct answer.
To summarize, when outliers are present in a sample, the standard deviation is typically larger than expected, while the relationship between the mean and median can vary and is not always predictable.
To know more about relationship visit-
brainly.com/question/30014356
#SPJ11
Given that X is a normally distributed random variable with a mean of 50 and a standard deviation of 2, the probability that X is between 46 and 54 is
A.0.9544
B. 04104
C. 0.0896
D. 0.5896
The correct answer is option A, 0.9544. The probability that the normally distributed random variable X, with a mean of 50 and a standard deviation of 2, falls between 46 and 54 is approximately 0.9544.
To find the probability, we can use the standard normal distribution table or calculate it using z-scores. In this case, we need to find the z-scores for both 46 and 54.
The z-score formula is given by:
z = (X - μ) / σ
where X is the value of interest, μ is the mean, and σ is the standard deviation.
For 46:
z1 = (46 - 50) / 2 = -2
For 54:
z2 = (54 - 50) / 2 = 2
We can now look up these z-scores in the standard normal distribution table or use a calculator to find the corresponding probabilities. The area under the curve between -2 and 2 represents the probability that X falls between 46 and 54.
Using the standard normal distribution table, we find that the area under the curve between -2 and 2 is approximately 0.9544. Therefore, the correct answer is option A, 0.9544.
Learn more about mean here: https://brainly.com/question/27138697
#SPJ11
Convert the point from cylindrical coordinates to spherical coordinates.
(-4, 4/3, 4)
(rho,θ,φ) =
The point in spherical coordinates is now presented: (r, α, γ) = (4.216, - 18.434°, 46.506°)
How to convert cylindrical coordinates into spherical coordinates
In this problem we find the definition of a point in cylindrical coordinates, whose equivalent form is spherical coordinates must be found. We present the following definition:
(ρ · cos θ, ρ · sin θ, z) → (r, α, γ)
Where:
r = √(ρ² + z²)
γ = tan⁻¹ (ρ / z)
α = θ
Now we proceed to determine the spherical coordinates of the point: (ρ · cos θ = - 4, ρ · sin θ = 4 / 3, z = 4)
ρ = √[(- 4)² + (4 / 3)²]
ρ = 4.216
γ = tan⁻¹ (4.216 / 4)
γ = 46.506°
α = tan⁻¹ [- (4 / 3) / 4]
α = tan⁻¹ (- 1 / 3)
α = - 18.434°
(r, α, γ) = (4.216, - 18.434°, 46.506°)
To learn more on spherical coordinates: https://brainly.com/question/4465072
#SPJ4
Find the steady-state vector for the transition matrix. 0 1 10 1 ole ole 0 10 0 。 0 X= TO
The steady-state vector can be obtained by substituting the given values into the formula: P = [I−Q∣1]−1[1...,1]T P = [(2/3, 1/3, 0), (1/10, 0, 9/10), (5/9, 4/9, 0)][1/2, 1/2, 1/2]T P = [1/3, 3/10, 7/15]. The steady-state vector for the given transition matrix is [1/3, 3/10, 7/15].
To determine the steady-state vector, we must first find the Eigenvalue λ and Eigenvector v of the given matrix. The expression that we can use to find the steady-state vector of a Markov chain is:P = [I−Q∣1]−1[1,1,...,1]T, where I is the identity matrix of the same size as Q and 1 is a column vector of 1s of the same size as P. Here, Q is the transition matrix, and P is the probability vector. λ and v of the given transition matrix are: [0, -1, 1] and [-2/3, 1/3, 1], respectively. The steady-state vector for the given transition matrix is [1/3, 3/10, 7/15].
A Markov chain is a stochastic model that describes a sequence of events in which the likelihood of each event depends only on the state attained in the preceding event. The steady-state vector of a Markov chain is the limiting probability distribution of the Markov chain. The steady-state vector can be obtained by solving the equation P = PQ, where P is the probability vector and Q is the transition matrix. The steady-state vector represents the long-term behavior of the Markov chain, and it is invariant to the initial state.
To know more about vectors, visit:
https://brainly.com/question/17157624
#SPJ11
Show by induction that for all n = 2,3,. ON n Recall that k Question 2: [2.1] Determine all the partitions of the set {a,b,c}. [2.2] Given that the Stirling set number {*} is defined as the number of ways to partition a set of n objects into exactly k nonempty subsets. Use the above to determine - END - mation 1/1 ← G O157 %- 2:11 PM Search the web and Windows )) we have > { 2 } = 2²-1 is the Stirling set number for n and k. Ö - 1. Links
To show by induction that for all n = 2,3,.... ON n, Let’s suppose k = 2. There are two partitions of {a, b}:{{a}, {b}}, {{a, b}}Hence, S(2, 2) = 2² − 1 = 3, as desired.Suppose that S(n − 1, j) is the number of partitions of {1, 2, . . . , n − 1} into j nonempty sets, for some fixed j.
We want to show thatS(n, j) = S(n − 1, j − 1) + jS(n − 1, j).This is true for j = 1. Assume that j ≥ 2. Let’s partition {1, 2, . . . , n} into j nonempty sets. Suppose that element n is alone in its set. Then there are S(n − 1, j − 1) ways to partition {1, 2, . . . , n − 1} into j − 1 nonempty sets and we can add element n to any of these sets. This gives S(n − 1, j − 1) possibilities.We can assume, instead, that element n is not alone in its set. Let T denote the set that contains element n. There are j ways to choose T. Once T is chosen, there are S(n − 1, j) ways to partition the remaining n − 1 elements into j sets since each of these j sets contains at least two elements and no element of T. Thus, there are jS(n − 1, j) possibilities. By the addition rule of counting, we obtain the desired result.So, by induction, the formula S(n, j) = S(n − 1, j − 1) + jS(n − 1, j) is true for all n ≥ 2 and j ≥ 1. We have to prove that S(n, j) = S(n − 1, j − 1) + jS(n − 1, j) is true for n = 2,3,…..For n = 2: Let’s suppose k = 2. There are two partitions of {a, b}:{{a}, {b}}, {{a, b}}Hence, S(2, 2) = 2² − 1 = 3, as desired.Suppose that S(n − 1, j) is the number of partitions of {1, 2, . . . , n − 1} into j nonempty sets, for some fixed j. We want to show thatS(n, j) = S(n − 1, j − 1) + jS(n − 1, j).This is true for j = 1. Assume that j ≥ 2. Let’s partition {1, 2, . . . , n} into j nonempty sets. Suppose that element n is alone in its set. Then there are S(n − 1, j − 1) ways to partition {1, 2, . . . , n − 1} into j − 1 nonempty sets and we can add element n to any of these sets. This gives S(n − 1, j − 1) possibilities.We can assume, instead, that element n is not alone in its set. Let T denote the set that contains element n. There are j ways to choose T. Once T is chosen, there are S(n − 1, j) ways to partition the remaining n − 1 elements into j sets since each of these j sets contains at least two elements and no element of T. Thus, there are jS(n − 1, j) possibilities. By the addition rule of counting, we obtain the desired result.So, by induction, the formula S(n, j) = S(n − 1, j − 1) + jS(n − 1, j) is true for all n ≥ 2 and j ≥ 1. Thus, we have shown by induction that for all n = 2,3,…. ON n, S(n, j) = S(n − 1, j − 1) + jS(n − 1, j).
To know more about sets visit:
brainly.com/question/30705181
#SPJ11
By induction:
n = 2 , 3 .. = [tex]2^{n-1}[/tex]
S(n, j) = S(n − 1, j − 1) + jS(n − 1, j) is true for all n ≥ 2 and j ≥ 1.
Given,
Sterling set number : n , k
Now,
To show by induction that for all n = 2,3,.. n,
Let’s suppose k = 2. There are two partitions of {a, b}:{{a}, {b}} and {{a, b}}
Hence, S(2, 2) = 2² − 1 = 3, as desired. Suppose that S(n − 1, j) is the number of partitions of {1, 2, . . . , n − 1} into j nonempty sets, for some fixed j.
We want to show that :
S(n, j) = S(n − 1, j − 1) + jS(n − 1, j).
This is true for j = 1.
Assume that j ≥ 2. Let’s partition {1, 2, . . . , n} into j nonempty sets.
Suppose that element n is alone in its set. Then there are S(n − 1, j − 1) ways to partition {1, 2, . . . , n − 1} into j − 1 nonempty sets and we can add element n to any of these sets. This gives S(n − 1, j − 1) possibilities.
Here,
We can assume, that element n is not alone in its set.
Let T denote the set that contains element n. There are j ways to choose T. Once T is chosen, there are S(n − 1, j) ways to partition the remaining n − 1 elements into j sets since each of these j sets contains at least two elements and no element of T.
Thus, there are jS(n − 1, j) possibilities.
Thus,
By the addition rule of counting, we obtain the desired result.
So, by induction, the formula S(n, j) = S(n − 1, j − 1) + jS(n − 1, j) is true for all n ≥ 2 and j ≥ 1.
To know more about sets ,
brainly.com/question/30705181
#SPJ4
Prove that the product of any three consecutive integers is congruent to 0 mod 3.
To prove that the product of any three consecutive integers is congruent to 0 mod 3, we first need to understand what the term "congruent to 0 mod 3" means. When a number is congruent to 0 mod 3, it means that it is divisible by 3 without any remainder.
Now, let's prove that the product of any three consecutive integers is congruent to 0 mod 3. We can do this by using modular arithmetic. We know that if a number is congruent to another number mod 3, then their difference is divisible by 3. Therefore, we can say that: n³ + 3n² + 2n ≡ n + 3n² + 2n ≡ 0 mod 3. This is true because n + 3n² + 2n can be factored out as n(3n+5), and either n or 3n+5 is divisible by 3. Therefore, the product of any three consecutive integers is congruent to 0 mod 3.
To know more about modular arithmetic visit:
https://brainly.com/question/30967977
#SPJ11
a particular solution of the differential equation y'' 3y' 4y=8x 2 is
The particular solution of the given differential equation y'' + 3y' + 4y = 8x + 2 is y = (2x² - 1)/2.
The given differential equation is y'' + 3y' + 4y = 8x + 2.To find a particular solution, we can use the method of undetermined coefficients.
Assuming that the particular solution is of the form:y = Ax² + Bx + C.
Substitute this particular solution into the differential equation. y'' + 3y' + 4y = 8x + 2y' = 2Ax + B and y'' = 2ASubstitute these values into the differential equation.
2A + 3(2Ax + B) + 4(Ax² + Bx + C) = 8x + 22Ax² + (6A + 4B)x + (3B + 4C) = 8x + 2(1)Comparing the coefficients of x², x, and constants, we have:2A = 0 ⇒ A = 0 6A + 4B = 0 ⇒ 3A + 2B = 0 3B + 4C = 2 ⇒ B = 2/3, C = -1/2
The particular solution is, therefore:y = 0x² + (2/3)x - 1/2y = (2x² - 1)/2
Summary, The particular solution of the given differential equation y'' + 3y' + 4y = 8x + 2 is y = (2x² - 1)/2. We can use the method of undetermined coefficients to solve the given differential equation. We assume the particular solution to be of the form y = Ax² + Bx + C, and substitute it in the differential equation. Finally, we compare the coefficients of x², x, and constants, and solve for the values of A, B, and C.
Learn more about differential equation click here:
https://brainly.com/question/1164377
#SPJ11
The amount of carbon 14 present in a paint after t years is given by A(t) =Ae^- 0.00012t The paint contains 30% of its carbon 14. Estimate the age of the paint. The paint is about years old. (Round to the nearest year as needed.)
The amount of carbon 14 present in a paint after t years is given by:
A(t) = Ae^-0.00012t
The paint contains 30% of its carbon 14. We can estimate the age of the paint by finding the value of t when A(t) is equal to 30% of A. We can then round the answer to the nearest year as required. To estimate the age of the paint we will first begin by finding the amount of carbon 14 present when the paint is new.
Let's assume that the paint contained 100 units of carbon 14 when it was first created.
A(0) = Ae^-0.00012(0)A(0) = A × e^0A(0) = 100
At t = 0, the paint contains 100 units of carbon 14.
Now, we must find out the age of the paint when it contains 30% of its carbon 14. We will replace A with 30 in the equation:
A(t) = Ae^-0.00012t0.3A = Ae^-0.00012t3 = e^-0.00012tln3 = -0.00012t
Dividing by -0.00012, we get:
t = ln3/(-0.00012)≈ 19,254.72 years
Therefore, the age of the paint is about 19,255 years old (rounded to the nearest year).
By replacing A with 30, we found that the paint is about 19,255 years old.
To know more about carbon 14 visit:
brainly.com/question/13476197
#SPJ11
Question 7 (10 points) A normal distribution has a mean of 100 and a standard deviation of 10. Find the z- scores for the following values. a. 110 b. 115. c. 100 d. 84
The Z-score for a score of 84 is -1.6.The normal distribution is a symmetric, bell-shaped curve that represents the distribution of many physical and psychological qualities, such as height, weight, and intelligence, as well as measurement error.
The Z-score, also known as the standard score, is the number of standard deviations from the mean of the distribution that a specific value falls. A Z-score can be calculated from any distribution with known mean and standard deviation using the formula: [tex](X - μ) / σ[/tex] where X is the raw score, μ is the mean, and σ is the standard deviation.Answer:a. For a score of 110, the z-score is 1.b. For a score of 115, the z-score is 1.5.c. For a score of 100, the z-score is 0.d. For a score of 84, the z-score is -1.6 The Z-score is the number of standard deviations a particular data point lies from the mean in a standard normal distribution. The formula for the calculation of the Z-score is (X - μ) / σ, where X is the raw score, μ is the mean, and σ is the standard deviation. So, when finding the Z-score for different values from a normal distribution with the mean of 100 and a standard deviation of 10, we must utilize the Z-score formula.In order to find the Z-score for a score of 110, we must substitute X=110, μ=100, and σ=10 into the formula:(110 - 100) / 10 = 1 Therefore, the Z-score for a score of 110 is 1.In order to find the Z-score for a score of 115, we must substitute X=115, μ=100, and σ=10 into the formula:(115 - 100) / 10 = 1.5
Therefore, the Z-score for a score of 115 is 1.5.In order to find the Z-score for a score of 100, we must substitute X=100, μ=100, and σ=10 into the formula:(100 - 100) / 10 = 0 Therefore, the Z-score for a score of 100 is 0.In order to find the Z-score for a score of 84, we must substitute X=84, μ=100, and σ=10 into the formula:(84 - 100) / 10 = -1.6 Therefore, the Z-score for a score of 84 is -1.6.
To know more about Standard deviation visit-
https://brainly.com/question/29115611
#SPJ11
A tank is full of water. Find the work W required to pump the water out of the spout. (Use 9.8 m/s2 for g. Use 1000 kg/m³ as the weight density of water.
The work (W) that is required to pump the water out of the spout is 4.4 × 10⁶ Joules.
How to determine the work required to pump the water?In order to determine the work (W) that is required to pump the water out of the spout, we would calculate the Riemann sum for each of the small parts, and then add all of the small parts with an integration.
By applying Pythagorean Theorem, we would determine the radius (r) at a depth of y meters as follows;
3² = (3 - y)² + r²
9 = 9 - 6y + y² + r²
r² = 6y - y²
r = √(6y - y²)
Assuming the thickness of a representative slice of this tank is ∆y, an equation for the volume is given by;
Volume = π(√(6y - y²))²Δy
Since the density of water in the m-kg-s system is 1000 kg/m³, the mass of a slice can be computed as follows;
Mass = 1000π(√(6y - y²))²Δy
From Newton’s Second Law of Motion (F = mg), the force
on the slice can be computed as follows;
Force = 9.8 × 1000π(√(6y - y²))²Δy
As water is being pumped up and out of the tank’s spout, each slice would move a distance of y − (−1) = y + 1 meter, so, the work done on each slice is given by;
Work done = 9800π(y + 1)[√(6y - y²)]²Δy
Since slices were created from from y = 0 to y = 6, the work done can be computed with the limit of the Riemann sum as follows;
[tex]W=\int\limits^6_0 9800 \pi (y+1)(6y-y^2) \, dy\\\\W= 9800 \pi \int\limits^6_0 (6y^2 - y^3 + 6y-y^2) \, dy\\\\W= 9800 \pi \int\limits^6_0 ( - y^3 + 5y^2+6y) \, dy\\\\W= 9800 \pi[-\frac{y^4}{4} +\frac{5y^3}{3} +3y^2]\limits^6_0\\\\W= 9800 \pi[-\frac{6^4}{4} +\frac{5\times 6^3}{3} +3 \times 6^2]-[-\frac{0^4}{4} +\frac{5\times 0^3}{3} +3 \times 0^2][/tex]
W = 9800π × 144
W = 4,433,416 ≈ 4.4 × 10⁶ Joules.
Read more on work done here: brainly.com/question/25816840
#SPJ4
PLEASE HELP QUICK 100 POINTS
The missing value in the table is 0.09
How to determine the missing value in the tableFrom the question, we have the following parameters that can be used in our computation:
The tables of values
The second table is calculated using the following formula
Frequency/Total frequency
using the above as a guide, we have the following:
Missing value = 3/(9 + 2 + 18 + 3)
Evaluate
Missing value = 0.09
Hence, the missing value in the table is 0.09
Read more about frequency table at
https://brainly.com/question/16148316
#SPJ1
Hi, I think the answer to this question (20) is (a), am I
right?
20) The number of common points of the parabola y² = 8x and the straight line p: x+y = 0 is equal to : a) 2 b) 1 c) 0 d) [infinity] e) none of the answers above is correct
Common points are points or values that several objects, such as lines, curves, or sets, share or cross. These points stand in for the coordinates or values that meet the conditions or equations for the relevant objects.
The equation of the straight line p is
x + y = 0.
To get the common points of the parabola
y² = 8x
the straight line p, we substitute y²/8 for x in the equation
x + y = 0.
Therefore, y²/8 + y = 0. The equation above can be factorized to
y(y/8 + 1) = 0.
Therefore, the solutions of the equation are y = 0 and y = -8.
Since y = 0, then x = 0 since x + y = 0. This gives us a common point (0, 0). Therefore, the number of common points of the parabola y² = 8x and the straight line p is 1. Therefore, the correct answer is option b) 1.
To know more about Common Point visit:
https://brainly.com/question/30283682
#SPJ11