If the distance covered by an object in time t is given by s(t)=t²+5t
, where s(t) is in meters and t is in seconds, what is the distance covered in the interval between 1 second and 5 seconds?

Answers

Answer 1
To answer that you would take s(5) - s(1)
s(1) = 1^2 + 5(1) = 1 + 5 = 6 (m/s)

s(5) = 5^2 + 5(5) = 25 + 25 = 50 (m/s)

Therefore the distance covered would be:
50 - 6 = 44m/s

The distance in the interval between 1 second and 5 seconds where the distance covered by an object is s(t) = t^2 + 5t is 44m/s

Related Questions

Debbie is making her famous lemonade. It requires

5/6 cup of lemon juice,

1/4 cup of sugar and

3/8 cup of water. How many cups of lemonade will these ingredients make?

A pitcher and glass of lemonade.

Answers

The ingredients provided will make approximately 1 and 11/24 cups of lemonade.

1. The problem states that the lemonade recipe requires specific quantities of lemon juice, sugar, and water, given as fractions. These fractions have different denominators, which means they cannot be added directly.

2. To add fractions with different denominators, we need to find a common denominator. In this case, the least common multiple (LCM) of the denominators 6, 4, and 8 is 24.

3. We convert the fraction for each ingredient to have a common denominator of 24:

  a. For the 5/6 cup of lemon juice, we multiply the numerator and denominator by 4 to get (5/6) * (4/4) = 20/24 cup of lemon juice.

  b. For the 1/4 cup of sugar, we multiply the numerator and denominator by 6 to get (1/4) * (6/6) = 6/24 cup of sugar.

  c. For the 3/8 cup of water, we multiply the numerator and denominator by 3 to get (3/8) * (3/3) = 9/24 cup of water.

4. Now that all the fractions have the same denominator, we can add them together:

  20/24 cup of lemon juice + 6/24 cup of sugar + 9/24 cup of water = 35/24 cup of lemonade.

5. The resulting fraction 35/24 represents the total amount of lemonade made with the given ingredient quantities. However, since 35/24 is greater than 1 (the whole), we can simplify it to a mixed number.

6. By dividing 35 by 24, we get 1 as the whole number and a remainder of 11. Therefore, the mixed number representation of 35/24 is 1 11/24.

7. Thus, the ingredients provided will make approximately 1 and 11/24 cups of lemonade.

Learn more about ingredients here:-

https://brainly.com/question/26532763

#SPJ11

f=-N+B/m ????????????

Answers

The given equation is f=-N+B/m. This equation represents a relationship between the variables f, N, B, and m. The equation can be rearranged to solve for any one of the variables in terms of the others. Here are the steps to solve for B:
Add N to both sides of the equation to isolate B/m on one side: f+N=B/m
Multiply both sides of the equation by m to isolate B: B=fm+Nm
Therefore, the equation to solve for B is B=fm+Nm.



Solve each proportion.

2.3/4 = x/3.7

Answers

The value of x in the proportion 2.3/4 = x/3.7 is approximately 2.152.

To solve the proportion 2.3/4 = x/3.7, we can use cross multiplication. Cross multiplying means multiplying the numerator of the first fraction with the denominator of the second fraction and vice versa.

In this case, we have (2.3 * 3.7) = (4 * x), which simplifies to 8.51 = 4x. To isolate x, we divide both sides of the equation by 4, resulting in x ≈ 2.152.

Therefore, the value of x in the given proportion is approximately 2.152.

Learn more about Proportion

brainly.com/question/33460130

#SPJ11

I NEED HELP ASAP I WILL GIVE 100 PTS IF YOU HELP ME AND GIVE RIGHT ANSWER AND I NEED EXPLANATION PLS HELP
A student is painting a doghouse like the rectangular prism shown.

A rectangular prism with base dimensions of 8 feet by 6 feet. It has a height of 5 feet.

Part A: Find the total surface area of the doghouse. Show your work. (3 points)

Part B: If one can of paint will cover 50 square feet, how many cans of paint are needed to paint the doghouse? Explain. (Hint: The bottom will not be painted since it will be on the ground.) (1 point)

Answers

Answer:

A: 236 sqaure ft.

B: 4 cans

Step-by-step explanation:

Sure, I can help you with that.

Part A:

The total surface area of a rectangular prism is calculated using the following formula:

Total surface area = 2(lw + wh + lh)

where:

l = lengthw = widthh = height

In this case, we have:

l = 8 feetw = 6 feeth = 5 feet

Plugging these values into the formula, we get:

Total surface area = 2(8*6+6*5+8*5) = 236 square feet

Therefore, the total surface area of the doghouse is 236 square feet.

Part B:

Since the bottom of the doghouse will not be painted, we only need to paint the top, front, back, and two sides.

The total surface area of these sides is 236-6*8 = 188 square feet.

Therefore,

we need 188 ÷ 50 = 3.76 cans of paint to paint the doghouse.

Since we cannot buy 0.76 of a can of paint, we need to buy 4 cans of paint.

Answer:

A)  236 ft²

B)  4 cans of paint

Step-by-step explanation:

Part A

The given diagram (attached) shows the doghouse modelled as a rectangular prism with the following dimensions:

width = 6 ftlength = 8 ftheight = 5 ft

The formula for the total surface area of a rectangular prism is:

[tex]S.A.=2(wl+hl+hw)[/tex]

where w is the width, l is the length, and h is the height.

To find the total surface area of the doghouse, substitute the given values of w, l and h into the formula:

[tex]\begin{aligned}\textsf{Total\;surface\;area}&=2(6 \cdot 8+5 \cdot 8+5 \cdot 6)\\&=2(48+40+30)\\&=2(118)\\&=236\; \sf ft^2\end{aligned}[/tex]

Therefore, the total surface area of the doghouse is 236 ft².

[tex]\hrulefill[/tex]

Part B

As the bottom of the doghouse will not be painted, to find the total surface area to be painted, subtract the area of the base from the total surface area:

[tex]\begin{aligned}\textsf{Area\;to\;be\;painted}&=\sf Total\;surface\;area-Area\;of\;base\\&=236-(8 \cdot 6)\\&=236-48\\&=188\; \sf ft^2\end{aligned}[/tex]

Therefore, the total surface area to be painted is 188 ft².

If one can of paint will cover 50 ft², to calculate how many cans of paint are needed to paint the doghouse, divide the total surface area to be painted by 50 ft², and round up to the nearest whole number:

[tex]\begin{aligned}\textsf{Cans\;of\;paint\;needed}&=\sf \dfrac{188\;ft^2}{50\;ft^2}\\\\ &= \sf 3.76\\\\&=\sf 4\;(nearest\;whole\;number)\end{aligned}[/tex]

Therefore, 4 cans of paint are needed to paint the doghouse.

Note: Rounding 3.76 to the nearest whole number means rounding up to 4. However, even if the number of paint cans needed was nearer to 3, e.g. 3.2, we would still need to round up to 4 cans, else we would not have enough paint.

Let S={2sin(2x):−π/2​≤x≤π/2​} find supremum and infrimum for S

Answers

The supremum of S is 2, and the infimum of S is -2.

The set S consists of values obtained by evaluating the function 2sin(2x) for all x values between -π/2 and π/2. In this range, the sine function reaches its maximum value of 1 and its minimum value of -1. Multiplying these values by 2 gives us the range of S, which is from -2 to 2.

To find the supremum, we need to determine the smallest upper bound for S. Since the maximum value of S is 2, and no other value in the set exceeds 2, the supremum of S is 2.

Similarly, to find the infimum, we need to determine the largest lower bound for S. The minimum value of S is -2, and no other value in the set is less than -2. Therefore, the infimum of S is -2.

In summary, the supremum of S is 2, representing the smallest upper bound, and the infimum of S is -2, representing the largest lower bound.

Learn more about supremum

brainly.com/question/30967807

#SPJ11

Given three sets A, B, C. Determine whether each of the following propositions is always true.
(a) (AUB) NC = A U(BNC)
(b) If A UB = AUC, then B = C.
(c) If B is a subset of C, then A U B is a subset of AU C.
(d) (A \ B)\C = (A\ C)\B.

Answers

(a) The proposition (AUB) NC = A U(BNC) is always true.

(b) The proposition "If A UB = AUC, then B = C" is not always true.

(c) The proposition "If B is a subset of C, then A U B is a subset of AU C" is always true.

(d) The proposition "(A \ B)\C = (A\ C)\B" is not always true.

(a) The proposition (AUB) NC = A U(BNC) is always true. In set theory, the complement of a set (denoted by NC) consists of all elements that do not belong to that set. The union operation (denoted by U) combines all the elements of two sets. Therefore, (AUB) NC represents the elements that belong to either set A or set B, but not both. On the other hand, A U(BNC) represents the elements that belong to set A or to the complement of set B within set C. Since the union operation is commutative and the complement operation is distributive over the union, these two expressions are equivalent.

(b) The proposition "If A UB = AUC, then B = C" is not always true. It is possible for two sets A, B, and C to exist such that the union of A and B is equal to the union of A and C, but B is not equal to C. This can occur when A contains elements that are present in both B and C, but B and C also have distinct elements.

(c) The proposition "If B is a subset of C, then A U B is a subset of AU C" is always true. If every element of set B is also an element of set C (i.e., B is a subset of C), then it follows that any element in A U B will either belong to set A or to set B, and hence it will also belong to the union of set A and set C (i.e., A U C). Therefore, A U B is always a subset of A U C.

(d) The proposition "(A \ B)\C = (A\ C)\B" is not always true. In this proposition, the backslash (\) represents the set difference operation, which consists of all elements that belong to the first set but not to the second set. It is possible to find sets A, B, and C where the difference between A and B, followed by the difference between the resulting set and C, is not equal to the difference between A and C, followed by the difference between the resulting set and B. This occurs when A and B have common elements not present in C.

Learn more about proposition

brainly.com/question/30895311

#SPJ11

The half life for a first order reaction is 20 min. What is the
rate constant in units of s-1?
Select one:

Answers

The rate constant for the first-order reaction is approximately 0.035 s⁻¹. The correct answer is B

To find the rate constant in units of s⁻¹ for a first-order reaction, we can use the relationship between the half-life (t1/2) and the rate constant (k).

The half-life for a first-order reaction is given by the formula:

t1/2 = (ln(2)) / k

Given that the half-life is 20 minutes, we can substitute this value into the equation:

20 = (ln(2)) / k

To solve for the rate constant (k), we can rearrange the equation:

k = (ln(2)) / 20

Using the natural logarithm of 2 (ln(2)) as approximately 0.693, we can calculate the rate constant:

k ≈ 0.693 / 20

k ≈ 0.03465 s⁻¹

Therefore, the rate constant for the first-order reaction is approximately 0.0345 s⁻¹. The correct answer is B

Your question is incomplete but most probably your full question was attached below

To know more about rate constant refer here:

brainly.com/question/15053008

#SPJ11

(r) At the start of the week a bookshop had fiction and non-fiction books in the ratio 2: 5. By the end of the week, 20% of each type of book were sold and 2240 books (in total) were unsold. How many of each type were there at the start?

Answers

Using the common factor we found that at the start of the week, there were 800 fiction books and 2000 non-fiction books

Let's assume that at the start of the week, the number of fiction books is 2x, and the number of non-fiction books is 5x, where x is a common factor.

According to the given information, at the end of the week, 20% of each type of book was sold. This means that 80% of each type of book remains unsold.

The number of fiction books unsold is 0.8 * 2x = 1.6x, and the number of non-fiction books unsold is 0.8 * 5x = 4x.

We are also given that the total number of unsold books is 2240. Therefore, we can set up the following equation:

1.6x + 4x = 2240

Combining like terms, we get:

5.6x = 2240

Dividing both sides by 5.6, we find:

x = 400

Now we can substitute the value of x back into the original ratios to find the number of each type of book at the start:

Number of fiction books = 2x = 2 * 400 = 800

Number of non-fiction books = 5x = 5 * 400 = 2000

Therefore, at the start of the week, there were 800 fiction books and 2000 non-fiction books

Learn more about: common factor

https://brainly.com/question/15483206

#SPJ11

Select the correct answer from each drop-down menu.
Consider the function f(x) = (1/2)^x

Graph shows an exponential function plotted on a coordinate plane. A curve enters quadrant 2 at (minus 2, 4), falls through (minus 1, 2), (0, 1), and intersects X-axis at infinite in quadrant 1.

Function f has a domain of
and a range of
. The function
as x increases.

Answers

Function f has a domain of all real numbers and a range of y > 0. The function approaches y = 0 as x increases.

What is a domain?

In Mathematics and Geometry, a domain is the set of all real numbers (x-values) for which a particular equation or function is defined.

The horizontal section of any graph is typically used for the representation of all domain values. Additionally, all domain values are both read and written by starting from smaller numerical values to larger numerical values, which means from the left of a graph to the right of the coordinate axis.

By critically observing the graph shown in the image attached above, we can logically deduce the following domain and range:

Domain = [-∞, ∞] or all real numbers.

Range = [1, ∞] or y > 0.

In conclusion, the end behavior of this exponential function [tex]f(x)=(\frac{1}{2} )^x[/tex] is that as x increases, the exponential function approaches y = 0.

Read more on domain here: brainly.com/question/9765637

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

What is the value of the missing exponent that makes the statement true?


Answers

Answer:

5

Step-by-step explanation:

let x = missing exponent

x - 2 + 1 = 4

x -1 = 4

x = 5

Consider the integral I=∫(xlog e u ​ (x))dx

Answers

Answer:  x to the power of x+c

Step-by-step explanation:

Let I =∫xx (logex)dx

. Write the finite difference approximation of u tt−u x =0 in the implicit method used to solve parabolic PDEs

Answers

The finite difference approximation of u tt−u x =0 in the implicit method used to solve parabolic PDEs is \ u_i^{n-1} = u_i^n + \frac{\Delta t}{\Delta x}(u_{i+1}^n - u_i^n)

PDE: u_tt - u_x = 0

The parabolic PDEs can be solved numerically using the implicit method.

The implicit method makes use of the backward difference formula for time derivative and the central difference formula for spatial derivative.

Finite difference approximation of u_tt - u_x = 0

In the implicit method, the backward difference formula for time derivative and the central difference formula for spatial derivative is used as shown below:(u_i^n - u_i^{n-1})/\Delta t - (u_{i+1}^n - u_i^n)/\Delta x = 0

Multiplying through by -\Delta t gives:\ u_i^{n-1} - u_i^n = \frac{\Delta t}{\Delta x}(u_{i+1}^n - u_i^n)

Rearranging gives:\ u_i^{n-1} = u_i^n + \frac{\Delta t}{\Delta x}(u_{i+1}^n - u_i^n)This is the finite difference equation.

learn more about parabolic from given link

https://brainly.com/question/13244761

#SPJ11

Venus Company developed the trend equation, based on the 4 years of the quarterly sales (in S′000 ) is: y=4.5+5.6t where t=1 for quarter 1 of year 1 The following table gives the adjusted seasonal index for each quarter. Using the multiplicative model, determine the trend value and forecast for each of the four quarters of the fifth year by filling in the below table.

Answers

The forecasted sales for each quarter of the fifth year are as follows:
- Quarter 1: 83.4
- Quarter 2: 79.5
- Quarter 3: 81.3
- Quarter 4: 95.8

To determine the trend value and forecast for each quarter of the fifth year, we need to use the trend equation and the adjusted seasonal indices provided in the table.

The trend equation given is: y = 4.5 + 5.6t, where t represents the quarters.

First, let's calculate the trend value for each quarter of the fifth year.

Quarter 1:
Substituting t = 13 into the trend equation:
y = 4.5 + 5.6(13) = 4.5 + 72.8 = 77.3

Quarter 2:
Substituting t = 14 into the trend equation:
y = 4.5 + 5.6(14) = 4.5 + 78.4 = 82.9

Quarter 3:
Substituting t = 15 into the trend equation:
y = 4.5 + 5.6(15) = 4.5 + 84 = 88.5

Quarter 4:
Substituting t = 16 into the trend equation:
y = 4.5 + 5.6(16) = 4.5 + 89.6 = 94.1

Now let's calculate the forecast for each quarter of the fifth year using the trend values and the adjusted seasonal indices.

Quarter 1:
Multiplying the trend value for quarter 1 (77.3) by the adjusted seasonal index for quarter 1 (1.08):
Forecast = 77.3 * 1.08 = 83.4

Quarter 2:
Multiplying the trend value for quarter 2 (82.9) by the adjusted seasonal index for quarter 2 (0.96):
Forecast = 82.9 * 0.96 = 79.5

Quarter 3:
Multiplying the trend value for quarter 3 (88.5) by the adjusted seasonal index for quarter 3 (0.92):
Forecast = 88.5 * 0.92 = 81.3

Quarter 4:
Multiplying the trend value for quarter 4 (94.1) by the adjusted seasonal index for quarter 4 (1.02):
Forecast = 94.1 * 1.02 = 95.8


To know more about forecasted sales, refer to the link below:

https://brainly.com/question/16556020#

#SPJ11

What is the length of the diagonal of the square shown below? A. B. C. 25 D. E. 5 F.

Answers

The square's diagonal length is (E) d = 11√2.

A diagonal is a line segment that connects two vertices (or corners) of a polygon also, connects two non-adjacent vertices of a polygon.

This connects the vertices of a polygon, excluding the figure's edges.

A diagonal can be defined as something with slanted lines or a line connecting one corner to the corner farthest away.

A diagonal is a line that connects the bottom left corner of a square to the top right corner.

So, we need to determine the length of the square's diagonal.

The formula for the diagonal of a square is; d = a2; where 'd' is the diagonal and 'a' is the side of the square.

Now, d = 11√2.

Hence, the square's diagonal length is (E) d = 11√2.

for such more question on diagonal length

https://brainly.com/question/3050890

#SPJ8

Question

What is the length of the diagonal of the square shown below? 11 45° 11 11 90° 11

A. 121

B. 11

C. 11√11

D. √11

E. 11√2

F. √22​

6. How many ways can you order the letters of the word BREATHING so that all the vowels are grouped together? (You do not need simplify your answer).

Answers

There are 30,240 ways to arrange the letters of the word "BREATHING" such that all the vowels are grouped together.

The word "BREATHING" contains 9 letters: B, R, E, A, T, H, I, N, and G. We want to find the number of ways we can arrange these letters such that all the vowels are grouped together.

To solve this problem, we can treat the group of vowels (E, A, and I) as a single entity. This means we can think of the group as a single letter, which reduces the problem to arranging 7 letters: B, R, T, H, N, G, and the vowel group.

The vowel group (E, A, I) can be arranged in 3! = 6 ways among themselves. The remaining 7 letters can be arranged in 7! = 5040 ways.

To find the total number of arrangements, we multiply these two numbers together: 6 * 5040 = 30,240.

Therefore, there are 30,240 ways to order the letters of the word "BREATHING" such that all the vowels are grouped together.

To know more about number of arrangements, refer to the link below:

https://brainly.com/question/32422854#

#SPJ11



Find the number of roots for each equation.

5x⁴ +12x³-x²+3 x+5=0 .

Answers

The number of roots for the given equation 5x⁴ + 12x³ - x² + 3x + 5 = 0 is 2 real roots and 2 complex roots.

To find the number of roots for the given equation: 5x⁴ + 12x³ - x² + 3x + 5 = 0.

First, we need to use Descartes' Rule of Signs. We first count the number of sign changes from one term to the next. We can determine the number of positive roots based on the number of sign changes from one term to the next:5x⁴ + 12x³ - x² + 3x + 5 = 0

Number of positive roots of the equation = Number of sign changes or 0 or an even number.There are no sign changes, so there are no positive roots.Now, we will use synthetic division to find the negative roots. We know that -1 is a root because if we plug in -1 for x, the polynomial equals zero.

Using synthetic division, we get:-1 | 5  12  -1  3  5  5  -7  8  -5  0

Now, we can solve for the remaining polynomial by solving the equation 5x³ - 7x² + 8x - 5 = 0. We can find the remaining roots using synthetic division. We will use the Rational Roots Test to find the possible rational roots. The factors of 5 are 1 and 5, and the factors of 5 are 1 and 5.

The possible rational roots are then:±1, ±5

The possible rational roots are 1, -1, 5, and -5. Since -1 is a root, we can use synthetic division to divide the remaining polynomial by x + 1.-1 | 5 -7 8 -5  5 -12 20 -15  0

We get the quotient 5x² - 12x + 20 and a remainder of -15. Since the remainder is not zero, there are no more rational roots of the equation.

Therefore, the equation has two complex roots.

The number of roots for the given equation 5x⁴ + 12x³ - x² + 3x + 5 = 0 is 2 real roots and 2 complex roots.

Know more about Descartes' Rule here,

https://brainly.com/question/30164842

#SPJ11

3. Can the equation x 2
−11y 2
=3 be solved by the methods of this section using congruences (mod 3) and, if so, what is the solution? (mod4)?(mod11) ? 4. Same as problem 3 with the equation x 2
−3y 2
=2.(mod3) ? (mod4) ? (mod8) ?

Answers

The given equation has no integer solutions.

The given equations are:

1. x^2 - 11y^2 = 3 2. x^2 - 3y^2 = 2

Let us solve these equations using congruences.

(1) x^2 ≡ 11y^2 + 3 (mod 3)

Squares modulo 3:

0^2 ≡ 0 (mod 3), 1^2 ≡ 1 (mod 3), and 2^2 ≡ 1 (mod 3)

Therefore, 11 ≡ 1 (mod 3) and 3 ≡ 0 (mod 3)

We can write the equation as:

x^2 ≡ 1y^2 (mod 3)

Let y be any integer.

Then y^2 ≡ 0 or 1 (mod 3)

Therefore, x^2 ≡ 0 or 1 (mod 3)

Now, we can divide the given equation by 3 and solve it modulo 4.

We obtain:

x^2 ≡ 3y^2 + 3 ≡ 3(y^2 + 1) (mod 4)

Therefore, y^2 + 1 ≡ 0 (mod 4) only if y ≡ 1 (mod 2)

But in that case, 3 ≡ x^2 (mod 4) which is impossible.

So, the given equation has no integer solutions.

(2) x^2 ≡ 3y^2 + 2 (mod 3)

We know that squares modulo 3 can only be 0 or 1.

Hence, x^2 ≡ 2 (mod 3) is impossible.

Let us solve the equation modulo 4. We get:

x^2 ≡ 3y^2 + 2 ≡ 2 (mod 4)

This implies that x is odd and y is even.

Now, let us solve the equation modulo 8. We obtain:

x^2 ≡ 3y^2 + 2 ≡ 2 (mod 8)

But this is impossible because 2 is not a quadratic residue modulo 8.

Therefore, the given equation has no integer solutions.

Learn more about the congruences from the given link-

https://brainly.com/question/30818154

#SPJ11

E Homework: HW 4.3 Question 10, 4.3.19 10 7 400 Let v₁ = -9 V₂ = 6 V3 = -8 and H= Span {V₁ V2 V3}. It can be verified that 4v₁ +2v₂ - 3v3 = 0. Use this information to find -5 C HW Score: 50%, 5 of 10 points O Points: 0 of 1 A basis for H is (Type an integer or decimal for each matrix element. Use a comma to separate vectors as needed.) basis for H. Save

Answers

A basis for the subspace H is {(-9, 6, -8), (4, 2, -3)}.

Determine the basis for the subspace H = Span{(-9, 6, -8), (4, 2, -3)}?

To find a basis for the subspace H = Span{V₁, V₂, V₃}, we need to determine the linearly independent vectors from the given set {V₁, V₂, V₃}.

Given:

V₁ = -9

V₂ = 6

V₃ = -8

We know that 4V₁ + 2V₂ - 3V₃ = 0.

Substituting the given values, we have:

4(-9) + 2(6) - 3(-8) = 0

-36 + 12 + 24 = 0

0 = 0

Since the equation is satisfied, we can conclude that V₃ can be written as a linear combination of V₁ and V₂. Therefore, V₃ is not linearly independent and can be excluded from the basis.

Thus, a basis for H would be {V₁, V₂}.

Learn more about subspace

brainly.com/question/26727539

#SPJ11



Suppose you select a number at random from the sample space 5,6,7,8,9,10,11,12,13,14. Find each probability. P (less than 7 or greater than 10 )

Answers

The probability of randomly selecting a number less than 7 or greater than 10, from the sample space of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 is 3/5.

Given the sample space 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. Suppose you select a number at random from the sample space, then the probability of selecting a number less than 7 or greater than 10:

P(less than 7 or greater than 10) = P(less than 7) + P(greater than 10)

Now, P(less than 7) = Number of outcomes favorable to the event/Total number of outcomes. In this case, the favorable outcomes are 5 and 6. Hence, the number of favorable outcomes is 2.

Total outcomes = 10

P(less than 7) = 2/10

P(greater than 10) = Number of outcomes favorable to the event/ Total number of outcomes. In this case, the favorable outcomes are 11, 12, 13 and 14. Hence, the number of favorable outcomes is 4.

Total outcomes = 10

P(greater than 10) = 4/10

Now, the probability of selecting a number less than 7 or greater than 10:

P(less than 7 or greater than 10) = P(less than 7) + P(greater than 10) = 2/10 + 4/10= 6/10= 3/5

Hence, the probability of selecting a number less than 7 or greater than 10 is 3/5.

To know more about probability, refer here:

https://brainly.com/question/16484393

#SPJ11

A ranger wants to estimate the number of tigers in Malaysia in the future. Suppose the population of the tiger satisfy the logistic equation dt/dP =0.05P−0.00125P^2
where P is the population and t is the time in month. i. Write an equation for the number of the tiger population, P, at any time, t, based on the differential equation above. ii. If there are 30 tigers in the beginning of the study, calculate the time for the number of the tigers to add up nine more

Answers

The equation for the number of the tiger population P at any time t, based on the differential equation is [tex]P = (5000/((399 \times exp(-1.25t))+1))[/tex].

Given that there are 30 tigers at the beginning of the study, the time for the number of tigers to add up to nine more is 3.0087 months. To solve this problem, we need to use the logistic equation given as, dt/dP = 0.05P − 0.00125P². Now, to find the time for the number of tigers to add up to nine more, we need to use the equation derived in part i, which is [tex]P = (5000/((399 \times exp(-1.25t))+1))[/tex].  

We know that there are 30 tigers at the beginning of the study. So, we can write: P = 30.
We also know that the ranger wants to find the time for the number of tigers to add up to nine more. Thus, we can write:P + 9 = 39Substituting P = 30 in the above equation, we get:
[tex]30 + 9 = (5000/((399 \times exp(-1.25t))+1))[/tex].

We can simplify this equation to get, [tex](5000/((399 \times exp(-1.25t))+1)) = 39[/tex]. Dividing both sides by 39, we get [tex](5000/((399 \times exp(-1.25t))+1))/39 = 1[/tex]. Simplifying, we get:[tex](5000/((399 \times exp(-1.25t))+1)) = 39 \times 1/(39/5000)[/tex]. Simplifying and multiplying both sides by 39, we get [tex](399 \times exp(-1.25t)) + 39 = 5000[/tex].
Dividing both sides by 39, we get [tex](399 \times exp(-1.25t)) = 5000 - 39[/tex]. Simplifying, we get: [tex](399 \times exp(-1.25t)) = 4961[/tex]. Taking natural logarithms on both sides, we get [tex]ln(399) -1.25t = ln(4961)[/tex].

Simplifying, we get:[tex]1.25t = ln(4961)/ln(399) - ln(399)/ln(399)-1.25t \\= 4.76087 - 1-1.25t \\= 3.76087t = -3.008696[/tex]
Now, the time for the number of tigers to add up to nine more is 3.0087 months.

Learn more about differential equations here:

https://brainly.com/question/30093042

#SPJ11

AB 8a 12b
=
SEE
8a 12b
ABCD is a quadrilateral.
A
a) Express AD in terms of a and/or b. Fully simplify your answer.
b) What type of quadrilateral is ABCD?
B
BC= 2a + 16b
D
2a + 16b
9a-4b
C
DC = 9a-4b
Not drawn accurately
Rectangle
Rhombus
Square
Trapezium
Parallelogram

Answers

AD in terms of a and/or b is 8a - 126.

a) To find AD in terms of a and/or b, we need to consider the properties of quadrilaterals. In a quadrilateral, opposite sides are equal in length.

Given:

AB = 8a - 126

DC = 9a - 4b

Since AB is opposite to DC, we can equate them:

AB = DC

8a - 126 = 9a - 4b

To isolate b, we can move the terms involving b to one side of the equation:

4b = 9a - 8a + 126

4b = a + 126

b = (a + 126)/4

Now that we have the value of b in terms of a, we can substitute it back into the expression for DC:

DC = 9a - 4b

DC = 9a - 4((a + 126)/4)

DC = 9a - (a + 126)

DC = 9a - a - 126

DC = 8a - 126

Thus, AD is equal to DC:

AD = 8a - 126

For more such questions on terms,click on

https://brainly.com/question/1387247

#SPJ8

The probable question may be:
ABCD is a quadrilateral.

AB = 8a - 126

BC = 2a+166

DC =9a-4b

a) Express AD in terms of a and/or b.

4. Before making your selection, you need to ensure you are choosing from a wide variety of groups. Make sure your query includes the category information before making your recommendations. Guiding Questions and Considerations: Should you only include groups from the most popular categories?

Answers

Before making your selection, you need to ensure you are choosing from a wide variety of groups. Make sure your query includes the category information before making your recommendations. Guiding Questions and Considerations, popular categories do not always mean they are the best option for your selection.

When making a selection, it is important to choose from a wide variety of groups. Before making any recommendations, it is crucial to ensure that the query includes category information. Thus, it is important to consider the following guiding questions before choosing the groups: Which categories are the most relevant for your query? Are there any categories that could be excluded? What are the group options within each category?

It is important to note that categories should not be excluded based on their popularity or lack thereof. Instead, it is important to select the groups based on their relevance and diversity to ensure a wide range of options. Therefore, the selection should be made based on the specific query and not the popularity of the categories.

Learn more about diversity at:

https://brainly.com/question/26794205

#SPJ11

Researchers studied the factors affecting credit card expending allocation. They collected information from a random sample of individuals and their credit card use. They then estimated the following multiple linear regression model: In Amount_On_Card = 8. 00 -0. 02Interest Rate where In_amount_on_card is the natural log of the amount of debt on the credit card measured in Mexican pesos, interest_rate is the interest rate on the credit card measured in percent, Help the researchers interpret their results by answering the following questions: a. What is the predicted amount of debt on a credit card that has a 20 percent interest rate? Round to 1 decimal and include the units of measurement (Hint: interest rate is measured in percent so that the value of the variable InterestRate equal 1 if the interest rate were 1 percent). B. Consider two individuals. Individual A has an interest rate of 10 percent while individual B has an interest rate of 25 percent. Complete the following sentence using the estimated regression coefficients. The first blank is for a magnitude (include all decimals), the second blank for a unit of measurement and the third blank for a direction (higher/lower/equal). I expect individual A to have debt on the card that individual B. C. Complete the following sentence to interpret the coefficient on interest rate: If interest rates increase by 1 , we predict a in the amount of debt on the credit card, controlling for card limit, the total number of other cards, and whether it is December or not. First blank: insert unit of measurement for a change in the interest rate Second and third blank: insert the magnitude of the change in the expected value of debt in the card and the correct unit of measurement for this change Fourth blank: insert the direction of the change (i. E. Increase, decrease, or no change)

Answers

Answer:

a. The predicted amount of debt on a credit card with a 20 percent interest rate can be calculated using the regression model:

In Amount_On_Card = 8.00 - 0.02 * Interest_Rate

Substituting the given interest rate value:

In Amount_On_Card = 8.00 - 0.02 * 20

In Amount_On_Card = 8.00 - 0.4

In Amount_On_Card = 7.6

Therefore, the predicted amount of debt on a credit card with a 20 percent interest rate is approximately 7.6 (in natural log form).

b. The sentence using the estimated regression coefficients can be completed as follows:

"I expect individual A to have debt on the card that is _____________ (include all decimals) _________ (unit of measurement) _____________ (higher/lower/equal) than individual B."

Given the regression model, the coefficient for the interest rate variable is -0.02. Therefore, the sentence can be completed as:

"I expect individual A to have debt on the card that is 0.02 (unit of measurement) lower than individual B."

c. The sentence to interpret the coefficient on the interest rate can be completed as follows:

"If interest rates increase by 1 _____________ (unit of measurement), we predict a _____________ (magnitude of the change) _____________ (unit of measurement) increase in the amount of debt on the credit card, controlling for card limit, the total number of other cards, and whether it is December or not. This change will be _____________ (increase/decrease/no change) in the debt amount."

Given that the coefficient on the interest rate variable is -0.02, the sentence can be completed as:

"If interest rates increase by 1 percent, we predict a 0.02 (unit of measurement) decrease in the amount of debt on the credit card, controlling for card limit, the total number of other cards, and whether it is December or not. This change will be a decrease in the debt amount."

Next time when you ask questions make sure to ask 1 question at a time or else no one will answer.

Find an equation that has the given solutions: t=√10,t=−√10 Write your answer in standard form.

Answers

The equation [tex]t^2[/tex] - 10 = 0 has the solutions t = √10 and t = -√10. It is obtained by using the roots of the equation (t - √10)(t + √10) = 0 and simplifying the expression to [tex]t^2[/tex] - 10 = 0.

The equation that has the given solutions t = √10 and t = -√10 can be found by using the fact that the solutions of a quadratic equation are given by the roots of the equation. Since the given solutions are square roots of 10, we can write the equation as

(t - √10)(t + √10) = 0.

Expanding this expression gives us [tex]t^2[/tex] -[tex](√10)^2[/tex] = 0. Simplifying further, we get

[tex]t^2[/tex] - 10 = 0.

Therefore, the equation in a standard form that has the given solutions is [tex]t^2[/tex] - 10 = 0.

In summary, the equation [tex]t^2[/tex] - 10 = 0 has the solutions t = √10 and t = -√10. It is obtained by using the roots of the equation (t - √10)(t + √10) = 0 and simplifying the expression to [tex]t^2[/tex] - 10 = 0.

Learn more about standard form here:

https://brainly.com/question/29000730

#SPJ11

Solve the following equations. Give your answer to 3 decimal places when applicable. (i) 12+3e^x+2 =15 (ii) 4ln2x=10

Answers

The solution to the equations are

(i) x = 0

(ii) x ≈ 3.032

How to solve the equations

(i) 12 + 3eˣ + 2 = 15

First, we can simplify the equation by subtracting 14 from both sides:

3eˣ = 3

isolate the exponential term.

eˣ = 1

solve for x by taking natural logarithm of both sides

ln(eˣ) = ln (1)

x = ln (1)

Since ln(1) equals 0, the solution is:

x = 0

(ii) 4ln(2x) = 10

To solve this equation, we'll isolate the natural logarithm term by dividing both sides by 4:

ln(2x) = 10/4

ln(2x) = 2.5

exponentiate both sides using the inverse function of ln,

e^(ln(2x)) = [tex]e^{2.5}[/tex]

2x =  [tex]e^{2.5}[/tex]

Divide both sides by 2:

x = ([tex]e^{2.5}[/tex])/2

Using a calculator, we can evaluate the right side of the equation:

x ≈ 3.032

Therefore, the solution to the equation is:

x ≈ 3.032 (rounded to 3 decimal places)

Learn more about equations at

https://brainly.com/question/29174899

#SPJ4

Determine if the following points A(3,−1,2),B(2,1,5),C(1,−2,−2) and D(0,4,7) are coplanar.

Answers

To determine if the points A(3,-1,2), B(2,1,5), C(1,-2,-2), and D(0,4,7) are coplanar, we can use the concept of collinearity. Hence using this concept we came to find out that the points A(3,-1,2), B(2,1,5), C(1,-2,-2), and D(0,4,7) are not coplanar.


In three-dimensional space, four points are coplanar if and only if they all lie on the same plane. One way to check for coplanarity is to calculate the volume of the tetrahedron formed by the four points. If the volume is zero, then the points are coplanar.

To calculate the volume of the tetrahedron, we can use the scalar triple product. The scalar triple product of three vectors a, b, and c is defined as the dot product of the first vector with the cross product of the other two vectors:

|a · (b x c)|

Let's calculate the scalar triple product for the vectors AB, AC, and AD. If the volume is zero, then the points are coplanar.

Vector AB = B - A = (2-3, 1-(-1), 5-2) = (-1, 2, 3)
Vector AC = C - A = (1-3, -2-(-1), -2-2) = (-2, -1, -4)
Vector AD = D - A = (0-3, 4-(-1), 7-2) = (-3, 5, 5)

Now, we calculate the scalar triple product:

|(-1, 2, 3) · ((-2, -1, -4) x (-3, 5, 5))|

To calculate the cross product:

(-2, -1, -4) x (-3, 5, 5) = (-9-25, 20-20, 5+6) = (-34, 0, 11)

Taking the dot product:

|(-1, 2, 3) · (-34, 0, 11)| = |-1*(-34) + 2*0 + 3*11| = |34 + 33| = |67| = 67

Since the scalar triple product is non-zero (67), the volume of the tetrahedron formed by the points A, B, C, and D is not zero. Therefore, the points are not coplanar.

To learn more about "Coplanar" visit: https://brainly.com/question/24430176

#SPJ11

K- 3n+2/n+3 make "n" the Subject

Answers

The expression "n" as the subject is given by:

n = (2 - 3K)/(K - 3)

To make "n" the subject in the expression K = 3n + 2/n + 3, we can follow these steps:

Multiply both sides of the equation by (n + 3) to eliminate the fraction:

K(n + 3) = 3n + 2

Distribute K to both terms on the left side:

Kn + 3K = 3n + 2

Move the terms involving "n" to one side of the equation by subtracting 3n from both sides:

Kn - 3n + 3K = 2

Factor out "n" on the left side:

n(K - 3) + 3K = 2

Subtract 3K from both sides:

n(K - 3) = 2 - 3K

Divide both sides by (K - 3) to isolate "n":

n = (2 - 3K)/(K - 3)

Therefore, the expression "n" as the subject is given by:

n = (2 - 3K)/(K - 3)

Learn more about expression here

https://brainly.com/question/30265549

#SPJ11



What is the solution of each system of equations? Solve using matrices.

a. [9x+2y = 3 3x+y=-6]

Answers

The solution to the given system of equations is x = 7 and y = -21.The solution to the given system of equations [9x + 2y = 3, 3x + y = -6] was found using matrices and Gaussian elimination.

First, we can represent the system of equations in matrix form:

[9 2 | 3]

[3 1 | -6]

We can perform row operations on the matrix to simplify it and find the solution. Using Gaussian elimination, we aim to transform the matrix into row-echelon form or reduced row-echelon form.

Applying row operations, we can start by dividing the first row by 9 to make the leading coefficient of the first row equal to 1:

[1 (2/9) | (1/3)]

[3 1 | -6]

Next, we can perform the row operation: R2 = R2 - 3R1 (subtracting 3 times the first row from the second row):

[1 (2/9) | (1/3)]

[0 (1/3) | -7]

Now, we have a simplified form of the matrix. We can solve for y by multiplying the second row by 3 to eliminate the fraction:

[1 (2/9) | (1/3)]

[0 1 | -21]

Finally, we can solve for x by performing the row operation: R1 = R1 - (2/9)R2 (subtracting (2/9) times the second row from the first row):

[1 0 | 63/9]

[0 1 | -21]

The simplified matrix represents the solution of the system of equations. From this, we can conclude that x = 7 and y = -21.

Therefore, the solution to the given system of equations is x = 7 and y = -21.

Learn more about Gaussian elimination here:

brainly.com/question/31328117

#SPJ11

In a volatile housing market, the overall value of a home can be modeled by V(x)
= 500x^2 - 500x + 125,000. V represents the value of the home, while x represents each year after 2020. What is the y-intercept, and what does it mean in terms of the value of the home?
Please answer fast!

Answers

To find the y-intercept of the given equation, we need to set x = 0 and evaluate the equation V(x).

When x = 0, the equation becomes:

V(0) = 500(0)^2 - 500(0) + 125,000

= 0 - 0 + 125,000

= 125,000

Therefore, the y-intercept is 125,000.

In terms of the value of the home, the y-intercept represents the initial value of the home when x = 0, which in this case is $125,000. This means that in the year 2020 (x = 0), the value of the home is $125,000.

algebra one. solve the logarithmic equation. will rate good for answers.
Bonus 1) Solve 2x-3 = 5x.

Answers

$x = 5.8333.$Bonus: Solve $2x - 3 = 5x.$$$2x - 3 = 5x$$$$2x - 5x = 3$$$$-3x = 3$$$$x = \frac{3}{-3} = -1.$$Therefore, $x = -1.$

Let's solve the logarithmic equation by using the following logarithmic rule: $\log_a{b^n} = n\log_a{b}$ with the given equation, $\log_7{x} - \log_7{(x-5)} = 1.$We know that when the subtraction sign is in between two logarithmic terms, we can simplify by using the quotient property of logarithms as follows:$$\log_a\frac{b}{c} = \log_ab - \log_ac.$$Using this rule with the equation above, we can simplify as follows:$$\log_7\frac{x}{x-5} = 1.$$This is the same as saying that $\frac{x}{x-5} = 7^1 = 7.$Let's now solve for $x$ as follows:$$x = 7(x-5)$$$$x = 7x - 35$$$$35 = 6x$$$$x = \frac{35}{6} = 5.8333.$$Therefore, $x = 5.8333.$Bonus: Solve $2x - 3 = 5x.$$$2x - 3 = 5x$$$$2x - 5x = 3$$$$-3x = 3$$$$x = \frac{3}{-3} = -1.$$Therefore, $x = -1.$

Learn more about Equation here,What is equation? Define equation

https://brainly.com/question/29174899

#SPJ11

Other Questions
PLS HELP I NEED TO SUMBITAn experiment is conducted with a coin. The results of the coin being flipped twice 200 times is shown in the table. Outcome Frequency Heads, Heads 40 Heads, Tails 75 Tails, Tails 50 Tails, Heads 35 What is the P(No Tails)? Suppose that U = [0, [infinity]o) is the universal set. Let A = [3,7] and B = (5,9] be two intervals; D = {1, 2, 3, 4, 5, 6} and E = {5, 6, 7, 8, 9, 10} be two sets. Find the following sets and write your answers in set/interval notations: 1. 2. (a) (b) (c) (AUE) NBC (AC NB) UE (A\D) n (B\E) Find the largest possible domain and largest possible range for each of the following real-valued functions: (a) F(x) = 2 x - 6x + 8 Write your answers in set/interval notations. (b) G(x) 4x + 3 2x - 1 = Because of World War I, the United States became A. overpopulated. B. more isolationist. C. a global superpower. D. economically unstable. solve the initial value problem 9y'' + 12y' + 4y=0 y(0)=-3,y'(0)=3thank you Discuss the relationship between an individual and his/her society and the impact on identity? What are their obligations to each other? How do they shape/ influence each other for better or for worse? 11. Presenting patient education information to any patient is direct to helping the patient to: O improve self care at home O improve their living conditions O make less visits to the emergency room O make truly informed choices 19. Which of the following is a individual factor that influences patient behavior? O religious influences social support structures past experiences O financial status 20. Which of the following is an environmental factor that influences patient behavior? attitudes knowledge O cultural values O daily schedule 21. Which of the following is a social factor that influences patient behavior? knowledge geographic location belief of family side effects of the medical regimen Construct a decision-tree with expected value in choosing the best alternative for enhancing the poor quality of road network. The feasible alternatives that you will be using in decision-tree are (a) extra drop-off and pick up areas (b) severe implementation of fare matrix and (c) straightforwardness on budgets given for road projects Explain to the words below by giving TWO (2) examples:(i) Enculturation and Acculturation (ii) Socialisation and Assimilation (iii) Social cohesion and social solidarity Determine the x values of the relative extrema of the function f(x)=x^{3}-6 x^{2}-5 . The find the values of the relative extrema. In your opinion what were the major causes behind the partitionof Bengal in 1905? At least 400 words. A monatomic ideal gas, kept at the constant pressure 1.804E+5 Pa during a temperature change of 26.5 C. If the volume of the gas changes by 0.00476 m3 during this process, how many mol of gas where present? Your answers are saved automatically. Remaining Time: 24 minutes, 55 seconds. Question completion Status: Moving to another question will save this response. Question 1 of 5 Question 1 0.5 points Save A closely wound, circular coil with a diameter of 4.10 cmcm has 700 turns and carries a current of 0.460 AA .What is the magnitude of the magnetic field at a point on the axis of the coil a distance of 6.30 cmcm from its center?Express your answer in teslas. Apply the five forces model to your industry. What does this model tell you about the nature of competition in the industry?Identify the core competencies that are at the heart of the firms competitive advantage. (Remember, a firm will have only one, or at most a few, core competencies, by definition.)Does the firm seem most focused on accounting profitability, shareholder value creation, or economic value creation? Give quotes or information from these sources to support your view.The company that I picked is Amazon Light of wavelength ^ = 685 m passes through a pair of slits that are 13 m wide and 185 m apart.How many bright interference fringes are there in the central diffraction maximum? How many bright interference fringes are there in the whole pattern? Concept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 7.50 cm. The focal length of the lens is -4.30 cm. Find (a) the image distance and (b) the object distance. What is a health insurance policy that provides an interruptedextension? Un ciclista que va a una velocidad constante de 12 km/h tarda 2 horas en viajar de la ciudad A a la ciudad B, cuntas horas tardara en realizar ese mismo recorrido a 8 km/h? Each year in office, u.s. congressman john conyers has introduced a bill to address the issue of ________, but attempts to create a commission to assess the issue have always been blocked. What Is The Present Value Of A 3-Year Annuity Of $320 ? $789.32 $795.79 $741.33