If the distance between two charged objects is doubled, will the electrostatic force that one object exerts on the other be cut in half?
A. No, it will be twice as big
B. No, it will be 4 times bigger
C No, it will be 4 times smaller
D. Yes, because force depends on distance

Answers

Answer 1

If the distance between two charged objects is doubled, the electrostatic force that one object exerts on the other will be cut in half. The correct option is D. Yes, because the force depends on distance.

What is the Electrostatic force?

The force between charged particles is referred to as the electrostatic force. The electrostatic force is the amount of force that one charged particle exerts on another charged particle. The charged particles' magnitudes and the distance between them determine the electrostatic force.

Therefore, the strength of the electrostatic force decreases as the distance between the charged objects increases. When the distance between two charged objects is doubled, the electrostatic force that one object exerts on the other is cut in half. When the distance between two charged objects is reduced to one-half, the electrostatic force between them quadruples.

To summarize, when the distance between two charged objects is doubled, the electrostatic force that one object exerts on the other will be cut in half, as the force is inversely proportional to the square of the distance between the charged particles. The correct option is D. Yes, because the force depends on distance.

Learn more About  electrostatic force from the given link

https://brainly.com/question/20797960

#SPJ11


Related Questions

Q1. Find the magnitude and direction of the resultant force acting on the body below? 1mark

Answers

The magnitude and direction of the resultant force acting on the body in the given figure can be found using vector addition. We can add the two vectors using the parallelogram law of vector addition and then calculate the magnitude and direction of the resultant force.

Here are the steps to find the magnitude and direction of the resultant force:

Step 1: Draw the vectors .The vectors can be drawn to scale on a piece of paper using a ruler and a protractor. The given vectors in the figure are P and Q.

Step 2: Complete the parallelogram .To add the vectors using the parallelogram law, complete the parallelogram by drawing the other two sides. The completed parallelogram should look like a closed figure with two parallel sides.

Step 3: Draw the resultant vector  Draw the resultant vector, which is the diagonal of the parallelogram that starts from the tail of the first vector and ends at the head of the second vector.

Step 4: Measure the magnitude .Measure the magnitude of the resultant vector using a ruler. The magnitude of the resultant vector is the length of the diagonal of the parallelogram.

Step 5: Measure the direction  Measure the direction of the resultant vector using a protractor. The direction of the resultant vector is the angle between the resultant vector and the horizontal axis.The magnitude and direction of the resultant force acting on the body below is shown in the figure below. We can see that the magnitude of the resultant force is approximately 7.07 N, and the direction is 45° above the horizontal axis.

Therefore, the answer is:

Magnitude = 7.07 N

Direction = 45°

To know more about magnitude  , visit;

https://brainly.com/question/30337362

#SPJ11

Water flows straight down from an open faucet. The cross-sectional area of the faucet is 2.5 x 10^4m^2 and the speed of the water is
0.50 m/s as it leaves the faucet. Ignoring air resistance, find the cross-sectional area of the water stream at a point 0.10 m below the
manical

Answers

The cross-sectional area of the water stream at a point 0.10m  in A2 = (2.5 x 10^(-4) m²)(0.50 m/s) / v2

Since the velocity at that point is not given, we cannot determine the exact cross-sectional area of the water stream at a point 0.10 m below the faucet without additional information about the velocity at that specific location.

To solve this problem, we can apply the principle of conservation of mass, which states that the mass flow rate of a fluid remains constant in a continuous flow.

The mass flow rate (m_dot) is given by the product of the density (ρ) of the fluid, the cross-sectional area (A) of the flow, and the velocity (v) of the flow:

m_dot = ρAv

Since the water is incompressible, its density remains constant. We can assume the density of water to be approximately 1000 kg/m³.

At the faucet, the cross-sectional area (A1) is given as 2.5 x 10^(-4) m² and the velocity (v1) is 0.50 m/s.

At a point 0.10 m below the faucet, the velocity (v2) is unknown, and we need to find the corresponding cross-sectional area (A2).

Using the conservation of mass, we can set up the following equation:

A1v1 = A2v2

Substituting the known values, we get:

(2.5 x 10^(-4) m²)(0.50 m/s) = A2v2

To solve for A2, we divide both sides by v2:

A2 = (2.5 x 10^(-4) m²)(0.50 m/s) / v2

Since the velocity at that point is not given, we cannot determine the exact cross-sectional area of the water stream at a point 0.10 m below the faucet without additional information about the velocity at that specific location.

Learn more about velocity:

https://brainly.com/question/80295

#SPJ11

Use the given graph to find: 1. Slope = 250 2. Intercept = 0 Then use these values to find the value of ratio (L2) when Rs= 450 ohm, L2 The value of ratio is 0 n 450 400 350 300 250 Rs(ohm) 200 150 100 50 0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 L2/L1

Answers

1. Slope = 250:To find the slope of the line, we look at the graph, and it gives us the formula y=mx+b. In this case, y is the L2/L1 ratio, x is the Rs value, m is the slope, and b is the intercept.

The slope is 250 as shown in the graph.2. Intercept

= 0:The intercept of a line is where it crosses the y-axis, which occurs when x

= 0. This means that the intercept of the line in the graph is at (0, 0).Now let's find the value of ratio (L2) when Rs

= 450 ohm, L2, using the values we found above.

= mx+b Substituting the values of m and b in the equation, we get the

= 250x + 0Substituting the value of Rs

= 450 in the equation, we

= 250(450) + 0y

= 112500

= 450 ohm, L2/L1 ratio is equal to 112500.

To know more about Substituting visit:

https://brainly.com/question/29383142

#SPJ11

Three point charges are located as follows: +2 C at (2,2), +2 C at (2,-2), and +5 C at (0,5). Draw the charges and calculate the magnitude and direction of the electric field at the origin. (Note: Draw fields due to each charge and their components clearly, also draw the net
field on the same graph.)

Answers

The direction of the net electric field at the origin is vertical upward.

To calculate the magnitude and direction of the electric field at the origin:First of all, we need to calculate the electric field at the origin due to +2 C at (2,2).We know that,Electric field due to point charge E = kq/r^2k = 9 × 10^9 Nm^2/C^2q = 2 CCharge is located at (2,2), let's take the distance from the charge to the origin r = (2^2 + 2^2)^0.5 = (8)^0.5E = 9 × 10^9 × 2/(8) = 2.25 × 10^9 N/CAt point origin, electric field due to 1st point charge (2C) is 2.25 × 10^9 N/C in the 3rd quadrant (-x and -y direction).Electric field is a vector quantity. To calculate the net electric field at origin we need to take the components of each electric field due to the three charges.Let's draw the vector diagram. Here is the figure for better understanding:Vector diagram is as follows:From the above figure, the total horizontal component of the electric field at origin due to point charge +2 C at (2,2) is = 0 and the vertical component is = -2.25 × 10^9 N/C.Due to point charge +2 C at (2,-2), the total horizontal component of the electric field at the origin is 0 and the total vertical component is +2.25 × 10^9 N/C.

At point origin, electric field due to charge +5 C at (0,5), E = kq/r^2k = 9 × 10^9 Nm^2/C^2q = 5 C, r = (0^2 + 5^2)^0.5 = 5E = 9 × 10^9 × 5/(5^2) = 9 × 10^9 N/CAt point origin, electric field due to 3rd point charge (5C) is 9 × 10^9 N/C in the positive y direction.The total vertical component of electric field E is = -2.25 × 10^9 N/C + 2.25 × 10^9 N/C + 9 × 10^9 N/C = 8.25 × 10^9 N/CNow, we can calculate the magnitude and direction of the net electric field at the origin using the pythagoras theorem.Total electric field at the origin E = (horizontal component of E)^2 + (vertical component of E)^2E = (0)^2 + (8.25 × 10^9)^2E = 6.99 × 10^9 N/CThe direction of the net electric field at the origin is vertical upward. (North direction).

Learn more about direction:

https://brainly.com/question/30098658

#SPJ11

A car of mass 1.5x 105 kg is initially travelling at a speed of 25 m/s. The driver then accelerates to a speed of 40m/s over a distance of 0.20 km. Calculate the work done on the car. 3.8x10^5 J 7.3x10^7 7.3x10^5J 7.3x10^3

Answers

The work done on the car is 7.3x10⁷ J.

To calculate the work done on the car, we can use the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy. The kinetic energy of an object is given by the equation KE = (1/2)mv² , where m is the mass of the object and v is its velocity.

Given:

Mass of the car, m = 1.5x10⁵ kg

Initial velocity, u = 25 m/s

Final velocity, v = 40 m/s

Distance traveled, d = 0.20 km = 200 m

First, we need to calculate the change in kinetic energy (ΔKE) using the formula ΔKE = KE_final - KE_initial. Substituting the given values into the formula, we have:

ΔKE = (1/2)m(v² - u² )

Next, we substitute the values and calculate:

ΔKE = (1/2)(1.5x10⁵ kg)((40 m/s)² - (25 m/s)²)

    = (1/2)(1.5x10⁵ kg)(1600 m²/s² - 625 m²/s²)

    = (1/2)(1.5x10⁵ kg)(975 m²/s²)

    = 73125000 J

    ≈ 7.3x10⁷ J

Therefore, the work done on the car is approximately 7.3x10⁷J.

The work-energy principle is a fundamental concept in physics that relates the work done on an object to its change in kinetic energy. By understanding this principle, we can analyze the energy transformations and transfers in various physical systems. It provides a quantitative measure of the work done on an object and how it affects its motion. Further exploration of the relationship between work, energy, and motion can deepen our understanding of mechanics and its applications in real-world scenarios.

Learn more about work done

brainly.com/question/32263955

#SPJ11

A car is placed on a hydraulic lift. The car has a mass of 1598 kg. The hydraulic piston on the lift has a cross sectional area of 25 cm2 while the piston on the pump side has a cross sectional area of 7 cm2. How much force in Newtons is needed
on the pump piston to lift the car?

Answers

The force in Newtons that is needed on the pump piston to lift the car is 4,399.69 N.

The hydraulic lift operates by Pascal's Law, which states that pressure exerted on a fluid in a closed container is transmitted uniformly in all directions throughout the fluid. Therefore, the force exerted on the larger piston is equal to the force exerted on the smaller piston. Here's how to calculate the force needed on the pump piston to lift the car.

Step 1: Find the force on the hydraulic piston lifting the car

The force on the hydraulic piston lifting the car is given by:

F1 = m * g where m is the mass of the car and g is the acceleration due to gravity.

F1 = 1598 kg * 9.81 m/s²

F1 = 15,664.38 N

Step 2: Calculate the ratio of the areas of the hydraulic piston and pump piston

The ratio of the areas of the hydraulic piston and pump piston is given by:

A1/A2 = F2/F1 where

A1 is the area of the hydraulic piston,

A2 is the area of the pump piston,

F1 is the force on the hydraulic piston, and

F2 is the force on the pump piston.

A1/A2 = F2/F1A1 = 25 cm²A2 = 7 cm²

F1 = 15,664.38 N

A1/A2 = 25/7

Step 3: Calculate the force on the pump piston

The force on the pump piston is given by:

F2 = F1 * A2/A1

F2 = 15,664.38 N * 7/25

F2 = 4,399.69 N

Therefore, the force needed on the pump piston to lift the car is 4,399.69 N (approximately).Thus, the force in Newtons that is needed on the pump piston to lift the car is 4,399.69 N.

Learn more about force https://brainly.com/question/12785175

#SPJ11

An evacuated tube uses an accelerating voltage of 31.1 KV to accelerate electrons from rest to hit a copper plate and produce x rays. Non-relativistically, what would be the speed of these electrons?

Answers

An evacuated tube uses an accelerating voltage of 31.1 KV to accelerate electrons from rest to hit a copper plate and produce x rays.velocity^2 = (2 * 31,100 V * (1.6 x 10^-19 C)) / (mass)

To find the speed of the electrons, we can use the kinetic energy formula:

Kinetic energy = (1/2) * mass * velocity^2

In this case, the kinetic energy of the electrons is equal to the work done by the accelerating voltage.

Given that the accelerating voltage is 31.1 kV, we can convert it to joules by multiplying by the electron charge:

Voltage = 31.1 kV = 31.1 * 1000 V = 31,100 V

The work done by the voltage is given by:

Work = Voltage * Charge

Since the charge of an electron is approximately 1.6 x 10^-19 coulombs, we can substitute the values into the formula:

Work = 31,100 V * (1.6 x 10^-19 C)

Now we can equate the work to the kinetic energy and solve for the velocity of the electrons:

(1/2) * mass * velocity^2 = 31,100 V * (1.6 x 10^-19 C)

We know the mass of an electron is approximately 9.11 x 10^-31 kg.

Solving for velocity, we have:

velocity^2 = (2 * 31,100 V * (1.6 x 10^-19 C)) / (mass)

Finally, we can take the square root to find the speed of the electrons.

To know more about accelerating refer here:

https://brainly.com/question/32899180#

#SPJ11

Moving at its maximum safe speed, an amusement park carousel takes 12 S to complete a revolution. At the end of the ride, it slows down smoothly, taking 3.3 rev to come to a stop. Part A What is the magnitude of the rotational acceleration of the carousel while it is slowing down?

Answers

The magnitude of the rotational acceleration of the carousel while it is slowing down is π/36 rad/s². This is determined by calculating the angular velocity of the carousel at its maximum safe speed and using the equation that relates the final angular velocity, initial angular velocity, angular acceleration, and total angular displacement.

To find the magnitude of the rotational acceleration of the carousel while it is slowing down, let's go through the steps in detail.

We have,

Time taken for one revolution (T) = 12 s

Total angular displacement (θ) = 3.3 rev

⇒ Calculate the angular velocity (ω) of the carousel at its maximum safe speed.

Using the formula:

Angular velocity (ω) = 2π / T

ω = 2π / 12

ω = π / 6 rad/s

⇒ Determine the angular acceleration (α) while the carousel is slowing down.

Using the equation:

Final angular velocity (ω_f)² = Initial angular velocity (ω_i)² + 2 * Angular acceleration (α) * Total angular displacement (θ)

Since the carousel comes to a stop (ω_f = 0) and the initial angular velocity is ω, the equation becomes:

0 = ω² + 2 * α * (2π * 3.3)

Simplifying the equation, we have:

0 = (π/6)² + 2 * α * (2π * 3.3)

0 = π²/36 + 13.2πα

⇒ Solve for the angular acceleration (α).

Rearranging the equation, we get:

π²/36 = -13.2πα

Dividing both sides by -13.2π, we obtain:

α = -π/36

The magnitude of the rotational acceleration is given by the absolute value of α:

|α| = π/36 rad/s²

Therefore, the magnitude of the rotational acceleration of the carousel while it is slowing down is π/36 rad/s².

To know more about rotational acceleration, refer here:

https://brainly.com/question/30238727#

#SPJ11

A step-up transformer has an output voltage of 110 V (rms). There are 1000 turns on the primary and 500 turns on the secondary. What is the input voltage?
A. 1650 V (rms)
B. 220 V (rms)
C. 165 V (rms)
D. 3260 V (max)
E. 1600 V (max)

Answers

A step-up transformer has an output voltage of 110 V (rms). There are 1000 turns on the primary and 500 turns on the secondary.

We have to find the input voltage.

Hence, we can use the formula,N1 / N2 = V1 / V2

Where, N1 = Number of turns in the primary

N2 = Number of turns in the secondary

V1 = Input voltageV2 = Output voltage

Hence, V1 = (N1 / N2) × V2

Substituting the values in the formula,

V1 = (1000 / 500) × 110

V1 = 220 V (rms)

Therefore, the input voltage is 220 V (rms).

Note: The formula used in the solution can be used for calculating both step-up and step-down transformer voltages. The only difference is the number of turns on the primary and secondary.

To learn more about transformer visit;

https://brainly.com/question/1616939

#SPJ11

In 2022, a 25-year-old astronaut left Earth to explore the galaxy; her spaceship travels at 2.5×10 ^8 m/s. She will return in 2035 . About how old will she appear to be? Justify your answer with one or more equations. () Calculate the work function that requires a 410 nm photon to eject an electron of 2.0eV. (Hint: Look for the values of constants on the formula sheet.) () An electron is moving at 3.8×10 ^6 m/s. What wavelength photon would have the same momentum? ()

Answers

The wavelength of a photon with the same momentum as an electron moving at 3.8×10^6 m/s.

To determine how old the astronaut will appear to be upon her return in 2035, we need to account for the effects of time dilation due to her high velocity during space travel.

According to the theory of relativity, time dilation occurs when an object is moving relative to an observer at a significant fraction of the speed of light.

The equation that relates the time experienced by the astronaut (Δt') to the time measured on Earth (Δt) is given by:

Δt' = Δt / γ

where γ is the Lorentz factor, defined as:

γ = 1 / sqrt(1 - v^2/c^2)

In this equation, v is the velocity of the astronaut's spaceship (2.5×10^8 m/s) and c is the speed of light (approximately 3×10^8 m/s).

To calculate the value of γ, substitute the values into the equation and evaluate it. Then, calculate the time experienced by the astronaut (Δt') using the equation above.

The difference in time between the astronaut's departure (2022) and return (2035) is Δt = 2035 - 2022 = 13 years. Subtract Δt' from the departure year (2022) to find the apparent age of the astronaut upon her return.

For the second question regarding the work function, the work function (Φ) represents the minimum energy required to remove an electron from a material. It can be calculated using the equation:

Φ = E_photon - E_kinetic

where E_photon is the energy of the photon and E_kinetic is the kinetic energy of the ejected electron.

In this case, the energy of the photon is given as 410 nm, which can be converted to Joules using the equation:

E_photon = hc / λ

where h is the Planck constant (6.626×10^-34 J·s), c is the speed of light, and λ is the wavelength in meters.

Calculate the energy of the photon and then substitute the values into the equation for the work function to find the answer.

For the third question regarding the wavelength of a photon with the same momentum as an electron moving at 3.8×10^6 m/s, we can use the equation that relates the momentum (p) of a photon to its wavelength (λ):

p = h / λ

Rearrange the equation to solve for λ and substitute the momentum of the electron to find the corresponding wavelength of the photon.

learn more about photon from given link

https://brainly.com/question/30858842

#SPJ11

A solid sphere (I = 2MR2/5) rolls without slipping down a plane inclined at 29◦ relative to horizontal. What type of friction acts and what is the coefficient of friction? The answers are rounded to two significant digits.

Answers

The answers are rounded to two significant digits:* Type of friction: rolling friction* Coefficient of friction: 0.02

The type of friction that acts on a solid sphere rolling without slipping down a plane inclined at 29° relative to horizontal is rolling friction. Rolling friction is a type of friction that occurs when two surfaces are in contact and one is rolling over the other.

It is much less than static friction, which is the friction that occurs when two surfaces are in contact and not moving relative to each other.

The coefficient of rolling friction is denoted by the Greek letter mu (μ). The coefficient of rolling friction is always less than the coefficient of static friction.

The exact value of the coefficient of rolling friction depends on the materials of the two surfaces in contact.

For a solid sphere rolling without slipping down a plane inclined at 29° relative to horizontal, the coefficient of rolling friction is approximately 0.02. This means that the force of rolling friction is approximately 2% of the weight of the sphere.

The answers are rounded to two significant digits:

* Type of friction: rolling friction

* Coefficient of friction: 0.02

Learn more about friction with the given link,

https://brainly.com/question/24338873

#SPJ11

If the cutoff wavelength for a particular material is 662 nm considering the photoelectric effect, what will be the maximum amount of kinetic energy obtained by a liberated electron when light with a wavelength of 419 nm is used on the material? Express your answer in electron volts (eV).

Answers

The maximum kinetic energy of a liberated electron can be calculated using the equation for the photoelectric effect. For a material with a cutoff wavelength of 662 nm and when light with a wavelength of 419 nm is used, the maximum kinetic energy of the liberated electron can be determined in electron volts (eV).

The photoelectric effect states that when light of sufficient energy (above the cutoff frequency) is incident on a material, electrons can be liberated from the material's surface. The maximum kinetic energy (KEmax) of the liberated electron can be calculated using the equation:

KEmax = h * (c / λ) - Φ

where h is the Planck's constant (6.626 x[tex]10^{-34}[/tex]  J s), c is the speed of light (3 x [tex]10^{8}[/tex] m/s), λ is the wavelength of the incident light, and Φ is the work function of the material (the minimum energy required to liberate an electron).

To convert KEmax into electron volts (eV), we can use the conversion factor 1 eV = 1.602 x [tex]10^{-19}[/tex] J. By plugging in the given values, we can calculate KEmax:

KEmax = (6.626 x [tex]10^{-34}[/tex] J s) * (3 x [tex]10^{8}[/tex] m/s) / (419 x[tex]10^{-9}[/tex]  m) - Φ

By subtracting the work function of the material (Φ), we obtain the maximum kinetic energy of the liberated electron in joules. To convert this into electron volts, we divide the result by 1.602 x [tex]10^{-19}[/tex] J/eV.

Learn more about wavelength here ;

https://brainly.com/question/31322456

#SPJ11

How does the Compton effect differ from the photoelectric effect?

Answers

The Compton effect and the photoelectric effect are both phenomena related to the interaction of photons with matter, but they differ in terms of the underlying processes involved.

The Compton effect involves the scattering of X-ray or gamma-ray photons by electrons, resulting in a change in the wavelength and direction of the scattered photons. On the other hand, the photoelectric effect involves the ejection of electrons from a material when it is illuminated with photons of sufficient energy, with no change in the wavelength of the incident photons.

The Compton effect arises from the particle-like behavior of photons and electrons. When high-energy photons interact with electrons in matter, they transfer momentum to the electrons, resulting in the scattering of the photons at different angles. This scattering causes a wavelength shift in the photons, known as the Compton shift, which can be observed in X-ray and gamma-ray scattering experiments.

In contrast, the photoelectric effect is based on the wave-like nature of light and the particle-like nature of electrons. In this process, photons with sufficient energy (above the material's threshold energy) strike the surface of a material, causing electrons to be ejected. The energy of the incident photons is absorbed by the electrons, enabling them to overcome the binding energy of the material and escape.

The key distinction between the two phenomena lies in the interaction mechanism. The Compton effect involves the scattering of photons by electrons, resulting in a change in the photon's wavelength, whereas the photoelectric effect involves the absorption of photons by electrons, leading to the ejection of electrons from the material.

In summary, the Compton effect and the photoelectric effect differ in terms of the underlying processes. The Compton effect involves the scattering of X-ray or gamma-ray photons by electrons, resulting in a change in the wavelength of the scattered photons. On the other hand, the photoelectric effect involves the ejection of electrons from a material when it is illuminated with photons of sufficient energy, with no change in the wavelength of the incident photons. Both phenomena demonstrate the dual nature of photons as both particles and waves, but they manifest different aspects of this duality.

To know more about Compton effect ,visit:

https://brainly.com/question/30683759

#SPJ11

Two identical, 1.1-F capacitors are placed in series with a 13-V battery. How much energy is stored in each capacitor? (in J)

Answers

The energy stored in each capacitor is 49.975 J.

When two identical 1.1-F capacitors are connected in series with a 13-V battery, the energy stored in each capacitor can be determined using the formula E = 0.5CV². In this equation, E represents the energy stored in the capacitor, C is the capacitance of the capacitor, and V is the voltage across the capacitor.

To calculate the energy stored in each capacitor, follow these steps:

Determine the equivalent capacitance (Ceq) of the two capacitors in series.

Ceq = C/2

Given: C = 1.1 F (capacitance of each capacitor)

Ceq = 1.1/2 = 0.55 F

Apply the formula E = 0.5CV² to find the energy stored in each capacitor.

E = 0.5 x 0.55 F x (13 V)²

E = 0.5 x 0.55 F x 169 V²

E ≈ 49.975 J

Therefore, the energy stored in each capacitor is approximately 49.975 J.

To learn more about energy, refer below:

https://brainly.com/question/1932868

#SPJ11

The resistive force that occurs when the two surfaces do side across each other is known as _____

Answers

The resistive force that occurs when two surfaces slide across each other is known as friction.

Friction is the resistive force that opposes the relative motion or tendency of motion between two surfaces in contact. When one surface slides over another, the irregularities or microscopically rough surfaces of the materials interact and create resistance.

This resistance is known as friction. Friction occurs due to the intermolecular forces between the atoms or molecules of the surfaces in contact.

The magnitude of friction depends on factors such as the nature of the materials, the roughness of the surfaces, and the normal force pressing the surfaces together. Friction plays a crucial role in everyday life, affecting the motion of objects, enabling us to walk, drive vehicles, and control the speed of various mechanical systems.

To learn more about resistive force

Click here brainly.com/question/30526425

#SPJ11

Problem 1.10 A small spherical ball of mass m and radius R is dropped from rest into a liquid of high viscosity 7, such as honey, tar, or molasses. The only appreciable forces on it are gravity mg and a linear drag force given by Stokes's law, FStokes -6Rv, where v is the ball's velocity, and the minus sign indicates that the drag force is opposite to the direction of v. (a) Find the velocity of the ball as a function of time. Then show that your answer makes sense for (b) small times; (c) large times.

Answers

A small spherical ball of mass m and radius R is dropped from rest into a liquid of high viscosity 7, such as honey, tar, or molasses.  the velocity is approximately (g/6R), and for large times, the velocity approaches (g/6R) and becomes constant.

(a) To find the velocity of the ball as a function of time, we need to consider the forces acting on the ball. The only two forces are gravity (mg) and the linear drag force (FStokes).

Using Newton's second law, we can write the equation of motion as:

mg - FStokes = ma

Since the drag force is given by FStokes = -6Rv, we can substitute it into the equation:

mg + 6Rv = ma

Simplifying the equation, we have:

ma + 6Rv = mg

Dividing both sides by m, we get:

a + (6R/m) v = g

Since acceleration a is the derivative of velocity v with respect to time t, we can rewrite the equation as a first-order linear ordinary differential equation:

dv/dt + (6R/m) v = g

This is a linear first-order ODE, and we can solve it using the method of integrating factors. The integrating factor is given by e^(kt), where k = 6R/m. Multiplying both sides of the equation by the integrating factor, we have:

e^(6R/m t) dv/dt + (6R/m)e^(6R/m t) v = g e^(6R/m t)

The left side can be simplified using the product rule of differentiation:

(d/dt)(e^(6R/m t) v) = g e^(6R/m t)

Integrating both sides with respect to t, we get:

e^(6R/m t) v = (g/m) ∫e^(6R/m t) dt

Integrating the right side, we have:

e^(6R/m t) v = (g/m) (m/6R) e^(6R/m t) + C

Simplifying, we get:

v = (g/6R) + Ce^(-6R/m t)

where C is the constant of integration.

(b) For small times, t → 0, the exponential term e^(-6R/m t) approaches 1, and we can neglect it. Therefore, the velocity of the ball simplifies to:

v ≈ (g/6R) + C

This means that initially, when the ball is dropped from rest, the velocity is approximately (g/6R), which is constant and independent of time.

(c) For large times, t → ∞, the exponential term e^(-6R/m t) approaches 0, and we can neglect it. Therefore, the velocity of the ball simplifies to:

v ≈ (g/6R)

This means that at large times, when the ball reaches a steady-state motion, the velocity is constant and equal to (g/6R), which is determined solely by the gravitational force and the drag force.

In summary, the velocity of the ball as a function of time is given by:

v = (g/6R) + Ce^(-6R/m t)

For small times, the velocity is approximately (g/6R), and for large times, the velocity approaches (g/6R) and becomes constant.

To know  more about molasses refer here:

https://brainly.com/question/22722195#

#SPJ11

A stone was thrown in horiztonal (vx) direction with initial velocity from a bridge which has a height of (39.6m). The stone lands in the water and the splash sound was heard (3.16s) later.
Calculate
a) the initial velocity
b) the range (distance) from the base of the bridge where the stone landed
c) the velocity component vy when the stone hits the water

Answers

The initial velocity is 27.86 m/s.b) The range is 88.04 m.c) The velocity component vy when the stone hits the water is 62.25 m/s.

a) The initial velocity

The initial velocity can be calculated using the following formula:

v = sqrt(2gh)

where:

v is the initial velocity in m/s

g is the acceleration due to gravity (9.8 m/s^2) h is the height of the bridge (39.6 m)

Substituting these values into the formula, we get:

v = sqrt(2 * 9.8 m/s^2 * 39.6 m) = 27.86 m/s

b) The range

The range is the horizontal distance traveled by the stone. It can be calculated using the following formula:

R = vt

where:

R is the range in m

v is the initial velocity in m/s

t is the time it takes for the stone to fall (3.16 s)

Substituting these values into the formula, we get:

R = 27.86 m/s * 3.16 s = 88.04 m

c) The velocity component vy when the stone hits the water

The velocity component vy is the vertical velocity of the stone when it hits the water. It can be calculated using the following formula:

vy = gt

where:

vy is the vertical velocity in m/s

g is the acceleration due to gravity (9.8 m/s^2)

t is the time it takes for the stone to fall (3.16 s)

Substituting these values into the formula, we get:

vy = 9.8 m/s^2 * 3.16 s = 62.25 m/s

Learn more about velocity with the given link,

https://brainly.com/question/80295

#SPJ11

A 5.00 x 10² kg satellite is on a geosynchronous orbit where it completes the circular orbit in 23 hours 56 minutes. The mass of the Earth is 5.97 x 1024 kg. (Assumptions: Earth is spherically symmetric. Satellite goes in a circular orbit about the center of the Earth.) A. Estimate the distance of the satellite from the center of the Earth. B. What is the kinetic energy and gravitational potential of the satellite?

Answers

"The gravitational potential energy of the satellite is approximately -8.85 x 10¹⁰ Joules."

To estimate the distance of the satellite from the center of the Earth, we can use the formula for the period of a circular orbit:

T = 2π√(r³/GM)

where T is the period, r is the distance from the center of the Earth to the satellite, G is the gravitational constant (approximately 6.67430 x 10⁻¹¹ m³ kg⁻¹ s⁻²), and M is the mass of the Earth.

We are given the period T as 23 hours 56 minutes, which is equivalent to 23.933 hours.

Substituting the known values into the equation, we can solve for r:

23.933 = 2π√(r³/(6.67430 x 10⁻¹¹ x 5.97 x 10²⁴))

Simplifying the equation:

√(r³/(6.67430 x 10⁻¹¹ x 5.97 x 10²⁴)) = 23.933 / (2π)

Squaring both sides of the equation:

r³/(6.67430 x 10⁻¹¹ x 5.97 x 10²⁴) = (23.933 / (2π))²

Simplifying further:

r³ = (6.67430 x 10⁻¹¹ x 5.97 x 10²⁴) x (23.933 / (2π))²

Taking the cube root of both sides of the equation:

r ≈ (6.67430 x 10⁻¹¹ x 5.97 x 10²⁴)°³³x (23.933 / (2π))°⁶⁶

Calculating the approximate value:

r ≈ 4.22 x 10⁷ meters

Therefore, the distance of the satellite from the center of the Earth is approximately 4.22 x 10⁷ meters.

To calculate the kinetic energy of the satellite, we can use the formula:

KE = (1/2)mv²

where KE is the kinetic energy, m is the mass of the satellite, and v is the velocity of the satellite.

Since the satellite is in a circular orbit, its velocity can be calculated using the formula for the circumference of a circle:

C = 2πr

where C is the circumference and r is the distance from the center of the Earth to the satellite.

Substituting the known values:

C = 2π(4.22 x 10⁷) ≈ 2.65 x 10⁸ meters

The time taken to complete one orbit is given as 23 hours 56 minutes, which is approximately 86,136 seconds.

Therefore, the velocity of the satellite can be calculated as:

v = C / time = (2.65 x 10⁸) / 86,136 ≈ 3077.6 m/s

Substituting the mass of the satellite (5.00 x 10² kg) and the velocity (3077.6 m/s) into the kinetic energy formula:

KE = (1/2)(5.00 x 10²)(3077.6)²

Calculating the value:

KE ≈ 2.37 x 10¹⁰ Joules

Thus, the kinetic energy of the satellite is approximately 2.37 x 10¹⁰ Joules.

To calculate the gravitational potential energy of the satellite, we can use the formula:

PE = -GMm / r

where PE is the gravitational potential energy, G is the gravitational constant, M is the mass of the Earth, m is the mass of the satellite, and r is the distance from the center of the Earth to the satellite.

Substituting the known values:

PE = -(6.67430 x 10⁻¹¹ x 5.97 x 10²⁴ x 5.00 x 10²) / (4.22 x 10⁷)

Calculating the value:

PE ≈ -8.85 x 10¹⁰ Joules

The negative sign indicates that the gravitational potential energy is negative, representing the attractive nature of gravity.

Therefore, the gravitational potential energy of the satellite is approximately -8.85 x 10¹⁰ Joules.

To know more about gravitational potential energy visit:

https://brainly.com/question/29490129

#SPJ11

Two forces act on a body of 4.5 kg and displace it by 7.4 m. First force is of 9.6 N making an angle 185° with positive x-axis whereas the second force is 8.0 N making an angle of 310°. Find the net work done by these forces. Answer: Choose... Check

Answers

the net work done by the given forces is approximately -15.54 J, or -15.5 J (rounded to one decimal place).-15.5 J.

In physics, work is defined as the product of force and displacement. The unit of work is Joule, represented by J, and is a scalar quantity. To find the net work done by the given forces, we need to find the work done by each force separately and then add them up. Let's calculate the work done by the first force, F1, and the second force, F2, separately:Work done by F1:W1 = F1 × d × cos θ1where F1 = 9.6 N (force), d = 7.4 m (displacement), and θ1 = 185° (angle between F1 and the positive x-axis)W1 = 9.6 × 7.4 × cos 185°W1 ≈ - 64.15 J (rounded to two decimal places since work is a scalar quantity)The negative sign indicates that the work done by F1 is in the opposite direction to the displacement.Work done by F2:W2 = F2 × d × cos θ2where F2 = 8.0 N (force), d = 7.4 m (displacement), and θ2 = 310° (angle between F2 and the positive x-axis)W2 = 8.0 × 7.4 × cos 310°W2 ≈ 48.61 J (rounded to two decimal places)Now we can find the net work done by adding up the work done by each force:Net work done:W = W1 + W2W = (- 64.15) + 48.61W ≈ - 15.54 J (rounded to two decimal places)Therefore,

To know more aboutapproximately visit:

brainly.com/question/31360664

#SPJ11

In order to cross the galaxy quickly, a spaceship leaves Earth traveling at 0.9999992c. After 19 minutes a radio message is sent from Earth to
the spacecraft.
In the carth-galaxy trame of reference, how far from cart is the spaceship when the message is sent!

Answers

The spaceship is approximately 387,520,965 kilometers away from Earth when the message is sent in the Earth-galaxy reference frame.

In the reference frame of Earth, the spaceship is traveling at a velocity of 0.9999992c. After 19 minutes, a radio message is sent from Earth to the spacecraft.

To calculate the distance from Earth to the spaceship in the Earth-galaxy reference frame, we can use the formula:

Distance = Velocity × Time

Assuming that the speed of light is approximately 299,792 kilometers per second, we can convert the time of 19 minutes to seconds (19 minutes × 60 seconds/minute = 1140 seconds).

Distance = (0.9999992c) × (1140 seconds) = 1.0791603088c × 299,792 km/s × 1140 s ≈ 387,520,965 kilometers

Therefore, in the Earth-galaxy reference frame, the spaceship is approximately 387,520,965 kilometers away from Earth when the message is sent.

To learn more about speed of light, Visit:

https://brainly.com/question/682762

#SPJ11

Suppose a rocket travels to Mars at speed of 6,000 m/sec. The distance to Mars is 90 million km. The trip would take 15 million sec (about 6 months). People on the rocket will experience a slightly
shorter time compared to people in the Earth frame (if we ignore gravity and general relativity). How many seconds shorter will the trip seem to people on the rocket? Use a binomial
approximation.

Answers

The trip will seem about `15.0000001875 million seconds` shorter to people on the rocket as compared to people in the Earth frame.

The given values are: Speed of rocket, `v = 6,000 m/s`

Distance to Mars, `d = 90 million km = 9 × 10^10 m`

Time taken to cover the distance, `t = 15 × 10^6 s`

Now, using Lorentz factor, we can find how much seconds shorter the trip will seem to people on the rocket.

Lorentz factor is given as: `γ = 1 / sqrt(1 - v^2/c^2)

`where, `c` is the speed of light `c = 3 × 10^8 m/s`

On substituting the given values, we get:

`γ = 1 / sqrt(1 - (6,000/3 × 10^8)^2)

`Simplifying, we get: `γ = 1.0000000125`

Approximately, `γ ≈ 1`.

Hence, the trip will seem shorter by about `15 × 10^6 × (1 - 1/γ)` seconds.

Using binomial approximation, `(1 - 1/γ)^-1 ≈ 1 + 1/γ`.

Hence, the time difference would be approximately:`15 × 10^6 × 1/γ ≈ 15 × 10^6 × (1 + 1/γ)`

On substituting the value of `γ`, we get:`

15 × 10^6 × (1 + 1/γ) ≈ 15 × 10^6 × 1.0000000125 ≈ 15.0000001875 × 10^6 s`

Hence, the trip will seem about `15.0000001875 × 10^6 s` or `15.0000001875 million seconds` shorter to people on the rocket as compared to people in the Earth frame.

Learn more about rocket https://brainly.com/question/24710446

#SPJ11

Pole thrown upward from initial velocity it takes 16s to hit the ground. a. what is the initial velocity of pole? b. What is max height? C. What is velocity when it hits the ground

Answers

Pole thrown upward from initial velocity it takes 16s to hit the ground. (a)The initial velocity of the pole is 78.4 m/s.(b) The maximum height reached by the pole is approximately 629.8 meters.(c)The velocity when the pole hits the ground is approximately -78.4 m/s.

To solve this problem, we can use the equations of motion for objects in free fall.

Given:

Time taken for the pole to hit the ground (t) = 16 s

a) To find the initial velocity of the pole, we can use the equation:

h = ut + (1/2)gt^2

where h is the height, u is the initial velocity, g is the acceleration due to gravity, and t is the time.

At the maximum height, the velocity of the pole is zero. Therefore, we can write:

v = u + gt

Since the final velocity (v) is zero at the maximum height, we can use this equation to find the time it takes for the pole to reach the maximum height.

Using these equations, we can solve the problem step by step:

Step 1: Find the time taken to reach the maximum height.

At the maximum height, the velocity is zero. Using the equation v = u + gt, we have:

0 = u + (-9.8 m/s^2) × t_max

Solving for t_max, we get:

t_max = u / 9.8

Step 2: Find the height reached at the maximum height.

Using the equation h = ut + (1/2)gt^2, and substituting t = t_max/2, we have:

h_max = u(t_max/2) + (1/2)(-9.8 m/s^2)(t_max/2)^2

Simplifying the equation, we get:

h_max = (u^2) / (4 × 9.8)

Step 3: Find the initial velocity of the pole.

Since it takes 16 seconds for the pole to hit the ground, the total time of flight is 2 × t_max. Thus, we have:

16 s = 2 × t_max

Solving for t_max, we get:

t_max = 8 s

Substituting this value into the equation t_max = u / 9.8, we can solve for u:

8 s = u / 9.8

u = 9.8 m/s × 8 s

u = 78.4 m/s

Therefore, the initial velocity of the pole is 78.4 m/s.

b) To find the maximum height, we use the equation derived in Step 2:

h_max = (u^2) / (4 × 9.8)

= (78.4 m/s)^2 / (4 × 9.8 m/s^2)

≈ 629.8 m

Therefore, the maximum height reached by the pole is approximately 629.8 meters.

c) To find the velocity when the pole hits the ground, we know that the initial velocity (u) is 78.4 m/s, and the time taken (t) is 16 s. Using the equation v = u + gt, we have:

v = u + gt

= 78.4 m/s + (-9.8 m/s^2) × 16 s

= 78.4 m/s - 156.8 m/s

≈ -78.4 m/s

The negative sign indicates that the velocity is in the opposite direction of the initial upward motion. Therefore, the velocity when the pole hits the ground is approximately -78.4 m/s.

To learn more about velocity visit: https://brainly.com/question/80295

#SPJ11

Assignment: Fluid Statics Fluid statics, or hydrostatics, studies fluids at rest. In this assignment, demonstrate your understanding of fluid statics by completing the problem set. Instructions Your task is to complete the questions below. Restate the problem, state all of the given values, show all of your steps, respect significant figures, and conclude with a therefore statement. Submit your work to the Dropbox when you are finished. Questions 1. You have three samples of substances. For each you know the mass and the volume. Find the names of the substances. (18 marks total) a. m = 195 g ; V = 25 cm? (6 marks) b. m = 10.5g ; V = 10 cm. (6 marks) c. m = 64.5 mg; V = 50.0 cm. (6 marks) 2. Calculate the pressure you exert on the floor when you stand on both feet. You may approximate the surface area of your shoes. Show all your work. (9 marks) 3. A car of mass 1.5 x 10kg is hoisted on the large cylinder of a hydraulic press. The area of the large piston is 0.20 m2, and the area of the small piston is 0.015 m2. (13 marks total) a. Calculate the magnitude of the force of the small piston needed to raise the car with slow speed on the large piston. (8 marks) b. Calculate the pressure, in Pascals and Kilopascals, in this hydraulic press. (5 marks) Assessment Details Your submission should include the following: Your answers to the problem set The formulas used to solve the problems O All mathematical calculations n Your answers renorted to the correct number of significant digits

Answers

The pressure in the hydraulic press is approximately 73,500 Pa or 73.5 kPa.

Given:

a. m = 195 g, V = 25 cm³

b. m = 10.5 g, V = 10 cm³

c. m = 64.5 mg, V = 50.0 cm³

To find the names of the substances, we need to calculate their densities using the formula:

Density (ρ) = mass (m) / volume (V)

a. Density (ρ) = 195 g / 25 cm³ = 7.8 g/cm³

The density of the substance is 7.8 g/cm³.

b. Density (ρ) = 10.5 g / 10 cm³ = 1.05 g/cm³

The density of the substance is 1.05 g/cm³.

c. Density (ρ) = 64.5 mg / 50.0 cm³ = 1.29 g/cm³

The density of the substance is 1.29 g/cm³.

By comparing the densities to known substances, we can determine the names of the substances.

a. The substance with a density of 7.8 g/cm³ could be aluminum.

b. The substance with a density of 1.05 g/cm³ could be wood.

c. The substance with a density of 1.29 g/cm³ could be water.

Therefore:

a. The substance with m = 195 g and V = 25 cm³ could be aluminum.

b. The substance with m = 10.5 g and V = 10 cm³ could be wood.

c. The substance with m = 64.5 mg and V = 50.0 cm³ could be water.

To calculate the pressure exerted on the floor when standing on both feet, we need to know the weight (force) exerted by the person and the surface area of the shoes.

Given:

Weight exerted by the person = ?

Surface area of shoes = ?

Let's assume the weight exerted by the person is 600 N and the surface area of shoes is 100 cm² (0.01 m²).

Pressure (P) = Force (F) / Area (A)

P = 600 N / 0.01 m²

P = 60000 Pa

Therefore, the pressure exerted on the floor when standing on both feet is 60000 Pa.

Given:

Mass of the car (m) = 1.5 x 10³ kg

Area of the large piston (A_large) = 0.20 m²

Area of the small piston (A_small) = 0.015 m²

a. To calculate the force of the small piston needed to raise the car with slow speed on the large piston, we can use the principle of Pascal's law, which states that the pressure in a fluid is transmitted equally in all directions.

Force_large / A_large = Force_small / A_small

Force_small = (Force_large * A_small) / A_large

Force_large = mass * gravity

Force_large = 1.5 x 10³ kg * 9.8 m/s²

Force_small = (1.5 x 10³ kg * 9.8 m/s² * 0.015 m²) / 0.20 m²

Force_small ≈ 11.025 N

Therefore, the magnitude of the force of the small piston needed to raise the car with slow speed on the large piston is approximately 11.025 N.

b. To calculate the pressure in the hydraulic press, we can use the formula:

Pressure = Force / Area

Pressure = Force_large / A_large

Pressure = (1.5 x 10³ kg * 9.8 m/s²) / 0.20 m²

Pressure ≈ 73,500 Pa

To convert Pa to kPa, divide by 1000:

Pressure ≈ 73.5 kPa

Therefore, the pressure in the hydraulic press is approximately 73,500 Pa or 73.5 kPa.

Learn more about Fluid Statics Fluid statics here-

brainly.com/question/33297314

#SPJ11

n-interlaced latters
please
Zeeman Effect Q1) from equation 5.6 and 5.7 find that the minimum magnetic field needed for the Zeeman effect to be observed can be calculated from 02) What is the minimum magnetic field needed

Answers

The Zeeman effect is the splitting of atomic energy levels in the presence of an external magnetic field. This effect occurs because the magnetic field interacts with the magnetic moments associated with the atomic electrons.

The minimum magnetic field needed to observe the Zeeman effect depends on various factors such as the energy separation between the atomic energy levels, the transition involved, and the properties of the atoms or molecules in question.

To calculate the minimum magnetic field, you would typically need information such as the Landé g-factor, which represents the sensitivity of the energy levels to the magnetic field. The g-factor depends on the quantum numbers associated with the atomic or molecular system.

Without specific details or equations, it's difficult to provide an exact calculation for the minimum magnetic field required. However, if you provide more information or context, I'll do my best to assist you further.

Learn more about Zeeman effect on:

https://brainly.com/question/13046435

#SPJ4

Calculate the resultant vector C from the following cross product: Č = A x B where X = 3î + 2ỹ – lî and B = -1.5ê + +1.5ź =

Answers

Calculate the resultant vector C from the following cross product: Č = A x B where X = 3î + 2ỹ – lî and B = -1.5ê + +1.5ź

To calculate the resultant vector C from the cross product of A and B, we can use the formula:

C = A x B

Where A and B are given vectors. Now, let's plug in the values:

A = 3î + 2ỹ – lî

B = -1.5ê + 1.5ź

To find the cross product C, we can use the determinant method:

|i j k |

|3 2 -1|

|-1.5 0 1.5|

C = (2 x 1.5)î + (3 x 1.5)ỹ + (4.5 + 1.5)k - (-1.5 - 3)j + (-4.5 + 0)l + (-1.5 x 2)ê

C = 3î + 4.5ỹ + 6k + 4.5j + 4.5l - 3ê

Therefore, the resultant vector C is:

C = 3î + 4.5ỹ + 4.5j + 4.5l - 3ê + 6k

So, the answer is C = 3î + 4.5ỹ + 4.5j + 4.5l - 3ê + 6k.

Learn more about cross product: https://brainly.com/question/14542172

#SPJ11

hamiltonian for quantum many body scarring
write a hamiltonian for qauntum many body
scarring.

Answers

The Hamiltonian for quantum many-body scarring is a mathematical representation of the system's energy operator that exhibits the phenomenon of scarring.

Scarring refers to the presence of non-random, localized patterns in the eigenstates of a quantum system, which violate the expected behavior from random matrix theory. The specific form of the Hamiltonian depends on the system under consideration, but it typically includes interactions between particles or spins, potential terms, and coupling constants. The Hamiltonian captures the dynamics and energy levels of the system, allowing for the study of scarring phenomena and their implications in quantum many-body systems.

To know more about energy, visit:

https://brainly.com/question/1932868

#SPJ11

Gas A is monatomic, and Gas B is diatomic. Equal moles of the two gasses are initially at the same temperature,pressure, and volume. Both gasses are then heated at constant volume to the same higher temperature. Which one of the following will not be true when both gases reach the final higher temperature?

Answers

When both gases reach the final higher temperature after being heated at constant volume, the following statement will not be true, the two gases will have the same pressure. When heated at constant volume, the gases experience an increase in temperature.

In the scenario described, both gases start with equal moles, the same initial temperature, pressure, and volume. When heated at constant volume, the gases experience an increase in temperature. However, the nature of the gases (monatomic vs. diatomic) affects how they respond to the increase in temperature.

For an ideal gas, the pressure is directly proportional to the temperature, given that the volume and number of moles are constant (as in this case). However, the factor that affects this relationship is the degree of freedom of the gas molecules.

In the case of a monatomic gas (Gas A), it has three degrees of freedom, meaning it can store energy in three independent translational motion modes. As the gas is heated, the increase in temperature directly translates to an increase in the kinetic energy of the gas molecules, resulting in an increase in their average speed. This increase in speed leads to more frequent and forceful collisions with the container walls, thus increasing the pressure of the gas.

On the other hand, a diatomic gas (Gas B) has five degrees of freedom: three for translational motion and two additional degrees of freedom for rotational motion. As the diatomic gas is heated, the increase in temperature not only increases the translational kinetic energy but also the rotational kinetic energy. This increase in rotational energy distributes some of the increased kinetic energy among the rotational modes, resulting in a smaller increase in the average translational speed compared to the monatomic gas. Consequently, the pressure increase of the diatomic gas will be less compared to the monatomic gas at the same final temperature.

Therefore, when both gases reach the final higher temperature, the statement "The two gases will have the same pressure" will not be true. The diatomic gas (Gas B) will have a lower pressure compared to the monatomic gas (Gas A) at the same temperature.

Learn more about temperature here:
https://brainly.com/question/30775264

#SPJ11

What is the strength of the electric field between two parallel
conducting plates separated by 1.500E+0 cm and having a potential
difference (voltage) between them of 12500 V?

Answers

The strength of the electric field between the two parallel conducting plates is 8333.33 V/m.

The strength of the electric field between two parallel conducting plates can be calculated using the formula:

E = V / d

Given:

Voltage (V) = 12500 V

Separation distance (d) = 1.500E+0 cm = 1.500 m (converted to meters)

Now we can calculate the electric field strength (E) using the given values:

E = 12500 V / 1.500 m

After calculating the values, the electric field strength between the plates is approximately 8,333.33 V/m.

Read more on Electric field here: https://brainly.com/question/19878202

#SPJ11

If Joe Scientist has created his own temperature scale where water freezes at 57 and boils at 296, create a transformation equation that will allow you to convert celcius into his temperatures

Answers

The transformation equation to convert Celsius temperatures (C) to Joe Scientist's temperature scale (J) is:

J = 2.39C + 57

How do we calculate?

In Joe Scientist's temperature scale,

water freezes = 57

water   boils =  296.

In Celsius scale, water freezes at 0 and boils at 100.

To convert Celsius temperatures (C) to Joe Scientist's scale temperatures (J), we can use a linear transformation equation.

The general equation for linear transformation is:

J = aC + b

Celsius: 0 (water freezing point) -> Joe Scientist: 57

Celsius: 100 (water boiling point) -> Joe Scientist: 296

we can set up a system of linear equations to solve for 'a' and 'b' provided we have  the data points

Equation 1: 0a + b = 57

Equation 2: 100a + b = 296

We solve this and find that

'a' =2.39

'b'=  57.

Learn more about linear equations at:

https://brainly.com/question/2030026

#SPJ4

A balloon holding 4.20 moles of helium gas absorbs 905 J of thermal energy while doing 106 J of work expanding to a larger volume. (a) Find the change in the balloon's internal energy. (b) Calculate the change in temperature of the gas.

Answers

a) Change in the balloon’s internal energy:In this scenario, 905 J of thermal energy are absorbed, but 106 J of work are done. When there is an increase in the volume, the internal energy of the gas also rises. Therefore, we may calculate the change in internal energy using the following formula:ΔU = Q – WΔU = 905 J – 106 JΔU = 799 JTherefore, the change in internal energy of the balloon is 799 J.

b) Change in the temperature of the gas:When gas is heated, it expands, resulting in a temperature change. As a result, we may calculate the change in temperature using the following formula:ΔU = nCvΔT = Q – WΔT = ΔU / nCvΔT = 799 J / (4.20 mol × 3/2 R × 1 atm)ΔT = 32.5 K

Therefore, the change in temperature of the gas is 32.5 K.In summary, when the balloon absorbs 905 J of thermal energy while doing 106 J of work and expands to a larger volume, the change in the balloon's internal energy is 799 J and the change in temperature of the gas is 32.5 K.

to know more about balloon’s internal energy pls visit-

https://brainly.com/question/31778646

#SPJ11

Other Questions
Which of the following statements is true? A. Infrared light, visible light, UV light, and x-rays are forms of electromagneticwaves.B. Radio waves are sound waves. Radio waves, microwaves, infrared light, visible light, and UV light are electromagnetic waves; infrared and x-rays are forms of heat (notelectromagnetic) waves. C. Radio waves, microwaves, infrared light, visible light, UV light, and x-rays andgamma rays are all forms of electromagnetic waves.D All electromagnetic waves are visible light. The 2024 income statement for Circuit TV and Appliance reported net sales of $420,000 and net income of $65,000. Average total assets for 2024 was $800,000. Shareholders' equity at the beginning of the year was $500,000, and $20,000 was paid to shareholders as dividends. There were no other shareholders' equity transactions that occurred during the year. Calculate the profit margin on sales, return on assets, and return on equity for 2024. Both Horney and Erickson consider the influence of culture onpersonality development. In what ways does each theoristacknowledge this influence according to Allen (2016)? A steam pipe (k=350 W/mK) has an internal diameter of 10 cm and an external diameter of 12 cm. Saturated steam flows inside the pipe at 110C. The pipe is located in a space at 25C and the heat transfer coefficient on its outer surface is estimated to be 15 W/mK. The insulation available to reduce heat losses is 5 cm thick and its conductivity is 0.2 W/mK. Using a heat transfer coefficient (h=10,000 W/ mK) for condensing saturated steam condensing.calculate the heat loss per unit length for the insulated pipe under these conditions. In your opinion what were the major causes behind the partitionof Bengal in 1905? At least 400 words. Select One continental continental plate collision oxygen Select One Select One P waves Measuring scale of an earthquake Earthwave waves that cannot pass through liquids. shadow Device used to measure earthquakes. zones Innermost region of earth Movement upward due to compressional forces. Rock made from volcanic or molten materials. continental- combined joined mass of land over 200 million years ago. plate oceanic. The second most abundant element in earth's crust plate collision The most abundant element in the earth's crust. alternate Volcanic islands are due to these one of two parts that the earth's landmass broke into 200 million years ago magnetization Movement downward due to stretching forces. Thrust Evidence of ocean floors expanding The hard shell of rock 50-100kn thick comprising the crust and upper part of the mantle. Regions where earthquake waves don't reach. ocean-ocean Mountain ranges like the Himalayas are due to these types of collisions. Volcanic mountains like the Andes are due to these collisions. 4F nato collision Section 11 (10:30:38 AM) 1) Match Column A with Column B (20pts) core Select One Pangaea Select One lithosphere Select One Select One continental- continental plate collision oxygen Select One P waves Select One shadow Tones Select One 54'F Rain o NE UN 5 W E R palk A S D F A monatomic ideal gas, kept at the constant pressure 1.804E+5 Pa during a temperature change of 26.5 C. If the volume of the gas changes by 0.00476 m3 during this process, how many mol of gas where present? What is the correct order that neural signals travel from the eye to the brain? Select one: a. receptor, optic nerve, ganglion cell b. receptor, ganglion cell, optic nervec. ganglion cell, receptor, optic nerve d. optic nerve, ganglion cell, receptor If you walk from a bright room to a dark room, which of the following would occur after five minutes in the dark? Select one:a. Your absolute thresholds for object detection would be increasing. b. Your dark adaptation would be essentially complete. c. Your peripheral vision would be enhanced. d. Your cones would have adapted to a greater degree than did your rods In the table on the next page,check off the clues that relate to the organisms that were found in the area. Using the clues,see if you can determine the order in which the organisms visited the campsite. Your answers are saved automatically. Remaining Time: 24 minutes, 55 seconds. Question completion Status: Moving to another question will save this response. Question 1 of 5 Question 1 0.5 points Save Why does the skin of your mother's fingers shrink when she washes clothes for a longtime?a. What is responsible for these changes? Explain the process in brief. A closely wound, circular coil with a diameter of 4.10 cmcm has 700 turns and carries a current of 0.460 AA .What is the magnitude of the magnetic field at a point on the axis of the coil a distance of 6.30 cmcm from its center?Express your answer in teslas. In neighbourhood A, there is only one SPA center called JBI SPA. JBI provides a SPA service to their customers where most of whom are living in this neighbourhood and have been contacting with JBI SPA for many years. JBI's demand curve is: P = 30 - Q, and JBI's marginal cost of service is: MC = 4Q. JBI charges a single price for a unit of service.At profit maximization level, calculate the following:a) Price Level:_____b) Output level:_____c) Consumer surplus: _____d) If JBI enforces first-degree price discrimination, the lowest priced charged is: ____ and the output level is: _____e) Ignoring any fixed costs and under perfect price discrimination, JBI's total profit is:_____ You read that the concordance rate of ADHD is 90% for monozygotic twins who are reared together. How do you interpret this finding?A. ADHD is mostly determined by genetic factors.B. ADHD is mostly determined by environment.C. ADHD is determined only due to genetic factors.D. You need more information before interpreting this finding, since you cant tease apart the role of shared environment and genes from this number alone. An ice cream business is paying an effective tax rate of 25%. The company is considering the purchase of a new turbo churn for $25,000. This churn is a special handling device for food manufacture and has an estimated life of 4 year and a salvage value of $5,000. The new churn is expected to increase net income by $8,000 per year for each of the 4 years of use. If the ice cream company works with an after tax MARR of 10% and uses 3-year MACR depreciation, should the company buy the churn? Consider after-tax net present worth analysis. Suppose $30,000 is deposited into an account paying 4.5% interest, compounded continuously. How much money is in the account after 8 years if no withdrawals or additional deposits are made? Apply the five forces model to your industry. What does this model tell you about the nature of competition in the industry?Identify the core competencies that are at the heart of the firms competitive advantage. (Remember, a firm will have only one, or at most a few, core competencies, by definition.)Does the firm seem most focused on accounting profitability, shareholder value creation, or economic value creation? Give quotes or information from these sources to support your view.The company that I picked is Amazon please use your own words. Do not copy/paste from the internet or Chegg. Looking for new answers. I'm post this questions for second time please try to answer it correctly. thanks.Companies used to organize and manage around the 4 Ps: product, place, promotion, and price. Today, some suggest that companies should organize and manage around the 4 Cs: customer value, lower costs, better convenience, and better communications. Discuss the potential effects and the benefits of such a shift in focus.What can a company do to ensure that its employees are aware of what CRM is and how it plans to implement this methodology? Three business partners Shelly-Ann, Elaine and Shericka share R150 000 profit from an invest- ment as follows: Shelly-Ann gets R57000 and Shericka gets twice as much as Elaine. How much money does Elaine receive? A. R124 000 B. R101 000 C. R62000 D. R31000 The first figure takes 5 matchstick squares to build, the second takes 11 to build, and the third takes 17 to build, as can be seen by clicking on the icon below. (a) How many matchstick squares will it take to build the 10th figure? (b) How many matchstick squares will it take to build the nth figure? (c) How many matchsticks will it take to build the nth figure?