Answer:
D. the coefficient of determination is .81.
Step-by-step explanation:
SST = SSE + SSR
where
SST is the summation of square total
SSE is the summation of squared error estimate = 608
SSR is the summation of square of residual = 2593
with these in mind we put the values into the formula
= 2592 + 608
=3200
Coefficient of determination = SSR/SST
= 2592/3200
= 0.81
Therefore option D is the correct answer to the question.
hat is the measure of the unknown angle?
Image of a straight angle divided into two angles. One angle is ninety seven degrees and the other is unknown
pls
Let on of the angle be x
ATQ
97 + x = 180
x = 180 - 97 (Angles on same line adds upto 180°) (Linear pair cuz 2 angles)
x = 83
The unknown angle is 83°
Must click thanks and mark brainliest
A triangle has two sides of lengths 8 and 10. What value could the length of
the third side be? Check all that apply.
Answer:
8, 10, 4, 7
Step-by-step explanation:
Missing side = x
Rules for x:
It should be less than the sum of the other two sides
It should be greater than the difference of the other two sides
8 + 10 = 18
10 - 8 = 2
2<x<18
8, 10, 4, 7
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
6. How many rational number are there Between ⅕and⁹/⁵
9514 1404 393
Answer:
an infinite number
Step-by-step explanation:
Between any pair of numbers, there are ...
an infinite number of rational numbers, and
an infinite number of irrational numbers
Amira has 3/4 of a bag of cat food her cat eats 1/10 of a bag per week how many weeks will the food last
Which graph represents a linear function that has a slope of 0.5 and a y-intercept of 2?
On a coordinate plane, a line goes through points (negative 2, 0) and (0, 1).
On a coordinate plane, a line goes through points (0, 2) and (4, 0).
On a coordinate plane, a line goes through points (0, 2) and (2, 3).
On a coordinate plane, a line goes through points (negative 4, 0) and (0, 2).
Answer:
f(x)=1/2x+2
Step-by-step explanation:
Using formula y=mx+b.
m is 0.5 or 1/2 as stated above
f(x)= 1/2x+b
If it were y=1/2x, it would intersect at 0,0 and we want 0,2
so b should be 2
therefore
Y=1/2x+2
or
f(x)=1/2x+2
Answer:
D
Step-by-step explanation:
Solve for y.
Z = yn
Answer:
y = z /n
Step-by-step explanation:
Answer:
y=z/n
Step-by-step explanation:
To isolate the y, divide both sides by n
How to graph the line y=4/3x
Answer:
make a table of values
Step-by-step explanation:
then plot using those values
The required graph has been attached which represents the line y = 4/3x
What is a graph?A graph can be defined as a pictorial representation or a diagram that represents data or values.
We have been given the equation of a line below as:
y = 4/3x
Rewrite in slope-intercept form.
y = (4/3)x
Use the slope-intercept form to discover the slope and y-intercept.
Here the slope is 4/3 and y-intercept = (0, 0)
Any line can be graphed using two points. Select two x values, and plug them into the equation to find the corresponding y values.
When substitute the value of x = 0, then the value of y = 0, and When substitute the value of x = 3, then the value of y = -4,
Hence, the graph represents the line y = 4/3x
Therefore, the required graph of the line y=4/3x will be shown in the as attached file.
Learn more about the graphs here:
brainly.com/question/16608196
#SPJ2
Find the area of the shape shown below.
2
2
4
Hurry and answer plz!!!!
1
Answer:
7 square units
Step-by-step explanation:
We can break down this complex shape into smaller shapes.
I've broken it down into a rectangle, a square, and a triangle (See attached picture)
Let's first find the area of the triangle. To do this we use the formula [tex]\frac{bh}{2}[/tex]. The base is 1 (because the top is 2, and 1 is already used on the triangle - 2-1 = 1.) and the height is 2 (because 4 is already used on the left, and 2 was used on the right so 4-2=2).
[tex]\frac{2\cdot1}{2} = \frac{2}{2} = 1[/tex].
Now let's find the area of the top square - we can just square 2 which is 4.
To find the area of the bottom rectangle, we can multiply it's two side lengths of 2 and 1 = 2.
Adding these all together gets us 4+2+1 = 7.
Hope this helped!
Read image for instructions
The last part answers the first part for you, just look at the y-values.
In other words:
A' (-8, 2)
B' (-4, 3)
C' (-2, 8)
D' (-10, 6)
Explanation:
When you reflect any point over the x-axis, the y-value of the ordered pair is going to change.
This makes sense especially considering that the x-axis is horizontal, so the only way you could cross is to move up or down. If you were to move left or right, you'd only be able to cross the y-axis, since it's vertical.
Now for the last part, as I mentioned above, if you are reflecting across the y-axis, the x-values of the ordered pair is going to change.
A'' (8, 2)
B'' (4, 3)
C'' (2, 8)
D'' (10, 6)
Take note that the only thing that changes for the respective value is its sign, while the number itself stays the same.
Find the sum (x^3+5x^2+3x-7)+(8x-6^2+6)
Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5)
Answer:
x^3 - x^2 + 11x - 1
-x^3 - 8x^2 + 5x + 7
Step-by-step explanation:
Find the sum
(x^3+5x^2+3x-7)+(8x-6x^2+6)
=x^3+5x^2+3x-7+8x-6x^+6
Collect like terms
=x^3 +5x^2-6x^2+3x+8x-7+6
Add the like terms
= x^3 - x^2 + 11x - 1
Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5)
(7x-3x^2+2)-(x^3+5x^2+2x-5)
= 7x-3x^2+2-x^3-5x^2-2x+5
Collect like terms
= -x^3-3x^2-5x^2+7x-2x+2+5
Add the like terms
= -x^3 - 8x^2 + 5x + 7
Write the polar form of a complex number in standard form for [tex]25[cos(\frac{5\pi }{6}) + isin(\frac{5\pi }{6})][/tex]
Answer:
Standard Complex Form : [tex]-\frac{25\sqrt{3}}{2}+\frac{25}{2}i[/tex]
Step-by-step explanation:
We want to rewrite this expression in standard complex form. Let's first evaluate cos(5π / 6). Remember that cos(x) = sin(π / 2 - x). Therefore,
cos(5π / 6) = sin(π / 2 - 5π / 6),
π / 2 - 5π / 6 = - π / 3,
sin(- π / 3) = - sin(π / 3)
And we also know that sin(π / 3) = √3 / 2. So - sin(π / 3) = - √3 / 2 = cos(5π / 6).
Now let's evaluate the sin(5π / 6). Similar to cos(x) = sin(π / 2 - x), sin(x) = cos(π / 2 - x). So, sin(5π / 6) = cos(- π / 3). Now let's further simplify from here,
cos(- π / 3) = cos(π / 3)
We know that cos(π / 3) = 1 / 2. So, sin(5π / 6) = 1 / 2
Through substitution we receive the expression 25( - √3 / 2 + i(1 / 2) ). Further simplification results in the following expression. As you can see your solution is option a.
[tex]-\frac{25\sqrt{3}}{2}+\frac{25}{2}i[/tex]
If r=9 and 4r+3s=75, what is the value of s?
Answer:
s = 13Step-by-step explanation:
4r+3s=75 , r = 9
Since we know the value of r, we can substitute the value of r into the above equation to find s
That's
4( 9) + 3s = 75
36 + 3s = 75
Group like terms
3s = 75 - 36
3s = 39
Divide both sides by 3
That's
[tex] \frac{3s}{3} = \frac{39}{3} [/tex]
We have the final answer as
s = 13Hope this helps you
What's the y-intercept of the function y=-2(2)* + 2?
Answer:
-2 is the y-intercept of this function.
Step-by-step explanation:
. Simplify the sum. (2u3 + 6u2 + 2) + (7u3 – 7u + 4)
Answer:
9u^3 + 6u^2 - 7u + 6
Step-by-step explanation:
Find the value of NT
A. 4
B. 14
C. 12
D. 16
Answer:
14
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
12*x = 8 * (x+2)
Distribute
12x = 8x+16
Subtract 8x
12x-8x = 8x+16-8x
4x = 16
Divide by 4
4x/4 = 16/4
x = 4
We want NT
NT = 8+x+2
= 10 +x
= 10 +4
= 14
The mean weight of newborn infants at a community hospital is 6.6 pounds. A sample of seven infants is randomly selected and their weights at birth are recorded as 9.0, 7.3, 6.0, 8.8, 6.8, 8.4, and 6.6 pounds. Does the sample data show a significant increase in the average birthrate at a 5% level of significance?
A. Fail to reject the null hypothesis and conclude the mean is 6.6 lb.
B. Reject the null hypothesis and conclude the mean is lower than 6.6 lb.
C. Reject the null hypothesis and conclude the mean is greater than 6.6 lb.
D. Cannot calculate because the population standard deviation is unknown
Answer:
The correct option is A
Step-by-step explanation:
From the question we are told that
The population is [tex]\mu = 6.6[/tex]
The level of significance is [tex]\alpha = 5\% = 0.05[/tex]
The sample data is 9.0, 7.3, 6.0, 8.8, 6.8, 8.4, and 6.6 pounds
The Null hypothesis is [tex]H_o : \mu = 6.6[/tex]
The Alternative hypothesis is [tex]H_a : \mu > 6.6[/tex]
The critical value of the level of significance obtained from the normal distribution table is
[tex]Z_{\alpha } = Z_{0.05 } = 1.645[/tex]
Generally the sample mean is mathematically evaluated as
[tex]\=x = \frac{\sum x_i }{n}[/tex]
substituting values
[tex]\=x = \frac{9.0 + 7.3 + 6.0+ 8.8+ 6.8+ 8.4+6.6 }{7}[/tex]
[tex]\=x = 7.5571[/tex]
The standard deviation is mathematically evaluated as
[tex]\sigma = \sqrt{\frac{\sum [ x - \= x ]}{n} }[/tex]
substituting values
[tex]\sigma = \sqrt{\frac{ [ 9.0-7.5571]^2 + [7.3 -7.5571]^2 + [6.0-7.5571]^2 + [8.8- 7.5571]^2 + [6.8- 7.5571]^2 + [8.4 - 7.5571]^2+ [6.6- 7.5571]^2 }{7} }[/tex][tex]\sigma = 1.1774[/tex]
Generally the test statistic is mathematically evaluated as
[tex]t = \frac{\= x - \mu } { \frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{7.5571 - 6.6 } { \frac{1.1774 }{\sqrt{7} } }[/tex]
[tex]t = 1.4274[/tex]
Looking at the value of t and [tex]Z_{\alpha }[/tex] we see that [tex]t < Z_{\alpha }[/tex] hence we fail to reject the null hypothesis
What this implies is that there is no sufficient evidence to state that the sample data show as significant increase in the average birth rate
The conclusion is that the mean is [tex]\mu = 6.6 \ lb[/tex]
Question
Find the sample variance of the following set of data:
12, 7, 6, 4, 11.
Select the correct answer below:
Answer:
Variance is 256
Step-by-step explanation:
Variance:
[tex]var = \frac{ ({ \sum x})^{2} }{n} - {( \frac{ \sum x}{n} })^{2} [/tex]
x is the number or item in the data
n is the number of terms
[tex]{ \tt{ \sum x = (12 + 7 + 6 + 4 + 11)}} \\ { \tt{ \sum x = 40}}[/tex]
Therefore:
[tex]variance = \frac{ {40}^{2} }{5} - { (\frac{40}{5}) }^{2} \\ \\ = 320 - 64 \\ variance = 256[/tex]
(a) Five friends are in a netball squad. In each game during the 21-round season, at least 3 of them are picked in the team. Prove that there will be at least 3 matches in which the same three friends are selected to play.
(b) How does the answer change if there are six friends instead of 5?
PLS ANSWER FAST!!!!
Answer:
(a) there are 10 sets of 3 friends, so in 21 games, at least one set must show 3 times
(b) there are 20 sets of 3 friends, so in 21 games, at least one set must show 2 times.
Step-by-step explanation:
(a) The number of combinations of 5 things taken 3 at a time is ...
5C3 = 5!/(3!·2!) = 5·4/2 = 10
There can be 10 games in which the same 3 friends do not show up. There can be 10 more games such that the same 3 friends show up exactly twice. In the 21st game, some set of 3 friends must show up 3 times.
__
(b) The number of combinations of 6 things taken 3 at a time is ...
6C3 = 6!/(3!·3!) = 6·5·4/(3·2) = 20
Hence, there can be 20 games in which the same 3 friends do not show up. In the 21st game, some set of 3 friends will show up a second time.
Georgianna claims that in a small city renowned for its music school, the average child takes at least 5 years of piano lessons. We have a random sample of 20 children from the city, with a mean of 4.6 years of piano lessons and a standard deviation of 2.2 years. Required:Explicitly state and check all conditions necessary for inference on these data.
Answer:
The condition are
The Null hypothesis is [tex]H_o : \mu = 5[/tex]
The Alternative hypothesis is [tex]H_a : \mu < 5[/tex]
The check revealed that
There is sufficient evidence to support the claim that in a small city renowned for its music school, the average child takes at least 5 years of piano lessons
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 5 \ year[/tex]
The sample size is n = 20
The sample mean is [tex]\= x = 4.6 \ years[/tex]
The standard deviation is [tex]\sigma = 2.2 \ years[/tex]
The Null hypothesis is [tex]H_o : \mu = 5[/tex]
The Alternative hypothesis is [tex]H_a : \mu < 5[/tex]
So i will be making use of [tex]\alpha = 0.05[/tex] level of significance to test this claim
The critical value of [tex]\alpha[/tex] from the normal distribution table is [tex]Z_\alpha = 1.645[/tex]
Generally the test statistics is mathematically evaluated as
[tex]t = \frac{\= x - \mu}{ \frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 4.6 - 5}{ \frac{2.2}{\sqrt{20} } }[/tex]
[tex]t = -0.8131[/tex]
Looking at the value of t and [tex]Z_{\alpha }[/tex] we see that [tex]t < Z_{\alpha }[/tex] so we fail to reject the null hypothesis
This implies that there is sufficient evidence to support the claim that in a small city renowned for its music school, the average child takes at least 5 years of piano lessons.
What is the sum of the arithmetic sequence 3, 9, 15
if there are 34 terms?
===================================================
Work Shown:
a = first term = 3
d = common difference = 6
S(n) = sum of the first n terms of an arithmetic sequence
S(n) = (n/2)*(2a + d(n-1))
S(34) = (34/2)*(2*3 + 6(34-1))
S(34) = 3468
--------
Check:
3+9+15+21+27+33+39+45+51+57+63+69+75+81+87+93+99+105+111+117+123+129+135+141+147+153+159+165+171+177+183+189+195+201 = 3468
I used GeoGebra to generate the 34 terms shown above. You could do so by hand (start at 3; add 6 to each term to get the next one), but it's a tedious busywork type of problem in my opinion. It's best left to computer software.
3
2
Vx
1
1
2 3 4 5 6 7 8 9 10 11 12 X
Magnets
Using equivalent ratios, which statements are true about the cost per magnet? Check all that apply.
The cost of 2 magnets is $1.
The cost of 9 magnets is $3.
The cost of 10 magnets is $3.
The cost of 4 magnets is $2.
The cost of 6 magnets is $2.
The cost of 3 magnets is $1.
Next
Submit
Save and Exit
Mark this and retum
Answer:
The cost of 3 magnets is $1
The cost of 9 magnets is $3
The cost of 6 magnets is $2
Step-by-step explanation:
The cost of magnets is calculated using the equivalent ratio. If 3 magnets cost $ then the multiple used for the calculations of more magnets is 3. The ratio for every magnet price is 1 : 3 which means every dollar will be equal to 3 magnets. The cost of 3 magnets is $1, the cost of 6 magnets is $2 and cost of 9 magnets is $3.
Draw a Venn diagram and use the given information to fill in the number of elements in each region.
Answer: Check out the diagram below for the filled in boxes
14 goes in the first box (inside A, but outside B)
7 goes in the overlapping circle regions
5 goes in the third box (inside B, outside A)
3 goes in the box outside of the circles
==============================================================
Explanation:
[tex]n(A \cup B) = 26[/tex] means there are 26 items that are in A, B or both.
n(A) = 21 means there are 21 items in A
n(B) = 12 means there are 12 items in B
We don't know the value of [tex]n(A \cap B)[/tex] which is the number of items in both A and B at the same time. This is the intersecting or overlapping regions of the two circles. Let [tex]x = n(A \cap B)[/tex]
It turns out that adding n(A) to n(B), then subtracting off the stuff they have in common, leads to n(A u B) as shown below.
--------
[tex]n(A \cup B) = n(A) + n(B) - n(A \cap B)\\\\26 = 21+12 - x\\\\26 = 33 - x\\\\x+26 = 33\\\\x = 33-26\\\\x = 7\\\\n(A \cap B) = 7\\\\[/tex]
So there are 7 items in both regions.
This means there are [tex]n(A) - n(A \cap B) = 21 - 7 = 14[/tex] items that are in set A only. In other words, 14 items are in circle A, but not in circle B.
Notice how the values 14 and 7 add back up to 14+7 = 21, which represents everything in set A.
Similarly, there are [tex]n(B) - n(A \cap B) = 12 - 7 = 5[/tex] items that are in circle B, but not in circle A. The values 5 and 7 in circle B add to 5+7 = 12, matching with n(B) = 12.
The notation n(A') means the number of items that are not in set A. We're given n(A') = 8. We already know that 5 is outside circle A. So if 5+y = 8, then y = 3 must be the missing value for the box that is outside both circles.
Again the diagram is posted below with the filled in values.
A Venn diagram is an overlapping circle to describe the logical relationships between two or more sets of items.
The filled Venn diagram is given below.
What is a Venn diagram?A Venn diagram is an overlapping circle to describe the logical relationships between two or more sets of items.
We have,
n(A) = 21
This is the total of all the items included in Circle A.
n(B) = 12
This is the total of all the items included in Circle A.
n(A') = 8
The items that are not in circle A.
n(A U B ) = 26
The items that are in both circle A and circle B.
Now,
n (A U B) = n(A) + n(B) - n(A ∩ B)
26 = 21 + 12 - n(A ∩ B)
n(A ∩ B) = 33 - 26
n(A ∩ B) = 7
Thus,
The filled Venn diagram is given below.
Learn more about the Venn diagram here:
https://brainly.com/question/1605100
#SPJ2
Brief and easy(if possible) explanation on how to do these?
Answer:
linear pairs are supplement which means it always equals to 180°
Use the substitution method to solve the system of equations. Choose the correct ordered pair. x + y = 3 y = 9 A. (–12, 9) B. (–6, 9) C. (6, 9) D. (12, 9)
B(-6,9)is the answer
have a great dayyyy.
cooks are needed to prepare for a large party. Each cook can bake either 5 Large cakes or 14 small cakes per hour . The kitchen is available for 3 hours and 29 large cakes and 260 cakes need to be baked . How many cooks are required to bake the required number of cakes during the time the kitchen is available?
it was all about equating some values
to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.
Let's determine the number of cooks required to bake the required number of cakes during the available time.
We have the following information:
- Each cook can bake either 5 large cakes or 14 small cakes per hour.
- The kitchen is available for 3 hours.
- We need to bake 29 large cakes and 260 cakes in total.
First, let's calculate the number of large cakes that can be baked by one cook in 3 hours:
1 cook can bake 5 large cakes/hour × 3 hours = 15 large cakes.
Next, let's calculate the number of small cakes that can be baked by one cook in 3 hours:
1 cook can bake 14 small cakes/hour × 3 hours = 42 small cakes.
Now, let's calculate the number of large cakes that can be baked by all the cooks in 3 hours:
Total number of large cakes = Number of cooks × Large cakes per cook per 3 hours
We need to bake 29 large cakes, so:
29 = Number of cooks × 15
Number of cooks = 29 / 15 ≈ 1.93
Since we can't have a fraction of a cook, we need to round up to the nearest whole number. Therefore, we need at least 2 cooks to bake the required number of large cakes.
Similarly, let's calculate the number of small cakes that can be baked by all the cooks in 3 hours:
Total number of small cakes = Number of cooks × Small cakes per cook per 3 hours
We need to bake 260 small cakes, so:
260 = Number of cooks × 42
Number of cooks = 260 / 42 ≈ 6.19
Again, rounding up to the nearest whole number, we need at least 7 cooks to bake the required number of small cakes.
Since we need to satisfy both requirements for large and small cakes, we choose the larger number of cooks required, which is 7 cooks.
Therefore, to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.
Learn more about work here
https://brainly.com/question/13245573
#SPJ2
If 7time the 7th of Ap. Is equal of 11 tomes its 11th term find 18th term
0 0
,
---------------
If Company X has 1600 employees and 80% of those employees have attended the warehouse training course how many employees have yet to attend?
Answer:
320
Step-by-step explanation:
Total no of employees = 1600
% of employees attended the training = 80%
no. of employee who attended the training = 80/100* 1600 = 1280
No. of employees who are yet to attend the training = Total no of employees - no. of employee who attended the training = 1600-1280 = 320
Thus, 320 employees have yet to attend the training
Divide 3 2/3 ÷ 2 1/3. Simplify the answer and write it as a mixed number.
Answer:
The answer is [tex]1 \frac{4}{7}[/tex]
Step-by-step explanation:
First, you convert [tex]3 \frac{2}{3}[/tex] to an improper fraction. That is [tex]\frac{11}{3}[/tex]. Do the same for the other number.
Next, use KFC, or Keep, Flip, Change.
Keep the first number
Flip the second
Change the operation. Division becomes Multiplication. You should've gotten [tex]\frac{11}{3}[/tex]x[tex]\frac{3}{7}[/tex].
You can simplify now. You would've gotten 11 * [tex]\frac{1}{7}[/tex]. Multiply and you would get [tex]\frac{11}{7}[/tex]. Simplify into a mixed number. The answer is [tex]1 \frac{4}{7}[/tex].
How do write 841, 620 in three different ways?
Answer:
1) 841,620
2) 800,000+40,000+1,000+600+20
3) Eight hundred forty-one thousand, six hundred twenty
Hope this helps!
Uche is a cartographer. He picks a scale to fit a map of India onto a page of an atlas. The page is 121212 by 121212 inches, with 0.750.750, point, 75 inch margins on all 444 sides. India measures 3{,}2143,2143, comma, 214 kilometers from north to south and 2{,}9332,9332, comma, 933 kilometers from west to east. Uche wants the longest dimension of India to fit exactly in between the margins of the page. If kkk is the number of kilometers per inch in Uche's scale, which equation best models the situation
The scale ratio of a point A to another point B is the division of the length of B by the length of A. The best equation that models the situation is: [tex]10.5k= 3214[/tex]
The page dimension is:
[tex]Length = 12[/tex]
[tex]Width = 12[/tex]
The length and the width of Uche's book are equal; this means the pages of Uche's book have the shape of a square
The margin of 0.75 on either sided means the usable dimension is:
[tex]Length = 12 - 2 * 0.75 =10.5[/tex]
The dimension of India is:
[tex]Length = 3214[/tex]
[tex]Width =2933[/tex]
The longest side in India's dimension is:
[tex]Longest = 3214[/tex]
From Uche's book, the longest dimension is:
[tex]Longest = 10.5[/tex]
So, the scale equation is:
k * longest length of Uche's book = longest side of India
This gives:
[tex]k * 10.5 =3214[/tex]
[tex]10.5k =3214[/tex]
Read more about scale ratio at:
https://brainly.com/question/16192120