Answer:
44
Step-by-step explanation:
We can solve the equation by simplifying it.
[tex]$\sqrt{5+n}=7$[/tex], let's square both sides.
[tex]5+n = 49[/tex]. Now lets subtract 5 from both sides.
[tex]n = 44[/tex].
Hope this helped!
Answer:
44
Step-by-step explanation:
[tex]\sqrt{5+n}=7\\\\5+n=7^2=49\\\\n=49-5\\\\\boxed{n=44}[/tex]
Would this be correct even though I didn’t use the chain rule to solve?
Answer:
Dy/Dx=1/√ (2x+3)
Yeah it's correct
Step-by-step explanation:
Applying differential by chain differentiation method.
The differential of y = √(2x+3) with respect to x
y = √(2x+3)
Let y = √u
Y = u^½
U = 2x +3
The formula for chain differentiation is
Dy/Dx = Dy/Du *Du/Dx
So
Dy/Dx = Dy/Du *Du/Dx
Dy/Du= 1/2u^-½
Du/Dx = 2
Dy/Dx =( 1/2u^-½)2
Dy/Dx= u^-½
Dy/Dx=1/√ u
But u = 2x+3
Dy/Dx=1/√ (2x+3)
find the value of k if x minus 2 is a factor of P of X that is X square + X + k
Answer:
k = -6
Step-by-step explanation:
hello
saying that (x-2) is a factor of [tex]x^2+x+k[/tex]
means that 2 is a zero of
[tex]x^2+x+k=0 \ so\\2^2+2+k=0\\<=> 4+2+k=0\\<=> 6+k =0\\<=> k = -6[/tex]
and we can verify as
[tex](x^2+x-6)=(x-2)(x+3)[/tex]
so it is all good
hope this helps
For the triangle show, what are the values of x and y (urgent help needed)
we just have to use the Pythagoras theorem and then calculate the value of x and y.
Find the indicated conditional probability
using the following two-way table:
P( Drive to school | Sophomore ) = [?]
Round to the nearest hundredth.
Answer:
0.07
Step-by-step explanation:
The number of sophmores is 2+25+3 = 30.
Of these sophmores, 2 drive to school.
So the probability that a student drives to school, given that they are a sophmore, is 2/30, or approximately 0.07.
Answer:
[tex]\large \boxed{0.07}[/tex]
Step-by-step explanation:
The usual question is, "What is the probability of A, given B?"
They are asking, "What is the probability that you are driving to school if you are a sophomore (rather than taking the bus or walking)?"
We must first complete your frequency table by calculating the totals for each row and column.
The table shows that there are 30 students, two of whom drive to school.
[tex]P = \dfrac{2}{30}= \mathbf{0.07}\\\\\text{The conditional probability is $\large \boxed{\mathbf{0.07}}$}[/tex]
By what percent will the fraction increase if its numerator is increased by 60% and denominator is decreased by 20% ?
Answer:
100%
Step-by-step explanation:
Start with x.
x = x/1
Increase the numerator by 60% to 1.6x.
Decrease the numerator by 20% to 0.8.
The new fraction is
1.6x/0.8
Do the division.
1.6x/0.8 = 2x
The fraction increased from x to 2x. It became double of what it was. From x to 2x, the increase is x. Since x was the original number x is 100%.
The increase is 100%.
Answer:
33%
Step-by-step explanation:
let fraction be x/y
numerator increased by 60%
=x+60%ofx
=8x
denominator increased by 20%
=y+20%of y
so the increased fraction is 4x/3y
let the fraction is increased by a%
then
x/y +a%of (x/y)=4x/3y
or, a%of(x/y)=x/3y
[tex]a\% = \frac{x}{3y} \times \frac{y}{x} [/tex]
therefore a=33
anda%=33%