If one contraction cycle in muscle requires 55 kJ55 kJ , and the energy from the combustion of glucose is converted with an efficiency of 35%35% to contraction, how many contraction cycles could theoretically be fueled by the complete combustion of one mole of glucose? Round your answer to the nearest whole number.

Answers

Answer 1

Answer:

18 moles

Explanation:

Here the combustion of one mole of glucose ----> carbon dioxide + water, releases 2870 kilojoules / moles.

_______________________________________________________

With one contraction cycle requiring 55 kilojoules,

2870 / 55 ≈ 52.18

And with the efficiency being 35 percent,

52.1818..... * 0.35 = ( About ) 18 moles

Hope that helps!


Related Questions

Given the following Fischer projection: Fischer projection for an entantiomer of 2-bromo-2,3-dihydroxypropanal with the bromine oriented horizontally to the left and the hydroxide group oriented horizontally to the right. draw the perspective formula of the molecule. Be sure to correctly indicate stereochemistry in your answer.

Answers

Answer:

Explanation:

Stereoisomers are two or more atoms that  have the same bonding order of atoms but there is a difference  spatial arrangement of  the  atoms in space.

A plane of symmetry divides a molecule into two equal halves.

A chiral stereoisomer are not superimposed on a mirror image , Hence they do not posses a plane of symmetry.

As a result to that. these non-superimposable mirror images are said to be Enantiomers.

However, a Fischer Projection emanates from a two - dimensional figure which is used for presenting a three - dimensional organic molecules.

From the given question;

Fischer projection for an enantiomer of 2-bromo-2,3-dihydroxypropanal with the bromine oriented horizontally to the left and the hydroxide group oriented horizontally to the right.

we can sketch the way the enantiomer of 2-bromo-2,3-dihydroxypropanal can  be seen like the one shown below:

              CH₂OH

                   |

                   |

                   |

Br -------------|----------------OH

                   |

                   |

                   |

                 CHO

The objective of this question is to drawn the perspective formula of the molecule.

So , from the attached file below; we can see the perspective formula of the molecule in a well structured 3-D format.

In the presence of a strong base, the following reaction between (CH3)3CCl and OH- occurs: (CH3)3CCl + OH- → (CH3)3COH + Cl- Studies have suggested that the mechanism for the reaction takes place in 2 steps: Step 1) (CH3)3CCl → (CH3)3C+ + Cl- (slow) Step 2) (CH3)3C+ + OH- → (CH3)3COH (fast) What is the rate law expression for the overall reaction? Group of answer choices

Answers

Answer:

D. rate = k [(CH3)3CCl]

Explanation:

(CH3)3CCl + OH- → (CH3)3COH + Cl-

The mechanisms are;

Step 1)

(CH3)3CCl → (CH3)3C+ + Cl- (slow)

Step 2)

(CH3)3C+ + OH- → (CH3)3COH (fast)

In kinetics, the slowest step is the ratee determining step.

For a given reaction;

A → B + C, the rate law expression is given as;

rate = k [A]

In this problem, from step 1. The rate expression is;

rate = k [(CH3)3CCl]

Describe the buffer capacity of the acetic acid buffer solution in relation to the addition of both concentrated and dilute acids and bases.

Answers

Answer:

The answer is in the explanation

Explanation:

Acetic acid, CH₃COOH, is a weak acid that will produce a buffer when its conjugate base, CH₃COO⁻, acetate ion, is added to the solution.

That is because a buffer is the mixture of a weak acid and its conjugate base or vice versa.

When an acid (HX) is added to the solution, the acetate ion will react producing acetic acid, thus:

CH₃COO⁻ + HX → CH₃COOH + X⁻

For this reason, the pH doesn't change abruptly because H⁺ ions are not produced.

Now, if a  base (BOH) is added to the buffer, CH₃COOH will react producing acetate ion and water, thus:

CH₃COOH + BOH → CH₃COO⁻ + H₂O + B⁺.

In the same way, there are not produced free OH⁻ and the pH doesn't change significantly.

What is the law of conservation and what happens when two substances at different temperatures come into contact.

Answers

Answer:

- Both energy and matter cannot be neither created nor destroyed.

- An equilibrium temperature will be reached.

Explanation:

Hello,

In this case, the law of conservation is applied to both matter and energy, and it states that both energy and matter cannot be neither created nor destroyed. Specifically, in chemical reactions, it states that in closed systems, the mass of the reactants equals the mass of the products even when the number of moles change. Moreover, for energy, if two substances at different temperatures come into contact, the hot one will cool down and the cold one will heat up until an equilibrium temperature so the energy lost by the hot one is gained by the cold one, which accounts for the transformation of energy.

Best regards.

The reason for the dramatic decline in the number of measles cases from the 1960s to 2010 in the United States was because the vaccine

Answers

Answer:

It was because the vaccine generated actively acquired immunity, that is, inoculation of a portion of the measles virus so that the body forms the antibodies for a second contact and thus can destroy it without triggering the pathology.

Explanation:

Vaccines are methods of active acquired immunity since the antibody is not passively inoculated, it is manufactured by the body with a physiological process once part of the virus is inoculated.

The measles virus most of all affected the lives of infants or newborn children with severe rashes and high fevers that led to death.

Be sure to answer all parts. Three 8−L flasks, fixed with pressure gauges and small valves, each contain 4 g of gas at 276 K. Flask A contains He, flask B contains CH4, and flask C contains H2. Rank the flask contents in terms of:

Answers

Here is the complete question.

Be sure to answer all parts. Three 8−L flasks, fixed with pressure gauges and small valves, each contain 4 g of gas at 276 K. Flask A contains He, flask B contains CH4, and flask C contains H2. Rank the flask contents in terms of:  the following properties. (Use the notation >, <, or =, for example B=C>A.)

(a) pressure

(b) average molecular kinetic energy

(c) diffusion rate after the valve is opened

(d) total kinetic energy of the molecules

Answer:

Explanation:

Given that:

Three flask A,B, C:

contains a volume of 8-L

mass m = 4g    &;

Temperature = 276 K

Flask A = He

Flask B = H₂

Flask C = CH₄

a) From the ideal gas equation:

PV = nRT

where;

n = number of moles = mass (m)/molar mass (mm)

Then:

PV = m/mm RT

If  T ,m and V are constant for the three flasks ; then

P ∝ 1/mm

As such ; the smaller the molar mass the larger the pressure.

Now; since the molecular weight of CH₄ is greater than He and H₂ and also between He and H₂,  He has an higher molecular weight .

Then the order of pressure in the flask is :

[tex]\mathbf{P_B >P_A>P_C}[/tex]

where :

[tex]P_A[/tex] = pressure in the flask A

[tex]P_B[/tex] = pressure in the flask B

[tex]P_C[/tex]= Pressure in the flask C

b)

average molecular kinetic energy

We all know that  the average molecular kinetic energy  varies directly proportional to the temperature.

Thus; the given temperature = 276 K

∴ The order of the average molecular kinetic energy is [tex]\mathbf{K.E_A =K.E_B =K.E_C}[/tex]

c)

The rate of diffusion of gas is inversely proportional to the square root of it density . Here the density is given in relation to their molar mass.

So;

rate of diffusion ∝ [tex]\dfrac{1}{\sqrt{mm} }[/tex]

where;

[tex]D_A[/tex] = rate of diffusion in flask A

[tex]D_B[/tex] = rate of diffusion in flask B

[tex]D_C[/tex] = rate of diffusion in flask C

Thus; the order of the rate of diffusion = [tex]D_B[/tex]  > [tex]D_A[/tex] > [tex]D_C[/tex]

d)  total kinetic energy of the molecules .

The kinetic energy deals with how the speed of particles of a  substance determines how fast the substances will diffuse in a given set of condition.

The the order of the total kinetic energy depends on the molecular speed

Thus; the order of the total kinetic energy  for the three flask is as follows:

[tex]\mathbf{ K.E_B>K.E_A>K.E_C}[/tex]

Give the characteristic of a zero order reaction having only one reactant. a. The rate of the reaction is not proportional to the concentration of the reactant. b. The rate of the reaction is proportional to the square of the concentration of the reactant. c. The rate of the reaction is proportional to the square root of the concentration of the reactant. d. The rate of the reaction is proportional to the natural logarithm of t

Answers

Answer:

a. The rate of the reaction is not proportional to the concentration of the reactant.

Explanation:

The rate expression for a zero order reaction is given as;

A → Product

Rate = k[A]⁰

[A]⁰ = 1

Rate = K

GGoing through the options;

a) This is correct because in the final form of the rate expression, the rate is independent of the concentration.

b) This option is wrong

c) This option is also wrong

d) Like options b and c this is also wrong becaus ethere is no relationship between either the concentration or t.

The lock-and-key model and the induced-fit model are two models of enzyme action explaining both the specificity and the catalytic activity of enzymes. Following are several statements concerning enzyme and substrate interaction. Indicate whether each statement is part of the lock-and-key model, the induced-fit model, or is common to both models.

a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
c. Enzyme active site has a rigid structure complementary
d. Substrate binds to the enzyme through noncovalent interactions

Answers

Answer:

The lock-and-key model:

c. Enzyme active site has a rigid structure complementary

The induced-fit model:

a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.

Common to both The lock-and-key model and The induced-fit model:

b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.

d. Substrate binds to the enzyme through non-covalent interactions

Explanation:

Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.

The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.

The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.

Convert 150 K to degrees C.

Answers

Answer:

K = 150, C = - 123.15°

Explanation:

Kelvin = Celcius + 273.15 / 0 Kelvin = - 273.14 C

_____________________________________

Thus,

150 K = Celcius + 273.15,

150 - 273.15 = C,

C = -123.15 degrees

Solution, C = - 123.15°

Answer:

C=-123.15

Explanation:

This is easy

A solid is dissolved in a liquid, and over time a solid forms again. How can
you confirm the type of change that took place?
A. Testing the new solid to show that its properties are the same as
the starting solid would confirm that a physical change took
place.
B. The solid dissolving in a liquid is confirmation that a chemical
change took place.
C. The solid forming from the liquid is confirmation that a physical
change took place.
D. Showing that the total mass of the solid and liquid changed would
confirm that a chemical change took place.

Answers

I think B is write but even I’m not sure

Carbon dioxide and water vapor are variable gases because _____.

Answers

Answer: their amounts vary throughout the atmosphere

Explanation:

There is very little that travels over the atmosphere

Vary=very little

Hope that helps

A certain mass of carbon reacts with 9.53 g of oxygen to form carbon monoxide. ________ grams of oxygen would react with that same mass of carbon to form carbon dioxide, according to the law of multiple proportions.

Answers

Answer: 9.53 *2= 19.06

Explanation:

The law of multiple proportions states that if two elements combines to form more than one compound the ratio of masses of the second element which combines to the fixed mass of the first element will always be the ratios of the small whole numbers.

in case of carbon monoxide, mass of carbon will be the same of mass of oxygen.

But in case of carbon dioxide, if carbon is 9.53 units then oxygen will be twice as that of carbon.

CO2, so 9.53*2= 19.06 grams of oxygen will combine with 9.53 grams of carbon to form carbon dioxide.

How many moles of CO2 can be produced by the complete reaction of 1.0 g of lithium carbonate with excess hydrochloric acid (balanced chemical reaction is given below)? Li2CO3(s) + 2HCl(aq) --> 2LiCl(aq) + H2O(l) + CO2(g) Question 1 options: 1.7 g 1.1 g 0.60 040 g

Answers

Answer:Mass of CO2 = 0.60g

Explanation:

Given the chemical rection

Li2CO3(s) + 2HCl(aq) --> 2LiCl(aq) + H2O(l) + CO2(g

No of moles = mass / molar mass

molar mass Li2CO3 = Molecular mass  calculation: 6.941 x 2 + 12.0107 + 15.9994 x 3 =  

= 73.8909 g/mol

therefore Number of moles Li2CO3 = 1.0g / 73.89 g/mol

= 0.0135 moles Li2CO3

From our given Balanced equation,  shows that  

Li2CO3(s) + 2HCl(aq) --> 2LiCl(aq) + H2O(l) + CO2(g

1 mole Li2CO3 produces 1 mole CO2

therefore 0.0135 mol Li2CO3 will produce  0.0135 moles of CO2

Also

No of moles = mass / molar mass

Mass = No of moles x molar mass

molar mass of CO2=12.0107 + 15.9994 x 2=44.0095 g/mol

Mass of CO2= 0.0135 X 44.0095 g/mol =0.594≈0.60g

When comparing the two chair conformations for a monosubstituted cyclohexane ring, which type of substituent shows the greatest preference for occupying an equatorial position rather than an axial position

Answers

Answer:

See the explanation

Explanation:

In this case, we have to keep in mind that in the monosubstituted product we only have to replace 1 hydrogen with another group. In this case, we are going to use the methyl group [tex]CH_3[/tex].

In the axial position, we have a more steric hindrance because we have two hydrogens near to the [tex]CH_3[/tex] group. If we have more steric hindrance the molecule would be more unstable. In the equatorial positions, we don't any interactions because the [tex]CH_3[/tex] group is pointing out. If we don't have any steric hindrance the molecule will be more stable, that's why the molecule will the equatorial position.

See figure 1

I hope it helps!

Harvey kept a balloon with a volume of 348 milliliters at 25.0˚C inside a freezer for a night. When he took it out, its new volume was 322 milliliters, but its pressure was the same. If the final temperature of the balloon is the same as the freezer’s, what is the temperature of the freezer?

Answers

Answer:

[tex]T2=276K[/tex]

Explanation:

Given:

Initial volume of the balloon V1 = 348 mL

Initial temperature of the balloon T1 = 255C

Final volume of the balloon V2 = 322 mL

Final temperature of the balloon T2 =

To calculate T1 in kelvin

T1= 25+273=298K

Based on Charles law, which states that the volume of a given mass of a ideal gas is directly proportional to the temperature provided that the pressure is constant. It can be applied using the below formula

[tex](V1/T1)=(V2/T2)[/tex]

T2=( V2*T1)/V1

T2=(322*298)/348

[tex]T2=276K[/tex]

Hence, the temperature of the freezer is 276 K

Answer: 276 kelvins

Explanation:

Rank the following transitions in a hydrogen atom in order of increasing wavelength of electromagnetic radiation that could produce them. Answer this question without doing any calculations. Explain the order.

n=2 to n=4
n=6 to n=8
n=10 to n=12
n=14 to n=16

Answers

Answer:

n=2 to n=4 < n=6 to n=8 < n=10 to n=12 < n=14 to n=16

Explanation:

According to Neils Bohr, electrons in an atom are found in specified energy levels. Transitions are possible from one energy level to another when the electron receives sufficient energy usually in the form of a photon of electromagnetic radiation of appropriate frequency and wavelength. The energy of this photon corresponds to the energy difference between the two energy levels. Thus the higher the energy difference between energy levels, the greater the energy of the photon required to cause the transition and the shorter the wavelength of the photon.

High energy photons have a very short wavelength. It should be noted that as n increases, the energy of successive energy levels decreases and transitions between them now occurs at longer wavelengths. Hence, the highest energy and shortest wavelength of photons are required for transition involving lower values of n because such electrons are closer to the nucleus and are more tightly bound to it than electrons found at a greater distance from the nucleus.

Hence transition involving electrons at higher energy levels occur at a longer wavelength compared to transition involving electrons closer to the nucleus. This is the basis for the arrangement of wavelengths required to effect the various electronic transitions shown in the answer.

An experimenter studying the oxidation of fatty acids in extracts of liver found that when palmitate (16:0) was provided as substrate, it was completely oxidized to CO2. However, when undecanoic acid (11:0) was added as substrate, incomplete oxidation occurred unless he bubbled CO2 through the reaction mixture. The addition of the protein avidin, which binds tightly to biotin, prevented the complete oxidation of undecanoic acid even in the presence of CO2, although it had no effect on palmitate oxidation. Explain these observations in light of what you know of fatty acid oxidation reactions.

Answers

Answer:

Even-number fatty acids such as palmitate undergoes complete β-oxidation in the liver motochondria to CO₂ because the product, acetyl-CoA can enter the TCA cycle.

Oxidation of odd-number fatty acids such as undecanoic acid yields acetyl-CoA + propionyl-CoA in their last pass. Propionyl-CoA requires additional reactions including carboxylation in order to be able to enter the TCA cycle.

The reaction CO2 + propionyl-CoA ----> methylmalonyl-CoA is catalyzed by propionyl-CoA carboxylase, a biotin-containing enzyme, which is inhibited by avidin.  Palmitate oxidation however, does not involve carboxylation.

Explanation:

Even-number fatty acids such as palmitate undergoes complete β-oxidation in the liver motochondria to CO₂ because their oxidation product, acetyl-CoA, can enter the TCA cycle where it is oxidized to CO₂.

Undecanoic acid is an odd-number fatty acid having 11 carbon atoms. Oxidation of odd-number fatty acids such as undecanoic acid yields a five -carbon fatty acyl substrate for their last pass through β-oxidation which is oxidized and cleaved into acetyl-CoA + propionyl-CoA. Propionyl-CoA requires additional reactions including carboxylation in order to be able to enter the TCA cycle. Since oxidation is occuring in a liver extract, CO₂ has to be externally sourced in order for the carboxylation of propionyl-CoA to proceed and thus resulting in comlete oxidation of undecanoic acid.

The reaction CO2 + propionyl-CoA ----> methylmalonyl-CoA is catalyzed by propionyl-CoA carboxylase, a biotin-containing enzyme.  The role of biotin is to activate the CO₂ before its tranfer to the propionate moiety. The addition of the protein avidin prevents the complete oxidation of undecanoic acid by  binding tightly to biotin, hence inhibiting the activation and transfer of CO₂ to propionate.

Palmitate oxidation however, does not involve carboxylation, hence addition of avidin has no effect on its oxidation.

what’s the SI unit of time ?

Answers

A first option. ......

Answer:

The answer is A

Explanation:

Enter an abbreviated electron configuration for magnesium: Express your answer in complete form, in order of increasing energy. For example, [He]2s22p2 would be entered as [He]2s^22p^2.

Answers

Answer:

[Ne]3s²

Explanation:

Mg

1s2 2s2 2p6 3s2   or [Ne]3s²

Abbreviated electronic configuration of magnesium is [Ne]3 s² and in complete form it is 1 s² 2 s² 2 p⁶ 3 s².

What is electronic configuration?

Electronic configuration is defined as the distribution of electrons which are present in an atom or molecule in atomic or molecular orbitals.It describes how each electron moves independently in an orbital.

Knowledge of electronic configuration is necessary for understanding the structure of periodic table.It helps in understanding the chemical properties of elements.

Elements undergo chemical reactions in order to achieve stability. Main group elements obey the octet rule in their electronic configuration while the transition elements follow the 18 electron rule. Noble elements have valence shell complete in ground state and hence are said to be stable.

Learn more about electronic configuration,here:

https://brainly.com/question/13497372

#SPJ5

all compounds are neutral true or false​

Answers

Answer:

Even all compounds are neutral.

Explanation:

Some of them exhibit polarity. Because of the difference in electron affinity of the constituent atoms, the shared electrons are pulled towards the atom with high affinity to electrons.

Please what's the missing minor products? And kindly explain in your own words how they were formed.​ Thank you!

Answers

Answer:

it's a two step elimination reaction

Explanation:

it follows a carbocationic pathway. When carbocation is stable, the equation is favourable, that is, double bond is formed by expelling hydrogen atom.

A solution is prepared by mixing 5.00 mL of 0.100 M HCl and 2.00 mL of 0.200 M NaCl. What is the molarity of chloride ion in this solution?

Answers

Answer:

0.129 M

Explanation:

0.100 M HCl = 0.100 mol/L solution HCl

5.00 mL = 0.00500 L solution HCl

0.100 mol/L HCl * 0.00500 L = 0.000500 mol HCl

                             HCl ------> H+ + Cl-

                           1 mol                   1 mol

                    0.000500 mol           0.000500 mol

0.200 M NaCl = 0.200 mol/L solution NaCl

2.00 mL = 0.00200 L solution NaCl

0.200 mol/L NaCl*0.00200 L = 0.000400 mol NaCl

                              NaCl ------> Na+ + Cl-

                            1 mol                        1 mol

                     0.000400 mol               0.000400 mol

Chloride ion altogether (0.000500 mol + 0.000400 mol) =0.000900 mol

Solution altogether (0.00500 L+0.00200 L) = 0.00700L

Molarity (Cl-)= solute/solution = 0.000900 mol/0.00700L = 0.129 mol/L=

= 0.129 M

A solution of benzene in methanol has a transmittance of 93.0 % in a 1.00 cm cell at a wavelength of 254 nm. Only the benzene absorbs light at this wavelength, not the methanol. What will the solution's transmittance be if it is placed in a 10.00 cm long pathlength cell

Answers

Answer:

T = 48.39%

Explanation:

In this case we need to apply the Beer law which is the following:

A = CεL  (1)

Where:

A: Absorbance of solution

C: Concentration of solution

ε: Molar Absortivity (Constant)

L: Length of the cell

Now according to the given data, we have transmittance of 93% or 0.93. We can calculate absorbance using the following expression:

A = -logT (2)

Applying this expression, let's calculate the Absorbance:

A = -log(0.93)

A = 0.03152

Now that we have the absorbance, let's calculate the concentration of the solution, using expression (1).

A = CεL

C = A / εL

Replacing:

C = 0.03152 / 1 *ε   (3)

Now, we want to know the transmittance of the solution with a length of 10 cm. so:

A = CεL

Concentration and ε are constant, so:

A = (0.03152 / ε) * ε * 10

A = 0.3152

Now that we have the new absorbance, we can calculate the new transmittace:

T = 10^(-A)

T = 0.4839 ----> 48.39%

What is an ion?
A. An atom that has lost or gained 1 or more electrons
O B. An atom that has lost or gained 1 or more neutrons
O C. An atom that has lost or gained 1 or more protons
D. An atom that differs in mass from another atom of the same
element

Answers

Answer:

An ion is an atom that has lost or gained one or more electrons.

Explanation:

Ions are positively or negatively charged atoms of elements. This is because they can give, take, or share electrons with other elements to encourage the formation of chemical bonds.

Protons are what decide the chemical identity of the element. So, for example, if an atom has 11 protons, we know that will be a Sodium (Na) atom. A loss or gain of protons completely changes the chemical identity of the element and it will then become another element.

Electrons are what give an atom a neutral electrical charge (if that atom has the number of protons and neutrons normally described for the element - otherwise, a discrepancy or gain in neutrons is referred to as an isotope and declares that ions have nothing to do with the mass of an element).

With this information, you can realize that neutrons and protons have nothing to do with ions and you can confirm that ions are atoms that have lost or gained one or more electrons.

A certain element consists of two stable isotopes. The first has a mass of 62.9 amu and a percent natural abundance of 69.1 %. The second has a mass of 64.9 amu and a percent natural abundance of 30.9 %. What is the atomic weight of the element?

Answers

Answer:

63.518

Explanation:

The following data were obtained from the question:

Mass of Isotope A = 62.9 amu

Abundance of isotope A (A%) = 69.1%

Mass of isotope B = 64.9 amu

Abundance of isotope B (B%) = 30.9%

Atomic weight of the element =..?

The atomic weight of the element can be obtained as follow:

Atomic weight = [(Mass of A x A%)/100] + [(Mass of B x B%) /100]

Atomic weight = [(62.9 x 69.1)/100] + [(64.9 x 30.9)/100]

Atomic weight = 43.4639 + 20.0541

Atomic weight = 63.518

Therefore, the atomic weight of the element is 63.518.

A solution that is 0.135 M is diluted to make 500.0 mL of a 0.0851 M solution. How many milliliters of the original solution were required? View Available Hint(s) A solution that is 0.135 M is diluted to make 500.0 mL of a 0.0851 M solution. How many milliliters of the original solution were required? 5.74 mL 0.315 mL 793 mL 315 mL

Answers

Answer:

315mL

Explanation:

Data obtained from the question include the following:

Molarity of stock solution (M1) = 0.135 M

Volume of stock solution needed (V1) =?

Molarity of diluted solution (M2) = 0.0851 M

Volume of diluted solution (V2) = 500mL

The volume of the stock solution needed can be obtain as follow:

M1V1 = M2V2

0.135 x V1 = 0.0851 x 500

Divide both side by 0.135

V1 = (0.0851 x 500) / 0.135

V1 = 315mL

Therefore, the volume of the stock solution needed is 315mL

Question 1
1 pts
2B+6HCI --
| --> 2BCl3 + 3H2
How many moles of boron chloride will be produced if you start with 8.752 moles of HCI
(hydrochloric acid)? (Round to 3 sig figs. Enter the number only do not include units.)

Answers

Answer:

2.92 mol

Explanation:

Step 1: Write the balanced equation

2 B(s) + 6 HCI(aq) ⇒ 2 BCl₃(aq) + 3 H₂(g)

Step 2: Establish the appropriate molar ratio

The molar ratio of hydrochloric acid to boron chloride is 6:2.

Step 3: Calculate the moles of boron chloride produced from 8.752 moles of hydrochloric acid

[tex]8.752molHCl \times \frac{2molBCl_3}{6molHCl} = 2.92molBCl_3[/tex]

What is Key for the reaction 2503(9) = 2802(9) + O2(g)?

Answers

Answer:

Option C. Keq = [SO2]² [O2] /[SO3]²

Explanation:

The equilibrium constant keq for a reaction is simply the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.

Now, let us determine the equilibrium constant for the reaction given in the question.

This is illustrated below:

2SO3(g) <==> 2SO2(g) + O2(g)

Reactant => SO3

Product => SO2, O2

Keq = concentration of products /concentration of reactants

Keq = [SO2]² [O2] /[SO3]²

Enter your answer in the provided box. On a cool, rainy day, the barometric pressure is 739 mmHg. Calculate the barometric pressure in centimeters of water (cmH2O) (d of Hg = 13.5 g/mL; d of H2O = 1.00 g/mL).

Answers

Answer:

997.65cmH2O

Explanation:

Barometric pressure = 739 mmHg

density of Hg = 13.5 g/ml

density of water (H2O) = 1.00 g/ml

Calculate Barometric pressure in centimetres of water ( cmH20)

equate the barometric pressure of Hg and water

739 * 13.5 * 9.8 = x * 1 * 9.81

x ( barometric pressure of water in mmH2O ) = 739 *13.5 / 1 = 9976.5mmH2O

in cmH2O = 997.65cmH2O

What is the net ionic equation of the reaction of MgSO4 with Ba(NO3)2 ?

Answers

Answer:

Ba(+2)(aq) + SO4(-2)(aq) -----> BaSO4(s)

Explanation:

Take a look at the attachment below;

Other Questions
Five-thirds divided by one-third = Evaluate g(x) = 1.873 -0.0034x +0.5 for x = 1 and x = 2. Can someone plz help me solved this problem! Im giving you 10 points! I need help plz help me! Will mark you as brainiest! Florian found out that her grandmother passed away and has intense grief. How has this most likely affected her social health? 11. What is the wavelength of an earthquake wave if it has a speed of 5000 m/s and a frequency of 10 HZstep#1step#2step#3 A delivery company is considering adding another vehicle to its delivery fleet; each vehicle is rented for $100 per day. Assume that the additional vehicle would be capable of delivering 1,500 packages per day and that each package that is delivered brings in ten cents in revenue. Also assume that adding the delivery vehicle would not affect any other costs.Required:a. What is the MRP? What is the MRC? Should the firm add this delivery vehicle? b. Now suppose that the cost of renting a vehicle doubles to S200 per day. What are the MRP and MRC? Should the firm add a delivery vehicle under these circumstances? c. Next suppose that the cost of renting a vehicle falls back down to SIOO per day but, due to extremely congested freeways, an additional vehicle would only be able to deliver 750 packages per day. What are the MRP and MRC in this situation? Would adding a vehicle under these circumstances increase the firm's profits? Which line of dialogue most likely has a persuasive effect? Write a loop that reads strings from standard input where the string is either "land", "air", or "water". The loop terminates when "xxxxx" (five x characters) is read in. Other strings are ignored. After the loop, your code should print out 3 lines: the first consisting of the string "land:" followed by the number of "land" strings read in, the second consisting of the string "air:" followed by the number of "air" strings read in, and the third consisting of the string "water:" followed by the number of "water" strings read in. Each of these should be printed on a separate line. Use the up or down arrow keys to change the height. The total surface area of a right circular cone with the slant height 25cm is 704 sq. cm . Find the volume of the cone.HELP PLEASE !!! Read the passage. (1) Many American men were drafted during World War II. (2) Many other men volunteered to serve. (3) In fact, so many men entered the armed services that professional baseball experienced a shortage of good players. (4) Philip K. Wrigley had an interesting solution to the problem. (5) He started a new league. (6) It was called the All-American Girls Professional Baseball League (AAGPBL). (7) To find good players, he scouted womens softball clubs. (8) They were very popular at that time. (9) The AAGPBL was a hit. (10) In 1948, the year in which the league reached its high point of popularity, more than a million fans came to watch AAGPBL games. (11) The league produced many fine players, including Mary Bonnie Baker. (12) Dorothy Kamenshek was also a fine player. (13) After World War II ended, the AAGPBL declined in popularity. (14) In 1954, the league was disbanded. Which is the most effective way to combine sentences (11) and (12)? The league produced many fine players, and they include Mary Bonnie Baker and Dorothy Kamenshek. The league produced many fine players, including Mary Bonnie Baker and Dorothy Kamenshek. The league produced many fine players, Mary Bonnie Baker and Dorothy Kamenshek also was fine. The league produced many fine players, Mary Bonnie Baker and Dorothy Kamenshek. A particle leaves the origin with a speed of 3 106 m/s at 38 degrees to the positive x axis. It moves in a uniform electric field directed along positive y axis. Find Ey such that the particle will cross the x axis at x Which type of mutation results in a frame shift mutation? Check all that apply? Substitute Insertion Deletion Point mutation Please help asap, you will get awarded please discuss the similarities and differences between transformational and charismatic leadership. Choose an individual that qualifies as a charismatic or transformational leader and explain why. Also, in your analysis, what are some of the unique characteristics of this individuals followers that might identify him/her as charismatic or transformational QuadrilateralWy has vertices W. 19), X10, 10x10,2), and 32,2). Determine if quadrilateral WXYZ is a rhombus, What is the area of the parallelogram if each square is 1 square foot? a. 12 ft b. 12 ft c. 12 d. 12 feet Which linear function has the same y-intercept as the one that is represented by the graph? On a coordinate plane, a line goes through points (3, 4) and (5, 0). it is a fearful thing to lead this great peaceful people into war into the most terrible and disastrous of all. based on the excerpt, what can be said about president's wilsons character? 2. Emma is playing a game with two fair dice.She needs to score 5, using both dice, to win thegame.What's the probability she will win the game? which term best describes the function represented by the graph?A) Exponential GrowthB) Exponential DecayC) Linear Decreasing D) Linear Increasing