If f(x) = 6 - 5x, what is f(x)^-1? (check attachment)

If F(x) = 6 - 5x, What Is F(x)^-1? (check Attachment)

Answers

Answer 1

f(x) = 6-5x

y = 6-5x .... replace f(x) with y

x = 6-5y .... swap x and y; solve for y

x+5y = 6

5y = 6-x

y = (6-x)/5

[tex]f^{-1}(x) = \frac{6-x}{5}[/tex] ... replace y with the inverse function notation

Answer: Choice D.

Related Questions

What is AB? Geometry help please

Answers

Answer:

AB = 37 units.

Step-by-step explanation:

Solve for AB using the Pythagorean theorem:

c² = a² + b² (c being AB in this instance)

Plug in the values of the legs of the triangle:

c² = 12² + 35²

c² = 144 + 1225

c² = 1369

c = √1369

c = 37

Therefore, AB = 37.

Which graph shows a function whose domain and range exclude exactly one value?​

Answers

Answer:

C (the third graph)

Step-by-step explanation:

This graph's function has a domain and range that both exclude one value, which is 0. The x and y values are never 0 in the function, as it approaches 0 but never meets it.

Answer:

see below

Step-by-step explanation:

This graph has an asymptote at y = 0 and x=0

This excludes these values

The domain excludes x =0

The range excludes y=0

The state education commission wants to estimate the fraction of tenth grade students that have reading skills at or below the eighth grade level. Suppose a sample of 1537 tenth graders is drawn. Of the students sampled, 1184 read above the eighth grade level. Using the data, construct the 95% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level.

Answers

Answer:

The 95% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level is (0.2087, 0.2507).

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

Suppose a sample of 1537 tenth graders is drawn. Of the students sampled, 1184 read above the eighth grade level. So 1537 - 1184 = 353 read at or below this level. Then

[tex]n = 1537, \pi = \frac{353}{1537} = 0.2297[/tex]

95% confidence level

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2297 - 1.96\sqrt{\frac{0.2297*0.7703}{1537}} = 0.2087[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2297 + 1.96\sqrt{\frac{0.2297*0.7703}{1537}} = 0.2507[/tex]

The 95% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level is (0.2087, 0.2507).

Can someone please explain how to do this problem? The websites instructions are very poor. Rewrite [tex]\frac{2}{x^{2} -x-12}[/tex] and [tex]\frac{1}{x^{2}-16 }[/tex] as equivalent rational expressions with the lowest common denominator.

Answers

Answer: x = -5

Step-by-step explanation:

If you factor each denominator, you can find the LCM.

[tex]\dfrac{2}{x^2-x-12}=\dfrac{1}{x^2-16}\\\\\\\dfrac{2}{(x-4)(x+3)}=\dfrac{1}{(x-4)(x+4)}\\\\\\\text{The LCM is (x-4)(x+4)(x+3)}\\\\\\\dfrac{2}{(x-4)(x+3)}\bigg(\dfrac{x+4}{x+4}\bigg)=\dfrac{1}{(x-4)(x+4)}\bigg(\dfrac{x+3}{x+3}\bigg)\\\\\\\dfrac{2(x+4)}{(x-4)(x+4)(x+3)}=\dfrac{1(x+3)}{(x-4)(x+4)(x+3)}\\[/tex]

Now that the denominators are equal, we can clear the denominator and set the numerators equal to each other.

2(x + 4) = 1(x + 3)

2x + 8 = x + 3

x  + 8 =       3

x        =      -5

Which of these fractions is an improper fraction? 5/3 or 3/5

Answers

Answer:

5/3 is an improper fraction because 5 is higher then 3. So the correct way of writing it would be 1 2/3.

Step-by-step explanation:

Answer: 5/3

Explanation:

5/3 is an improper fraction, and could be a mixed number, because the denominator is less than the numerator.

5/3 = 1 2/3

HURRY TIMEDD!!!!!
What is the value of the discriminant, b2 − 4ac, for the quadratic equation 0 = x2 − 4x + 5, and what does it mean about the number of real solutions the equation has? The discriminant is −4, so the equation has 2 real solutions. The discriminant is −4, so the equation has no real solutions. The discriminant is 35, so the equation has 2 real solutions. The discriminant is 35, so the equation has no real solutions.

Answers

Answer:

Second option is the correct choice.

Step-by-step explanation:

"The discriminant is −4, so the equation has no real solutions."

[tex]x^2-4x+5=0\\\\a=1,\:b=-4,\:c=5:\\\\b^2-4ac=\left(-4\right)^2-4\cdot \:1\cdot \:5=-4[/tex]

Best Regards!

Answer: B

The discriminant is −4, so the equation has no real solutions.

Step-by-step explanation:

Just took quiz EDG2021

Mark Brainliest

pls help me I would be happy if do

Answers

Answer:

a prism is a three dimensional shape with the same width all the way through.

Step-by-step explanation:

Step-by-step explanation:

i think this will help.

a) find the value of 2x+y wehn x =4 and y =3 b) find the value of a^2 + b when a = -2 and b = 5

Answers

Answer:

a. 11b. 9

Solution,

a. Given,

X=4

y=3

Now,

[tex]2x + y \\ = 2 \times 4 + 3 \\ = 8 + 3 \\ = 11[/tex]

b. Given,

a=-2

b=5

Now,

[tex] {a}^{2} + b \\ = {( - 2)}^{2} + 5 \\ = 4 + 5 \\ = 9[/tex]

hope this helps...

Good luck on your assignment..

In a certain community, eight percent of all adults over age 50 have diabetes. If a health service in this community correctly diagnosis 95% of all persons with diabetes as having the disease and incorrectly diagnoses ten percent of all persons without diabetes as having the disease, find the probabilities that:

Answers

Complete question is;

In a certain community, 8% of all people above 50 years of age have diabetes. A health service in this community correctly diagnoses 95% of all person with diabetes as having the disease, and incorrectly diagnoses 10% of all person without diabetes as having the disease. Find the probability that a person randomly selected from among all people of age above 50 and diagnosed by the health service as having diabetes actually has the disease.

Answer:

P(has diabetes | positive) = 0.442

Step-by-step explanation:

Probability of having diabetes and being positive is;

P(positive & has diabetes) = P(has diabetes) × P(positive | has diabetes)

We are told 8% or 0.08 have diabetes and there's a correct diagnosis of 95% of all the persons with diabetes having the disease.

Thus;

P(positive & has diabetes) = 0.08 × 0.95 = 0.076

P(negative & has diabetes) = P(has diabetes) × (1 –P(positive | has diabetes)) = 0.08 × (1 - 0.95)

P(negative & has diabetes) = 0.004

P(positive & no diabetes) = P(no diabetes) × P(positive | no diabetes)

We are told that there is an incorrect diagnoses of 10% of all persons without diabetes as having the disease

Thus;

P(positive & no diabetes) = 0.92 × 0.1 = 0.092

P(negative &no diabetes) =P(no diabetes) × (1 –P(positive | no diabetes)) = 0.92 × (1 - 0.1)

P(negative &no diabetes) = 0.828

Probability that a person selected having diabetes actually has the disease is;

P(has diabetes | positive) =P(positive & has diabetes) / P(positive)

P(positive) = 0.08 + P(positive & no diabetes)

P(positive) = 0.08 + 0.092 = 0.172

P(has diabetes | positive) = 0.076/0.172 = 0.442

The probability are "0.168 and 0.452".

Using formula:

[tex]P(\text{diabetes diagnosis})\\[/tex]:

[tex]=\text{P(having diabetes and have been diagnosed with it)}\\ + \text{P(not have diabetes and yet be diagnosed with diabetes)}[/tex]

[tex]=0.08 \times 0.95+(1-0.08) \times 0.10 \\\\=0.08 \times 0.95+0.92 \times 0.10 \\\\=0.076+0.092\\\\=0.168[/tex]

[tex]\text{P(have been diagnosed with diabetes)}[/tex]:

[tex]=\frac{\text{P(have diabetic and been diagnosed as having insulin)}}{\text{P(diabetes diagnosis)}}[/tex]

[tex]=\frac{0.08\times 0.95}{0.168} \\\\=\frac{0.076}{0.168} \\\\=0.452\\[/tex]

Learn more about the probability:

brainly.com/question/18849788

Initially 100 milligrams of a radioactive substance was present. After 6 hours the mass had decreased by 3%. If the rate of decay is proportional to the amount of the substance present at time t, determine the half-life of the radioactive substance. (Round your answer to one decimal place.)

Answers

The radioactive compound has a half-life of around 3.09 hours.

The period of time needed for a radioactive substance's initial quantity to decay by half is known as its half-life. The half-life of a drug may be calculated as follows if the rate of decay is proportionate to the amount of the substance existing at time t:

Let t be the half-life of the substance, then after t hours, the amount of the substance present will be,

100 mg × [tex]\dfrac{1}{2}[/tex] = 50 mg.

At time 6 hours, the amount of the substance present is,

100 mg × (1 - 3%) = 97 mg.

Given that the amount of material available determines how quickly something degrades,

The half-life can be calculated as follows:

[tex]t = 6 \times \dfrac{50}{ 97} = 3.09 \ hours[/tex]

Therefore, the half-life of the radioactive substance is approximately 3.09 hours.

Learn more about half-life:

brainly.com/question/24710827

#SPJ12

√x+3 = √5x-1 Find the value of X

Answers

Answer:

x=1

Step-by-step explanation:

sqrt(x+3) = sqrt(5x-1)

Square each side

x+3 = 5x-1

Subtract x from each side

3 = 4x-1

Add 1 to each side

4 =4x

Divide by 4

x=1

Answer:

x= 1

Step-by-step explanation:

[tex]\sqrt{x+3}=\sqrt{5x-1}[/tex]

Square both sides.

x + 3 = 5x - 1

Subtract 3 and 5x on both sides.

x - 5x = -1 - 3

-4x = -4

Divide -4 into both sides.

-4x/-4 = -4/-4

x = 1

A fence 6 feet tall runs parallel to a tall building at a distance of 6 feet from the building. We want to find the the length of the shortest ladder that will reach from the ground over the fence to the wall of the building. Here are some hints for finding a solution: Use the angle that the ladder makes with the ground to define the position of the ladder and draw a picture of the ladder leaning against the wall of the building and just touching the top of the fence. If the ladder makes an angle 0.82 radians with the ground, touches the top of the fence and just reaches the wall, calculate the distance along the ladder from the ground to the top of the fence. equation editorEquation Editor The distance along the ladder from the top of the fence to the wall is equation editorEquation Editor Using these hints write a function L(x) which gives the total length of a ladder which touches the ground at an angle x, touches the top of the fence and just reaches the wall. L(x) = equation editorEquation Editor . Use this function to find the length of the shortest ladder which will clear the fence. The length of the shortest ladder is equation editorEquation Editor feet.

Answers

Answer:

  12√2 feet ≈ 16.97 feet

Step-by-step explanation:

For the dimensions shown in the attached diagram, the distance "a" along the ladder from the ground to the fence is ...

  a = (6 ft)/sin(x) = (6 ft)/sin(0.82) ≈ 8.206 ft

The distance along the ladder from the top of the fence to the wall is ...

  b = (6 ft)/cos(x) = (6 ft)/cos(0.82) ≈ 8.795 ft

__

In general, the distance along the ladder from the ground to the wall is ...

  L(x) = a +b

  L(x) = 6/sin(x) +6/cos(x)

This distance will be shortest for the case where the derivative with respect to x is zero.

  L'(x) = 6(-cos(x)/sin(x)² +sin(x)/cos(x)²) = 6(sin(x)³ -cos(x)³)/(sin(x)²cos(x²))

This will be zero when the numerator is zero:

  0 = 6(sin(x) -cos(x))(1 -sin(x)cos(x))

The last factor is always positive, so the solution here is ...

  sin(x) = cos(x)   ⇒   x = π/4

And the length of the shortest ladder is ...

  L(π/4) = 6√2 + 6√2

  L(π/4) = 12√2 . . . . feet

_____

The ladder length for the "trial" angle of 0.82 radians was ...

  8.206 +8.795 = 17.001 . . . ft

The actual shortest ladder is ...

  12√2 = 16.971 . . . feet

A woman has a collection of video games and anime. she has 50 anime DVDs, and she has 70 video games. which it adds up to 120 items. if you divide them by 5, how many items does she have all together?

Answers

She has 24 items

Hope this helps you:)

Answer:

24

Step-by-step explanation:

Since you are given almost everything, you just simply divide by 5=>

120/5 = 24

Hope this helps

13. Two points P and Q, 10 m apart on level ground,
are due West of the foot B of a tree TB. Given that
TPB = 23° and TQB = 32°, find the height of tree​

Answers

Answer: height = 13.24 m

Step-by-step explanation:

Draw a picture (see image below), then set up the proportions to find the length of QB.  Then input QB into either of the equations to find h.

Given: PQ = 10

          ∠TPB = 23°

          ∠TQB = 32°

[tex]\tan P=\dfrac{opposite}{adjacent}\qquad \qquad \tan Q=\dfrac{opposite}{adjacent}\\\\\\\tan 23^o=\dfrac{h}{10+x}\qquad \qquad \tan 32^o=\dfrac{h}{x}\\\\\\\underline{\text{Solve each equation for h:}}\\\tan 23^o(10+x)=h\qquad \qquad \tan 32^o(x)=h\\\\\\\underline{\text{Set the equations equal to each other and solve for x:}}\\\tan23^o(10+x)=\tan32^o(x)\\0.4245(10+x)=0.6249x\\4.245+0.4245x=0.6249x\\4.245=0.2004x\\21.18=x[/tex]

[tex]\underline{\text{In put x = 21.18 into either equation and solve for h:}}\\h=\tan 32^o(x)\\h=0.6249(2.118)\\\large\boxed{h=13.24}[/tex]

Lard-O potato chips guarantees that all snack-sized bags of chips are between 16 and 17 ounces. The machine that fills the bags has an output with a mean of 16.5 and a standard deviation of 0.25 ounces. Construct a control chart for the Lard-O example using 3 sigma limits if samples of size 5 are randomly selected from the process. The center line is ____. The standard deviation of the sample mean is ____. The UCL

Answers

Answer:

- The center line is at 16.5 ounces.

- The standard deviation of the sample mean = 0.112 ounce.

- The UCL = 16.836 ounces.

- The LCL = 16.154 ounces.

Step-by-step explanation:

The Central limit theorem allows us to write for a random sample extracted from a normal population distribution with each variable independent of one another that

Mean of sampling distribution (μₓ) is approximately equal to the population mean (μ).

μₓ = μ = 16.5 ounces

And the standard deviation of the sampling distribution is given as

σₓ = (σ/√N)

where σ = population standard deviation = 0.25 ounce

N = Sample size = 5

σₓ = (0.25/√5) = 0.1118033989 = 0.112 ounce

Now using the 3 sigma limit rule that 99.5% of the distribution lies within 3 standard deviations of the mean, the entire distribution lies within

(μₓ ± 3σₓ)

= 16.5 ± (3×0.112)

= 16.5 ± (0.336)

= (16.154, 16.836)

Hope this Helps!!!

In a sample of 22 people, the average cost of a cup of coffee is $2.70. Assume the population standard deviation is $0.93. What is the 90% confidence interval for the cost of a cup of coffee

Answers

Answer:

$2.70+/-$0.33

= ( $2.37, $3.03)

Therefore, the 90% confidence interval (a,b) = ( $2.37, $3.03)

Step-by-step explanation:

Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.

The confidence interval of a statistical data can be written as.

x+/-zr/√n

Given that;

Mean x = $2.70

Standard deviation r = $0.93

Number of samples n = 22

Confidence interval = 90%

z(at 90% confidence) = 1.645

Substituting the values we have;

$2.70+/-1.645($0.93/√22)

$2.70+/-1.645($0.198276666210)

$2.70+/-$0.326165115916

$2.70+/-$0.33

= ( $2.37, $3.03)

Therefore, the 90% confidence interval (a,b) = ( $2.37, $3.03)

What is the general form of the equation of the line shown? 2 x - y + 3 = 0 2 x - y - 3 = 0 x - 2 y - 3 = 0

Answers

Answer:

2x - y - 3 = 0

Step-by-step explanation:

Find slope-intercept form first: y = mx + b

Step 1: Pick out 2 points

In this case, I picked out (2, 1) and (0, -3) from the graph

Step 2: Using slope formula y2 - y1/x2 - x1 to find slope

-3 - 1/0 - 2

m = 2

Step 3: Place slope formula results into point-slope form

y = 2x + b

Step 4: Plug in a point to find b

-3 = 2(0) + b

b = -3

Step 5: Write slope-intercept form

y = 2x - 3

Step 6: Move all variables and constants to one side

0 = 2x - 3 - y

Step 7: Rearrange

2x - y - 3 = 0 is your answer

If the terms of a polynomial do not have a GCF, does that mean it is not factorable?

Answers

If the terms of a polynomial do not have a GCF, does that mean it is not factorable? Explain. The terms of a polynomial do not have to have a common factor for the entire polynomial to be factorable.

given the diagram below what is cos (45degree)?

Answers

Answer:

[tex]1/\sqrt{2}[/tex]

Answer:

B

Step-by-step explanation:

Find the volume of the cone.
4 cm
3 cm
V = [?] cm3
Round to the nearest tenth.

Answers

Answer:

Volume of a cone = 1/3πr²h

h = height

r = radius

r = 3cm h = 4cm

Volume = 1/3π(3)²(4)

= 36 × 1/3π

= 12π

= 36.69cm³

= 37cm³ to the nearest tenth

Hope this helps

Answer:

37.7

_______

NOT 37

Step-by-step explanation:

v = [tex]\frac{1}{3}[/tex] · [tex]\pi[/tex] · [tex]r^{2}[/tex] · [tex]h[/tex]

v = [tex]\frac{1}{3}[/tex] · [tex]\pi[/tex] · [tex]3^{2}[/tex] · [tex]4 = 12\pi = 37.69911 =[/tex] 37.7

If the radius of a circle is 31.2 cm, what is the approximate area if you use 3.14 for pi and the area is rounded to the nearest tenth?

Answers

Answer:

3056.6 cm^2

Step-by-step explanation:

A = (pi)r^2 = 3.14 * 31.2 cm * 31.2 cm = 3056.6 cm^2

Answer: 3056.60 sq. cm.

Step-by-step explanation:

Area of a circle = π x r^2

= 3.14 x 31.2^2

= 3056.60

A complex electronic system is built with a certain number of backup components in its subsystems. One subsystem has eight identical components, each with a probability of 0.45 of failing in less than 1,000 hours. The sub system will operate if any four of the eight components are operating. Assume that the components operate independently. (Round your answers to four decimal places.)

Required:
Find the probability that the subsystem operates longer than 1000 hours.

Answers

Answer:

0.7396 = 73.96% probability that the subsystem operates longer than 1000 hours.

Step-by-step explanation:

For each component, there are only two possible outcomes. Either they fail in less than 1000 hours, or they do not. The components operate independently. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

Eight components:

This means that [tex]n = 8[/tex]

Probability of 0.45 of failing in less than 1,000 hours.

So 1 - 0.45 = 0.55 probability of working for longer than 1000 hours, which means that [tex]p = 0.55[/tex]

Find the probability that the subsystem operates longer than 1000 hours.

We need at least four of the components operating. So

[tex]P(X \geq 4) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)[/tex]

In which

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 4) = C_{8,4}.(0.55)^{4}.(0.45)^{4} = 0.2627[/tex]

[tex]P(X = 5) = C_{8,5}.(0.55)^{5}.(0.45)^{3} = 0.2568[/tex]

[tex]P(X = 6) = C_{8,6}.(0.55)^{6}.(0.45)^{2} = 0.1569[/tex]

[tex]P(X = 7) = C_{8,7}.(0.55)^{7}.(0.45)^{1} = 0.0548[/tex]

[tex]P(X = 8) = C_{8,8}.(0.55)^{8}.(0.45)^{0} = 0.0084[/tex]

[tex]P(X \geq 4) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) = 0.2627 + 0.2568 + 0.1569 + 0.0548 + 0.0084 = 0.7396[/tex]

0.7396 = 73.96% probability that the subsystem operates longer than 1000 hours.

Which of the following is not an undefined term?
point, ray, line, plane

Answers

Answer:

Step-by-step explanation:

Ray

Answer:

ray

Step-by-step explanation:

ray is a part of a line that has an endpoint in one side and extends indefinitely on the opposite side. hence, the answer is ray

hope this helps

finding angle measures between intersecting lines.

Answers

Answer: x=45°

Step-by-step explanation:

Angles opposite from each other are equal. The angle 160 degrees in red on the bottom encompasses two angles: BEG and CEG. Angle BEG is on the opposite side as FEA which means it is equal to x.

Since angle FED on the other side is 115, you subtract 115 from 160 to get 45 degrees.

Answer: x=45°

The angle BEG, which is opposite to the angle FEA, is determined to be 45 degrees.

According to the information provided, in a figure with an angle of 160 degrees (red angle on the bottom), there are two angles labeled as BEG and CEG. It is stated that the angle BEG is opposite to the angle FEA, making them equal, so we can represent this angle as x.

Additionally, it is mentioned that the angle FED on the other side measures 115 degrees.

To find the value of x, we subtract 115 degrees from the angle of 160 degrees.
=160-115
= 45

Thus, the solution is x = 45°.

For more details about the angle visit the link below: https://brainly.com/question/16959514

#SPJ4

for a sample size of 115 and a population parameter of 0.1,what is the standard deviation of the normal curve that can be used to approximate the binomial probability histogram. Round your answer to three decimal places


A.0.028

B.0.054

C.0.043

D.0.035

Answers

Answer:

A) 0.028

Step-by-step explanation:

Given:

Sample size, n = 115

Population parameter, p = 0.1

The X-Bin(n=155, p=0.1)

Required:

Find the standard deviation of the normal curve that can be used to approximate the binomial probability histogram.

To find the standard deviation, use the formula below:

[tex]\sigma = \sqrt{\frac{p(1-p)}{n}}[/tex]

Substitute figures in the equation:

[tex]\sigma = \sqrt{\frac{0.1(1 - 0.1)}{115}}[/tex]

[tex]\sigma = \sqrt{\frac{0.1 * 0.9}{115}}[/tex]

[tex]\sigma = \sqrt{\frac{0.09}{115}}[/tex]

[tex] \sigma = \sqrt{7.826*10^-^4}[/tex]

[tex] \sigma = 0.028 [/tex]

The Standard deviation of the normal curve that can be used to approximate the binomial probability histogram is 0.028

What is the relative change from 6546 to 4392

Answers

Answer:

The relative change from 6546 and 4392 is 49.04

Step-by-step explanation:

What is the algebraic expression for "the sum of three times a number and seven"? A. 3 x + 7 B. 3 x + 11 x C. 3 + 7 x

Answers

Answer:

3x+7

Step-by-step explanation:

Three times a number, let x be the number and 7 so plus 7

The algebraic expression for the given phrase is 3x+7. Therefore, the correct answer is option A.

The given phrase is "the sum of three times a number and seven".

Variables and constants are combined to generate algebraic expressions using a variety of techniques. Terms comprise expressions. A term is the sum of several elements. Both numerical and algebraic (literal) factors are acceptable.

Let the unknown number be x.

Three times of a number = 3x

The number 7 is added to the  obtained sum.

That is, 3x+7

So, the expression is 3x+7

The algebraic expression for the given phrase is 3x+7. Therefore, the correct answer is option A.

To learn more about an expression visit:

https://brainly.com/question/28170201.

#SPJ4

If an image of a triangle is congruent to the pre-image, what is the scale factor of the dilation?
0.1
1/2
1
10

Answers

The scale factor of the dilation is 1 because the image and pre-image share the SAME everything (lengths, area, etc.). So if you multiply one of the image’s length by any number other than one, the pre-image will change.

An article reports that 1 in 500 people carry the defective gene that causes inherited colon cancer. In a sample of 2000 individuals, what is the approximate distribution of the number who carry this gene

Answers

Answer:

Brianliest!

Step-by-step explanation:

4

1 in 500

500 x 4 = 2000

4 in 2000

How many units of insulin are in 0.75 ML a regular U – 100 insulin

Answers

Answer:

0.75 ML of insulin contains 75 units of insulin

Step-by-step explanation:

U - 100 insulin hold 100 units of insulin per ml

This means that:

1 ML = 100 units

∴ 0.75 ML = 100 × 0.75 = 75  units

Therefore 0.75 ML of insulin contains 75 units of insulin

Other Questions
What type of error is present in the underlinedsentence?Which is the best revision to fix the error? Can someone help me with the below question??? Under the rule of Queen Elizabeth I, Parliament: a surveyor is trying to find the height of a hill . he/she takes a sight on the top of the hill and find that the angle of elevation is 40. he/she move a distance of 150 metres on level ground directly away from the hill and take a second sight. from this point the angl.e of elevation is 22. find the height of the hill Use the drop-down menus to select the appropriate stage directions for the scene. Amber. Look, Elijah! Is that a wallet on the sidewalk? Elijah. [Concerned.] Wow, I think it is. I wonder if there is any identification in it. Amber. There is. And its also full of money! Lets grab a cab and see a movie! Elijah. [Stopping her.] Wait. Shouldnt we try to find the owner? 2p+8=20-p what is the value of p?? Which sentence contains correct parallel structure? Jenny likes to raft, hang gliding, and to ride horses. Jenny likes rafting, hang gliding, and riding horses. Jenny likes to raft, hang gliding, and riding horses. Jenny likes rafting, to hang glide, and to ride horses. Approximately 10% of all people are left-handed. If 200 people are randomly selected, what is the expected number of left-handed people? Round to the whole number. Do not use decimals. Answer: Assign True to the variable is_ascending if the list numbers is in ascending order (that is, if each element of the list is greater than or equal to the previous element in the list). Otherwise, assign False with is_ascending. What is an expression equivalent to8with a denominator of 11d.11 Edwin has 3 1 2 gallons of green paint. He uses 2 3 of the paint to paint his bedroom. He uses the rest of the paint for a mural in his garage. How much paint does Edwin use for the mural? Identify the following as an example of a physical or chemical. Olive oil, vinegar, salt, and pepper are shaken together together to make salad dressing A box contains red, purple and green beads in the ratio 4:6:7 There are 1428 more green beads than red beads.How many green beads are in the box? AC =Round your answer to the nearest hundredth.A535BC HELLO THERE. PLS HELP WITH GEOMETRY Maria, Max, Molly, and Mitch are all picking apples at an orchard. The number of apples Max picks is the number of apples Maria picks squared. Molly picks the number of apples that Max and Maria pick combined. Mitch picks the number of apples Molly picks squared plus the number of apples that Maria picks. If Maria picks 3 apples, then how many apples does Mitch pick which statement describes abiotic factors in an environment ? write a letter to your friend who was recently shifted to a new city to inform him that you would be paying a visit to him during your summer break Your teacher puts four slips of paper in a jar, each with a different shape. Every day,each person chooses one paper from the jar to determine what activity they get to doat the end of the day. After choosing, the paper is always returned to the jar.What is the probability of choosing the paper with a circle on it?CLEARCHECK% The system of equations y = one-fourth x minus 5 and y = negative one-half x minus 3 is shown on the graph below. On a coordinate plane, 2 lines intersect around (2.8, negative 4.2). Which statement is true about the solution to the system of equations? The x-value is between 2 and 3, and the y-value is between 4 and 5. The x-value is between 4 and 5, and the y-value is between 2 and 3. The x-value is between 2 and 3, and the y-value is between 4 and 5. The x-value is between 4 and 5, and the y-value is between 2 and 3.