if four numbers are to be selected with replacement what is the probability that two numbers are same

Answers

Answer 1

If four numbers are selected from the first ten natural numbers. The probability that only two of them are even is [tex]\frac{10}{21}[/tex].

The probability of an event is a number that indicates how likely the event is to occur.

[tex]Probability =\frac{favourable \ outcomes}{total \ number \ of \ outcomes}[/tex]

If four numbers are selected out of first 10 natural numbers, the probability that two of the numbers are even implies that other two number are odd. Out of 5 odd natural number (1,3,5,7,9) two are selected and similarly out of the 5 even natural number(2,4,6,8,10) , two are selected.

[tex]Probability =\frac{favourable \ outcomes}{total \ number \ of \ outcomes}[/tex]

P = [tex]\frac{^5C_2 \ ^5C_2}{^{10}C_4} = \frac{10}{21}[/tex]

Learn more about probability here

https://brainly.com/question/31828911

#SPJ4

The complete question is given below,

If four numbers are selected from the first ten natural numbers. What is the probability that only two of them are even?


Related Questions

Consider the line y=(1)/(2)x-9. (a) Find the equation of the line that is perpendicular to this line and passes through the point (-3,-4). Answer: (b) Find the equation of the line that is parallel to this line and passes through the point (-3,-4).

Answers

(a) The equation of the line that is perpendicular to the line [tex]y = (1/2)x - 9[/tex] and passes through the point [tex](-3, -4)[/tex] is [tex]y = -2x + 2[/tex].

(b) The equation of the line that is parallel to the line [tex]y = (1/2)x - 9[/tex] and passes through the point [tex](-3, -4)[/tex] is [tex]y = 1/2x - 3.5[/tex].

To find the equation of the line that is perpendicular to the given line and passes through the point [tex](-3,-4)[/tex], we need to first find the slope of the given line, which is [tex]1/2[/tex]

The negative reciprocal of [tex]1/2[/tex] is [tex]-2[/tex], so the slope of the perpendicular line is [tex]-2[/tex]

We can now use the point-slope formula to find the equation of the line.

Putting the values of x, y, and m (slope) in the formula:

[tex]y - y_1 = m(x - x_1)[/tex], where [tex]x_1 = -3[/tex], [tex]y_1 = -4[/tex], and [tex]m = -2[/tex], we get:

[tex]y - (-4) = -2(x - (-3))[/tex]

Simplifying and rearranging this equation, we get:

[tex]y = -2x + 2[/tex]

To find the equation of the line that is parallel to the given line and passes through the point [tex](-3,-4)[/tex], we use the same approach.

Since the slope of the given line is [tex]1/2[/tex], the slope of the parallel line is also [tex]1/2[/tex]

Using the point-slope formula, we get:

[tex]y - (-4) = 1/2(x - (-3))[/tex]

Simplifying and rearranging this equation, we get:

[tex]y = 1/2x - 3.5[/tex]

Learn more about slope here:

https://brainly.com/question/12203383

#SPJ11

Suppose the time it takes my daugther, Lizzie, to eat an apple is uniformly distributed between 6 and 11 minutes. Let X= the time, in minutes, it takes Lizzie to eat an apple. a. What is the distribution of X?X - Please show the following answers to 4 decimal places. b. What is the probability that it takes Lizzie at least 12 minutes to finish the next apple? c. What is the probability that it takes Lizzie more than 8.5 minutes to finish the next apple? d. What is the probability that it takes Lizzie between 8.2 minutes and 9.4 minutes to finish the next apple? e. What is the probabilitv that it takes Lizzie fewer than 8.2 minutes or more than 9.4 minutes to finish the next apple?

Answers

The probability that it takes Lizzie more than 8.5 minutes to finish the next apple, the probability that it takes Lizzie between 8.2 minutes and 9.4 minutes to finish the next apple, and the probability that it takes Lizzie fewer than 8.2 minutes or more than 9.4 minutes to finish the next apple.

a) Distribution of X is uniform since time taken to eat an apple is uniformly distributed between 6 and 11 minutes. This can be represented by U(6,11).

b) The probability that it takes Lizzie at least 12 minutes to finish the next apple is 0 since the maximum time she can take to eat the apple is 11 minutes

.c) The probability that it takes Lizzie more than 8.5 minutes to finish the next apple is (11 - 8.5) / (11 - 6) = 0.3.

d) Probability that it takes Lizzie between 8.2 minutes and 9.4 minutes to finish the next apple is

(9.4 - 8.2) / (11 - 6) = 0.12

e) Probability that it takes Lizzie fewer than 8.2 minutes or more than 9.4 minutes to finish the next apple is the sum of the probabilities of X < 8.2 and X > 9.4.

Hence, it is (8.2 - 6) / (11 - 6) + (11 - 9.4) / (11 - 6) = 0.36.

:In this question, we found the distribution of X, the probability that it takes Lizzie at least 12 minutes to finish the next apple, the probability that it takes Lizzie more than 8.5 minutes to finish the next apple, the probability that it takes Lizzie between 8.2 minutes and 9.4 minutes to finish the next apple, and the probability that it takes Lizzie fewer than 8.2 minutes or more than 9.4 minutes to finish the next apple.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

Write the equation of the line ℓ1​ passing through (−2,5) and having y intercept equal to 4 . b) Find the equation of the line ℓ2​ perpendicular (⊥) to the line ℓ1​ passing through the origin of the axes. 2. Find the equation of the parabola having x-intercepts at 2 and 4 and passing through the point (3,−1). Find: a) the vertex; b) Which is the minimum value, if it exists, achieved by y ?

Answers

The parabola opens upward, so there is no minimum value achieved by y.

Equation of the line passing through (−2,5) and y-intercept 4 is

y = -2x+9.

This can be found by plugging in the given values into the slope-intercept form of the equation of a line,

y = mx+b.

Rearranging for b gives

y - mx = b,

so substituting

m=-2,

x = -2, and

y = 5 gives

5 - (-2)(-2) = 9.

Hence, the equation of the line is

y = -2x+9

The slope of the line ℓ1​ is -2, so the slope of the line ℓ2​ is 1/2, since the product of the slopes of two perpendicular lines is -1.

The line ℓ2​ passes through the origin, so the equation of

ℓ2​ is y = 1/2x.2.

Since the given x-intercepts of the parabola are 2 and 4, the parabola can be written in factored form as

y = a(x-2)(x-4),

where a is some constant.

To find the value of a, we use the given point

(3,-1):-1 = a(3-2)(3-4) = -a

Hence, a = 1.

Therefore, the equation of the parabola is

y = (x-2)(x-4).

To find the vertex, we complete the square:

[tex]y = x^2 - 6x + 8[/tex]

[tex]= (x-3)^2 - 1.[/tex]

Thus, the vertex is (3,-1).

Since the coefficient of[tex]x^2[/tex] is positive, the parabola opens upward, so there is no minimum value achieved by y.

To know more about parabola visit :

brainly.com/question/32028534

#SPJ11

Suppose A = B_1 B_2... B_k and B is a square matrix for all 1 ≤ i ≤ k. Prove that A is invertible if and only if B_i is invertible for all 1 ≤ i ≤ k.

Answers

We have shown that A is invertible if and only if B_i is invertible for all 1 ≤ i ≤ k

To prove the statement, we will prove both directions separately:

Direction 1: If A is invertible, then B_i is invertible for all 1 ≤ i ≤ k.

Assume A is invertible. This means there exists a matrix C such that AC = CA = I, where I is the identity matrix.

Now, let's consider B_i for some arbitrary i between 1 and k. We want to show that B_i is invertible.

We can rewrite A as A = (B_1 B_2 ... B_i-1)B_i(B_i+1 ... B_k).

Multiply both sides of the equation by C on the right:

A*C = (B_1 B_2 ... B_i-1)B_i(B_i+1 ... B_k)*C.

Now, consider the subexpression (B_1 B_2 ... B_i-1)B_i(B_i+1 ... B_k)*C. This is equal to the product of invertible matrices since A is invertible and C is invertible (as it is the inverse of A). Therefore, this subexpression is also invertible.

Since a product of invertible matrices is invertible, we conclude that B_i is invertible for all 1 ≤ i ≤ k.

Direction 2: If B_i is invertible for all 1 ≤ i ≤ k, then A is invertible.

Assume B_i is invertible for all i between 1 and k. We want to show that A is invertible.

Let's consider the product A = B_1 B_2 ... B_k. Since each B_i is invertible, we can denote their inverses as B_i^(-1).

We can rewrite A as A = B_1 (B_2 ... B_k). Now, let's multiply A by the product (B_2 ... B_k)^(-1) on the right:

A*(B_2 ... B_k)^(-1) = B_1 (B_2 ... B_k)(B_2 ... B_k)^(-1).

The subexpression (B_2 ... B_k)(B_2 ... B_k)^(-1) is equal to the identity matrix I, as the inverse of a matrix multiplied by the matrix itself gives the identity matrix.

Therefore, we have A*(B_2 ... B_k)^(-1) = B_1 I = B_1.

Now, let's multiply both sides by B_1^(-1) on the right:

A*(B_2 ... B_k)^(-1)*B_1^(-1) = B_1*B_1^(-1).

The left side simplifies to A*(B_2 ... B_k)^(-1)*B_1^(-1) = A*(B_2 ... B_k)^(-1)*B_1^(-1) = I, as we have the product of inverses.

Therefore, we have A = B_1*B_1^(-1) = I.

This shows that A is invertible, as it has an inverse equal to (B_2 ... B_k)^(-1)*B_1^(-1).

.

Learn more about invertible here :-

https://brainly.com/question/31479702

#SPJ11

Mr. and Mrs. Garcla have a total of $100,000 to be invested In stocks, bonds, and a money market account. The stocks have a rate of return of 12%/ year, while the bonds and the money market account pay 8%/ year and 4%/ year, respectively. The Garclas have stlpulated that the amount invested in stocks should be equal to the sum of the amount invested in bonds and 3 times the amount invested in the money market account. How should the Garclas allocate their resources if they require an'annual income of $10,000 from their investments? Give two specific options. (Let x1, ,y1, and z1 refer to one option for investing money in stocks, bonds, and the money market account respectively. Let x2,y2, and z2 refer to a second option for investing money in stocks, bonds, and the money market account respectively.) {(x1,y1,z1),(x2,y2,z2)}= ? Choose the answer, the equation, or the statement that is correct or appropriate.

Answers

One option for investing in money market is (5625, 3750, 13750). The second option for investing is (22500, 12500, 50000).

Let the amount of money invested in the money market account be x. Then the amount of money invested in bonds will be y. As per the given conditions, the amount of money invested in stocks will be 3x+y. So, the total amount invested is $100,000.∴ x+y+3x+y = 100,000 ⇒ 4x + 2y = 100,000 ⇒ 2x + y = 50,000Also, the expected return is $10,000. As stocks have a rate of return of 12% per annum, the amount invested in stocks is 3x+y, and the expected return from stocks will be (3x+y)×12/100.

Similarly, the expected return from bonds and the money market account will be y×8/100 and x×4/100 respectively.∴ (3x+y)×12/100 + y×8/100 + x×4/100 = 10,000  ⇒ 36x + 20y + 25y + 4x = 10,00000 ⇒ 40x + 45y = 10,00000/100 ⇒ 8x + 9y = 200000/4  ⇒ 8x + 9y = 50000 (on dividing both sides by 4) 2x + y = 50000/8 (dividing both sides by 2) 2x + y = 6250. This equation should be solved simultaneously with 2x+y = 50000. Therefore, solving both of these equations together we get x = 1875, y = 3750 and z = 13750. Thus, the first option for investing is (5625, 3750, 13750). Putting this value in the equation (3x+y)×12/100 + y×8/100 + x×4/100 = 10,000, we get LHS = RHS = $10,000.

Thus, one option for investing is (5625, 3750, 13750). The second option can be found by taking 2x+y = 6250, solving it simultaneously with x+y+3x+y = 100,000 and then putting the values in the equation (3x+y)×12/100 + y×8/100 + x×4/100 = 10,000. On solving them together, we get x = 7500, y = 12500 and z = 50000. Thus, the second option for investing is (22500, 12500, 50000). Putting the values in the equation (3x+y)×12/100 + y×8/100 + x×4/100 = 10,000, we get the LHS = RHS = $10,000. Therefore, the required answer is {(5625, 3750, 13750), (22500, 12500, 50000)}.

To know more about money market: https://brainly.com/question/14755236

#SPJ11

Find decimal notation. 42.3 % Find decimal notation. 42.3 % 42.3 %= (Simplify your answer. Type an integer or a decima
Find the numerical value, if x=2 and y=1 . \

Answers

The decimal notation for 42.3% is 0.423. Substituting x = 2 and y = 1 into the expression 3x + 2y yields a numerical value of 8.

To convert a percentage to decimal notation, we divide the percentage by 100. In this case, 42.3 divided by 100 is 0.423. Therefore, the decimal notation for 42.3% is 0.423. To find the numerical value if x=2 and y=1," we can substitute the given values into the expression and evaluate it.

If x = 2 and y = 1, we can substitute these values into the expression. The numerical value can be found by performing the necessary operations.

Let's assume the expression is 3x + 2y. Substituting x = 2 and y = 1, we have:

3(2) + 2(1) = 6 + 2 = 8.

Therefore, when x = 2 and y = 1, the numerical value of the expression is 8.

To learn more about Decimal notation, visit:

https://brainly.com/question/15923480

#SPJ11

Mang Jess harvested 81 eggplants, 72 tomatoes and 63 okras. He placed the same number of each kind of vegetables in each paper bag. How many eggplants, tomatoes and okras were in each paper bag?

Answers

The number of eggplants, tomatoes and okras that were in each paper bag is 9,8 and 7 respectively.

Mang Jess harvested 81 eggplants, 72 tomatoes, and 63 okras.

He placed the same number of each kind of vegetables in each paper bag.

To find out how many eggplants, tomatoes, and okras were in each paper bag, we need to find the greatest common factor (GCF) of 81, 72, and 63.81

= 3 × 3 × 3 × 372 = 2 × 2 × 2 × 2 × 362 = 3 × 3 × 7

GCF is the product of the common factors of the given numbers, raised to their lowest power. For example, the factors that all three numbers share in common are 3 and 9, but 9 is the highest power of 3 that appears in any of the numbers.

Therefore, the GCF of 81, 72, and 63 is 9.

Therefore, Mang Jess put 9 eggplants, 8 tomatoes, and 7 okras in each paper bag.

To know more about number refer here:

https://brainly.com/question/14366051

#SPJ11

If two indifference curves were to intersect at a point, this would violate the assumption of A. transitivity B. completeness C. Both A and B above. D. None of the above. 23. If the utility function (U) between food (F) and clothing (C) can be represented as U(F,C)- Facos holding the consumption of clothing fixed, the utility will A. increase at an increasing speed when more food is consumed B. increase at an decreasing speed when more food is consumed C. increase at an constant speed when more food is consumed. D. remain the same. 24. If Fred's marginal utility of pizza equals 10 and his marginal utility of salad equals 2, then A. he would give up five pizzas to get the next salad B. he would give up five salads to get the next pizza C. he will eat five times as much pizza as salad. D. he will eat five times as much salad as pizza 25. Sarah has the utility function U(X, Y) = X05yas When Sarah consumes X=2 and Y-6 she has a marginal rate of substitution of A. -12 B. -1/6 C. -6 D. -1/12 26. Sue views hot dogs and hot dog buns as perfect complements in her consumption, and the corners of her indifference curves follow the 45-degree line. Suppose the price of hot dogs is $5 per package (8 hot dogs), the price of buns is $3 per package (8 hot dog buns), and Sue's budget is $48 per month. What is her optimal choice under this scenario? A. 8 packages of hot dogs and 6 packages of buns B. 8 packages of hot dogs and 8 packages of buns C. 6 packages of hot dogs and 6 packages of buns D. 6 packages of hot dogs and 8 packages of buns 27. If two g0ods are perfect complements, A. there is a bliss point and the indifference curves surround this point. B. straight indifference curves have a negative slope. C. convex indifference curves have a negative slope. D. indifference curves have a L-shape. 28. Max has allocated $100 toward meats for his barbecue. His budget line and indifference map are shown in the below figure. If Max is currently at point e, A. his MRSurorrchicken is less than the trade-off offered by the market. B. he is willing to give up less burger than he has to, given market prices C. he is maximizing his utility. D. he is indifference between point b and point e because both on the budget line.

Answers

23) D. None of the above. 24) A. He would give up five pizzas to get the next salad 25) C. -6. The marginal rate of substitution (MRS) is the ratio of the marginal utilities of two goods 26) C. 6 packages of hot dogs and 6 packages of buns. 27) D. Indifference curves have an L-shape when two goods are perfect complements. 28) C. He is maximizing his utility

How to determine the what would violate the assumption of transitivity

23. D. None of the above. The assumption that would be violated if two indifference curves intersect at a point is the assumption of continuity, not transitivity or completeness.

24. A. He would give up five pizzas to get the next salad. This is based on the principle of diminishing marginal utility, where the marginal utility of a good decreases as more of it is consumed.

25. C. -6. The marginal rate of substitution (MRS) is the ratio of the marginal utilities of two goods. In this case, the MRS is given by the derivative of U(X, Y) with respect to X divided by the derivative of U(X, Y) with respect to Y. Taking the derivatives of the utility function U(X, Y) = X^0.5 * Y^0.5 and substituting X = 2 and Y = 6, we get MRS = -6.

26. C. 6 packages of hot dogs and 6 packages of buns. Since hot dogs and hot dog buns are perfect complements, Sue's optimal choice will be to consume them in fixed proportions. In this case, she would consume an equal number of packages of hot dogs and hot dog buns, which is 6 packages each.

27. D. Indifference curves have an L-shape when two goods are perfect complements. This means that the consumer always requires a fixed ratio of the two goods, and the shape of the indifference curves reflects this complementary relationship.

28. C. He is maximizing his utility. Point e represents the optimal choice for Max given his budget constraint and indifference map. It is the point where the budget line is tangent to an indifference curve, indicating that he is maximizing his utility for the given budget.

Learn more about marginal utilities at https://brainly.com/question/14797444

#SPJ1

Let X, Y be a bivariate random variable with joint probability density function given by
fx,y(x,y) = Axy exp(-x2), x>y>0 otherwise,
where A > 0 is a constant.
(i) Show that A = 4.
(ii) Find the marginal probability density function of X.
(iii) Find the marginal probability density function of Y.
(iv) Find P(X2Y | X < 2).

Answers

To find the constant A, we need to integrate the joint probability density function over its entire domain and set it equal to 1 since it represents a valid probability density function.

Marginal probability density function of X:

To find the marginal probability density function of X, we integrate the joint probability density function with respect to Y over its entire range:

= A exp(-x^2) ∫xy dy | from 0 to x

= A exp(-x^2) (1/2)x^2

= 2x^2 exp(-x^2), 0 < x < ∞  Marginal probability density function of Y:

To find the marginal probability density function of Y, we integrate the joint probability density function with respect to X over its entire range:

Since x>y>0, the integral limits for x are from y to ∞. Thus:

To find this probability, we need to calculate the conditional probability density function of Y given X < 2 and evaluate it for X^2Y.

Learn more about probability here

https://brainly.com/question/31828911

#SPJ11

Find the system of linear inequalities that corresponds to The system shown. −15x+9y
−12x+11y
3x+2y

0
−19
−18

Find all the corner points of the feasible region. (Order your answers from smallest to largest x, then from smallest to largest y.) (x,y)=(, (x,y)=(
(x,y)=(

) (smallest x-value )
(iargest x-value )

Answers

The corner points of the feasible region are:

(0, 0), (19/12, 0), (0, -19/11), and (-6, 0).

The given system of linear inequalities is:

-15x + 9y ≤ 0-12x + 11y ≤ -19 3x + 2y ≤ -18

Now, we need to find the corner points of the feasible region and for that, we will solve the given equations one by one:

1. -15x + 9y ≤ 0

Let x = 0, then

9y ≤ 0, y ≤ 0

The corner point is (0, 0)

2. -12x + 11y ≤ -19

Let x = 0, then

11y ≤ -19,

y ≤ -19/11

Let y = 0, then

-12x ≤ -19,

x ≥ 19/12

The corner point is (19/12, 0)

Let 11

y = -19 - 12x, then

y = (-19/11) - (12/11)x

Let x = 0, then

y = -19/11

The corner point is (0, -19/11)

3. 3x + 2y ≤ -18

Let x = 0, then

2y ≤ -18, y ≤ -9

Let y = 0, then

3x ≤ -18, x ≤ -6

The corner point is (-6, 0)

Therefore, the corner points of the feasible region are (0, 0), (19/12, 0), (0, -19/11) and (-6, 0).

To learn more about inequalities visit : https://brainly.com/question/25275758

#SPJ11

Heavy Numbers 4.1 Background on heavy numbers 4.1.1 The heavy sequence A sequence of numbers (the heavy sequence) y 0
y 1
y 2
y 3
…y n
… is defined such that each number is the sum of digits squared of the previous number, in a particular base. Consider numbers in base 10 , with y 0
=12 The next number in the sequence is y 1
=1 2
+2 2
=5 The next number in the sequence is y 2
=5 2
=25 The next number in the sequence is y 3
=2 2
+5 2
=29 4.1.2 Heaviness It turns out that for each number y 0
and base N, the heavy sequence either converges to 1 , or it does not. A number whose sequence converges to 1 in base N is said to be "heavy in base N" 4.2 Program requirements Write a function heavy that takes as arguments a number y and a base N and returns whether that number y is heavy in the base N provided. Here are examples: ≫ heavy (4,10) False > heavy (2211,10) True ≫ heavy (23,2) True ≫ heavy (10111,2) True ≫ heavy (12312,4000) False 4.2.1 Value Ranges The number y will always be non-negative, and the base N will always satisfy 2≤N≤4000

Answers

The function iteratively calculates the next number in the heavy sequence until it reaches 1 or detects a repeating pattern. If the next number becomes equal to the current number, it means the sequence does not converge to 1 and the number is not heavy in the given base. Otherwise, if the sequence reaches 1, the number is heavy.

Here's a Python implementation of the heavy function that checks if a number y is heavy in base N:

python

Copy code

def heavy(y, N):

   while y != 1:

       next_num = sum(int(digit)**2 for digit in str(y))

       if next_num == y:

           return False

       y = next_num

   return True

You can use this function to check if a number is heavy in a specific base. For example:

python

Copy code

print(heavy(4, 10))        # False

print(heavy(2211, 10))     # True

print(heavy(23, 2))        # True

print(heavy(10111, 2))     # True

print(heavy(12312, 4000))  # False

The function iteratively calculates the next number in the heavy sequence until it reaches 1 or detects a repeating pattern. If the next number becomes equal to the current number, it means the sequence does not converge to 1 and the number is not heavy in the given base. Otherwise, if the sequence reaches 1, the number is heavy.

Note: This implementation assumes that the input number y and base N are within the specified value ranges of non-negative y and 2 <= N <= 4000.

Learn more about function from

https://brainly.com/question/11624077

#SPJ11

A rectanguar athletic feld is twice as long as it is wide. If the perimeter of the athletic field is 210 yands, what are its timensions? The width is yatưs

Answers

A rectangular athletic field which is twice as long as it is wide has a perimeter of 210 yards. The width is not given. In order to determine its dimensions, we need to use the formula for the perimeter of a rectangle, which is P = 2L + 2W.
Thus, the dimensions of the athletic field are 35 yards by 70 yards.

Let's assume that the width of the athletic field is W. Since the length is twice as long as the width, then the length is equal to 2W. We can now use the formula for the perimeter of a rectangle to set up an equation that will help us solve for the width.
P = 2L + 2W
210 = 2(2W) + 2W
210 = 4W + 2W
210 = 6W

Now, we can solve for W by dividing both sides of the equation by 6.
W = 35

Therefore, the width of the athletic field is 35 yards. We can use this to find the length, which is twice as long as the width.
L = 2W
L = 2(35)
L = 70
Therefore, the length of the athletic field is 70 yards. Thus, the dimensions of the athletic field are 35 yards by 70 yards.

To know more about dimensions of rectangle refer here:

https://brainly.com/question/28978142

#SPJ11

We know that the midpoint will create two congruent segments. So if our total segment is 90. Half of 90 is Answer . Figure 26. Diagram of a car traveling 90 miles. Our food stop will be at Answer miles after we start our trip from Point B .

Answers

The midpoint of a segment divides it into two congruent segments. If the total segment is 90 miles, half of 90 is 45 miles.

When we talk about the midpoint of a segment, we mean the point that is equidistant from the endpoints of the segment. The midpoint divides the segment into two congruent segments, which means they have equal lengths.

In this case, if the total segment is 90 miles, we want to find half of 90. To do this, we divide 90 by 2, which gives us 45. So, half of 90 is 45 miles.

Now, let's move on to the second part of the question. The diagram shows a car traveling 90 miles. We want to know where our food stop will be if we start our trip from Point B.

Since the midpoint divides the segment into two congruent segments, our food stop will be at the midpoint of the 90-mile trip. So, it will be located 45 miles after we start our trip from Point B.

For more similar questions on congruent segments

brainly.com/question/13157913

#SPJ8

A ∗
uses a heuristic function f(n) in its search for a solution. Explain the components of f(n). Why do you think f(n) is more effective than h(n), the heuristic function used by greedy best-first? Question 3 For A ∗
to return the minimum-cost solution, the heuristic function used should be admissible and consistent. Explain what these two terms mean.

Answers

A∗ is an algorithm that uses a heuristic function f(n) in its search for a solution. The heuristic function f(n) estimates the distance from node n to the goal.

The estimation should be consistent, meaning that the heuristic should never overestimate the distance, and should be admissible, meaning that it should not overestimate the minimum cost to the goal.  

The A∗ heuristic function uses two types of estimates: heuristic function h(n) which estimates the cost of reaching the goal from node n, and the actual cost g(n) of reaching node n. The cost of a path is the sum of the costs of the nodes on that path. Therefore, f(n) = g(n) + h(n).

A∗ is more effective than greedy best-first because it uses a heuristic function that is both admissible and consistent. Greedy best-first, on the other hand, uses a heuristic function that is only admissible. This means that it may overestimate the cost to the goal, which can cause the algorithm to overlook better solutions.

A∗, on the other hand, uses a heuristic function that is both admissible and consistent. This means that it will never overestimate the cost to the goal, and will always find the optimal solution if one exists.Admissible and consistent are two properties that a heuristic function must have for A∗ to return the minimum-cost solution. Admissible means that the heuristic function never overestimates the actual cost of reaching the goal.

This means that h(n) must be less than or equal to the actual cost of reaching the goal from node n. Consistent means that the estimated cost of reaching the goal from node n is always less than or equal to the estimated cost of reaching any of its successors plus the cost of the transition.

Mathematically, this means that h(n) ≤ h(n') + c(n,n'), where c(n,n') is the cost of the transition from node n to its successor node n'.

To know more about algorithm visit:

https://brainly.com/question/28724722

#SPJ11

In Exercises 21-32, sketch the graphs of the given functions by determining the appropriate information and points from the first and second derivatives.
21. y 12x2x2 =
23. y = 2x^3 + 6x2 - 5
25. y=x^3+3x² + 3x + 2
27. y = 4x^324x² + 36x
29. y=4x³-3x² + 6
31. y=x^5 - 5x

Answers

In Exercise 21, the graph of the function y = 12x^2 will be a parabola that opens upward. The second derivative is 0, indicating a point of inflection. The first derivative is positive for x > 0 and negative for x < 0, showing that the function is increasing for x > 0 and decreasing for x < 0.

In Exercise 23, the graph of the function y = 2x^3 + 6x^2 - 5 will be a curve that increases without bound as x approaches positive or negative infinity. The first derivative is positive for x > -1 and negative for x < -1, indicating that the function is increasing for x > -1 and decreasing for x < -1. The second derivative is positive, showing that the function is concave up.

In Exercise 25, the graph of the function y = x^3 + 3x^2 + 3x + 2 will be a curve that increases without bound as x approaches positive or negative infinity. The first derivative is positive for all x, indicating that the function is always increasing. The second derivative is positive, showing that the function is concave up.

In Exercise 27, the graph of the function y = 4x^3 - 24x^2 + 36x will be a curve that increases without bound as x approaches positive or negative infinity. The first derivative is positive for x > 3 and negative for x < 3, indicating that the function is increasing for x > 3 and decreasing for x < 3. The second derivative is positive for x > 2 and negative for x < 2, showing that the function is concave up for x > 2 and concave down for x < 2.

In Exercise 29, the graph of the function y = 4x^3 - 3x^2 + 6 will be a curve that increases without bound as x approaches positive or negative infinity. The first derivative is positive for x > 0 and negative for x < 0, indicating that the function is increasing for x > 0 and decreasing for x < 0. The second derivative is positive for all x, showing that the function is concave up.

In Exercise 31, the graph of the function y = x^5 - 5x will be a curve that increases without bound as x approaches positive or negative infinity. The first derivative is positive for x > 1 and negative for x < 1, indicating that the function is increasing for x > 1 and decreasing for x < 1. The second derivative is positive for x > 1 and negative for x < 1, showing that the function is concave up for x > 1 and concave down for x < 1.

Learn more about function here: brainly.com/question/30660139

#SPJ11

Determine all joint probabilities listed below from the following information: P(A)=0.75,P(A c
)=0.25,P(B∣A)=0.46,P(B∣A c
)=0.78 P(A and B)= P(A and B c
)= P(A c
and B)= P(A c
and B c
)=

Answers

The given probabilities help us determine the joint probabilities, The joint probabilities are:P(A and B) = 0.345P(A and B') = 0.405P(A' and B) = 0.195P(A' and B') = 0.055

Conditional probability is the probability of an event given that another event has occurred. In probability theory, the product rule describes the likelihood of two independent events occurring. This rule is used for computing joint probabilities of an event. The rule is stated as:If A and B are two independent events, then,

P(A and B) = P(A) × P(B)

Given, P(A) = 0.75, P(A') = 0.25, P(B|A) = 0.46, P(B|A') = 0.78

We need to determine all the joint probabilities listed below P(A and B)P(A and B')P(A' and B)P(A' and B')

Using the product rule,

P(A and B) = P(A) × P(B|A) = 0.75 × 0.46 = 0.345

P(A and B') = P(A) × P(B'|A) = 0.75 × (1 - 0.46) = 0.405

P(A' and B) = P(A') × P(B|A') = 0.25 × 0.78 = 0.195

P(A' and B') = P(A') × P(B'|A') = 0.25 × (1 - 0.78) = 0.055

Therefore, joint probabilities are:P(A and B) = 0.345P(A and B') = 0.405P(A' and B) = 0.195P(A' and B') = 0.055

To know more about probabilities visit:

brainly.com/question/29608327

#SPJ11

Probability and statistic in CS
Let X be a continuous random variable with pdf f(X) = 3x ^3 + 1/4 on the interval 0 < x < c.
(a) Find the value of c that makes f a valid pdf.
(b) Compute the expected value and variance of X.

Answers

To find the value of c that makes f a valid probability density function (pdf), we need to ensure that the integral of f(X) over the entire interval is equal to 1.

(a) Validating the pdf:

The pdf f(X) is given as 3x^3 + 1/4 on the interval 0 < x < c.

To find the value of c, we integrate f(X) over the interval [0, c] and set it equal to 1:

∫[0,c] (3x^3 + 1/4) dx = 1

Integrating the function, we get:

[(3/4)x^4 + (1/4)x] evaluated from 0 to c = 1

Substituting the limits of integration:

[(3/4)c^4 + (1/4)c] - [(3/4)(0)^4 + (1/4)(0)] = 1

Simplifying:

(3/4)c^4 + (1/4)c = 1

To solve for c, we can rearrange the equation:

(3/4)c^4 + (1/4)c - 1 = 0

This is a polynomial equation in c. We can solve it numerically using methods such as root-finding algorithms or numerical solvers to find the value of c that satisfies the equation.

(b) Computing the expected value and variance of X:

The expected value (mean) of a continuous random variable X is calculated as:

E[X] = ∫x * f(x) dx

To find the expected value, we evaluate the integral:

E[X] = ∫[0,c] x * (3x^3 + 1/4) dx

Similarly, the variance of X is calculated as:

Var[X] = E[X^2] - (E[X])^2

To find the variance, we need to calculate E[X^2]:

E[X^2] = ∫x^2 * f(x) dx

Once we have both E[X] and E[X^2], we can substitute them into the variance formula to obtain Var[X].

To complete the calculations, we need the value of c from part (a) or a specific value for c provided in the problem. With that information, we can evaluate the integrals and compute the expected value and variance of X.

To know more about probability density function, visit:

https://brainly.com/question/31039386

#SPJ11

Mai made $95 for 5 hours of work.
At the same rate, how many hours would she have to work to make $133?

Answers

To find the number of hours Mai would have to work at the same rate to make $133, we need to divide $133 by Mai's hourly rate, which is $95/5 hours or $19/hour:


$133 / $19 = number of hours
number of hours * $19 = $133
number of hours = $133 / $19

Solving for number of hours we get:


number of hours = 7.00 hours

So Mai would need to work 7.00 hours at the same rate to make $133.

a) An object is auctioned. There are two rational (risk neutral) buyers, each attaching a private value (not known to their opponent or the seller) to the object: 10 and 20 euros, respectively. Each bidder assumes that the valuation of the opponent is a random variable that is uniformly distributed in the interval [0,20]. What revenue will the seller expect to earn when the object is auctioned in an English auction? Buyers indicate their willingness to continue bidding (e.g. keep their hand up) or can exit (e.g take their hand down). At what price will the buyer with the lower valuation take his hand down? What is the expected profit of the winner of the auction? b) Using the same information as in a), suppose the seller decides to auction the object in a Dutch auction. Explain what will now be the expected revenue, assuming that the auction starts at a price that is higher than 20 euros. c) What happens to the bidding if bidders in the Dutch auction are risk averse? And in the English auction?

Answers

(a)The expected profit of the winner of the auction (i.e. the second buyer) is his valuation of 20 euros minus the price he pays, which is 20 euros in this case. Therefore, his expected profit is 0 euros.

In an English auction, the bidding starts at 0 and the price is increased until only one bidder remains. In this case, there are two bidders with private valuations of 10 and 20 euros. Let's assume that the bidding starts at 0 and increases by 1 euro increments.

At a price of 10 euros, the first buyer will not drop out because his valuation is at least 10 euros. At a price of 11 euros, the second buyer will not drop out because his valuation is at least 11 euros. At a price of 12 euros, the first buyer will still not drop out because his valuation is at least 12 euros. At a price of 13 euros, the second buyer will still not drop out because his valuation is at least 13 euros.

This process continues until the price reaches 20 euros. At this point, the second buyer's valuation is exactly 20 euros, so he is indifferent between staying in the auction and dropping out. Therefore, the seller can expect to sell the object for 20 euros in this auction.

The buyer with the lower valuation (10 euros) will drop out when the price reaches 10 euros, since paying more than his valuation would result in a loss for him.

The expected profit of the winner of the auction (i.e. the second buyer) is his valuation of 20 euros minus the price he pays, which is 20 euros in this case. Therefore, his expected profit is 0 euros.

(b) In a Dutch auction, the price starts high and is gradually lowered until a buyer agrees to purchase the object. In this case, the private valuations of the bidders are 10 and 20 euros, and the auction starts at a price higher than 20 euros.

Since the second buyer's valuation is 20 euros, he will agree to purchase the object at a price of 20 euros or lower. Therefore, the expected revenue for the seller in a Dutch auction that starts at a price higher than 20 euros is 20 euros.

(c) If the bidders in the Dutch auction are risk averse, they may be less willing to bid aggressively, since they are more concerned about the possibility of overpaying. This may result in a lower final price for the object.

If the bidders in the English auction are risk averse, they may be more likely to drop out early, since they are more concerned about the possibility of overpaying. This may also result in a lower final price for the object.

Learn more about "auction valuation " : https://brainly.com/question/29110257

#SPJ11

charles went on a sailing tro 30kilometers each way. The trip against the current took 5hours. The return trip with the assistance of the current took only 3hours. Find the speed of the sailboat in st

Answers

Therefore, the speed of the sailboat in still water is approximately 46.65 kilometers per hour, and the speed of the current is approximately 3.33 kilometers per hour.

Let's assume the speed of the sailboat in still water is S (in kilometers per hour) and the speed of the current is C (in kilometers per hour).

When Charles is sailing against the current, the effective speed is reduced by the speed of the current. So, the speed against the current is S - C.

When Charles is sailing with the current, the effective speed is increased by the speed of the current. So, the speed with the current is S + C.

According to the given information, we have the following equations:

Distance = Speed × Time

For the trip against the current:

Distance = 30 km

Speed = S - C

Time = 5 hours

Therefore, we have the equation:

30 = (S - C) × 5

For the return trip with the current:

Distance = 30 km

Speed = S + C

Time = 3 hours

Therefore, we have the equation:

30 = (S + C) × 3

To solve this system of equations, we can use the method of substitution.

From the first equation, we can express S in terms of C:

S = 5C + 30

Substituting this value of S into the second equation, we get:

30 = (5C + 30 + C) × 3

30 = (6C + 30) × 3

30 = 18C + 90

18C = 90 - 30

18C = 60

C = 60 / 18

C = 3.33 (rounded to two decimal places)

Substituting this value of C back into the equation S = 5C + 30, we get:

S = 5(3.33) + 30

S = 16.65 + 30

S = 46.65 (rounded to two decimal places)

To know more about speed,

https://brainly.com/question/29991687

#SPJ11

Find the lowest degree polynomial passing through the points (3,4),(-1,2),(1,-3) using the following methods.

Answers

To find the lowest degree polynomial passing through the given points using the following methods, we have two methods. The two methods are given below.

Write the transpose matrix of matrix A Matrix A^T = |9 -1 1| |3 -1 1| |1 1 1| Multiply the inverse of matrix A with transpose matrix of matrix A(Matrix A^T) (A^-1) = |4/15  -3/5  -1/3| |-1/5  2/5  -1/3| |2/15  1/5  1/3| Now, we have got the coefficients of the polynomial of the degree 2 (quadratic polynomial). The quadratic polynomial is given by f(x) = (4/15)x^2 - (3/5)x - (1/3)

Method 2: Using the simultaneous equations method Step 1: Assume the lowest degree polynomial of the form ax^2 + bx + c,

where a, b and c are constants.

Step 2: Substitute the x and y values from the given points(x, y) and form the simultaneous equations. 9a + 3b + c = 4- a - b + c = 2a + b + c

= -3

Step 3: Solve the above equations for a, b, and c using any method such as substitution or elimination. Thus, the quadratic polynomial is given by f(x) = (4/15)x^2 - (3/5)x - (1/3)

Hence, the main answer is we can obtain the quadratic polynomial by using any one of the above two methods. The quadratic polynomial is given by f(x) = (4/15)x^2 - (3/5)x - (1/3).

To know more about polynomial visit:

https://brainly.com/question/11536910

#SPJ11

the walt disney company has successfully used related diversification to create value by:

Answers

The Walt Disney Company has successfully used related diversification to create value by leveraging its existing brand and intellectual properties to enter new markets and expand its product offerings.

Through related diversification, Disney has been able to extend its brand into various industries such as film, television, theme parks, consumer products, and digital media. By utilizing its well-known characters and franchises like Mickey Mouse, Disney princesses, Marvel superheroes, and Star Wars, Disney has been able to capture the attention and loyalty of consumers across different age groups and demographics.

For example, Disney's acquisition of Marvel Entertainment in 2009 allowed the company to expand its presence in the superhero genre and tap into a vast fan base. This strategic move not only brought in new revenue streams through the production and distribution of Marvel films, but also opened doors for merchandise licensing, theme park attractions, and television shows featuring Marvel characters. Disney's related diversification strategy has helped the company achieve synergies between its various business units, allowing for cross-promotion and cross-selling opportunities.

Furthermore, Disney's related diversification has also enabled it to leverage its technological capabilities and adapt to the changing media landscape. With the launch of its streaming service, Disney+, in 2019, the company capitalized on its vast library of content and created a direct-to-consumer platform to compete in the growing digital entertainment market. This move not only expanded Disney's reach to a global audience but also provided a new avenue for monetization and reduced its reliance on traditional distribution channels.

In summary, Disney's successful use of related diversification has allowed the company to create value by expanding into new markets, capitalizing on its existing brand and intellectual properties, and leveraging its technological capabilities. By strategically entering complementary industries and extending its reach to a diverse consumer base, Disney has been able to generate revenue growth, enhance its competitive position, and build a strong ecosystem of interconnected businesses.

Learn more about revenue here:

brainly.com/question/4051749

#SPJ11

Prove that if a≡b(modm) then a≡b(modd) for any divisor d of m.

Answers

If a ≡ b (mod m), then a ≡ b (mod d) for any divisor d of m.

To prove that if a ≡ b (mod m), then a ≡ b (mod d) for any divisor d of m, we need to show that the congruence relation holds.

Given a ≡ b (mod m), we know that m divides the difference a - b, which can be written as (a - b) = km for some integer k.

Now, since d is a divisor of m, we can express m as m = ld for some integer l.

Substituting m = ld into the equation (a - b) = km, we have (a - b) = k(ld).

Rearranging this equation, we get (a - b) = (kl)d, where kl is an integer.

This shows that d divides the difference a - b, which can be written as (a - b) = jd for some integer j.

By definition, this means that a ≡ b (mod d), since d divides the difference a - b.

Therefore, if a ≡ b (mod m), then a ≡ b (mod d) for any divisor d of m.

Learn more about Integer here

https://brainly.com/question/490943

#SPJ11

In Ryan's school, 5/8 of the students participate in
school sports. If there are 3016 students
attending Ryan's school, how many students
participate in school sports?

Answers

1885 students participate in school sports at Ryan's school.

Mathematical ratios

To find the number of students who participate in school sports, we can multiply the total number of students by the fraction representing the proportion of students who participate.

Number of students participating in sports = (5/8) * 3016

To calculate this, we can simplify the fraction:

Number of students participating in sports = (5 * 3016) / 8

Number of students participating in sports = 15080 / 8

Number of students participating in sports = 1885

Therefore, 1885 students participate in school sports at Ryan's school.

More on ratios can be found here: https://brainly.com/question/28345307

#SPJ1

Which of the following figures are not similar?

Answers

Answer:

The second diagram on the first page

Step-by-step explanation:

Every other diagram is a multiplication, for example in the first picture its multiplied by 3 on the top and bottom and then on the sides its both by 4. But in diagram 2 its most likely to be an addition, which dose not work in the ones that were already shown.

Lety ′′−64y=0 Find all vatues of r such that y=ke^rm satisfes the differentiat equation. If there is more than one cotect answes, enter yoeir answers as a comma separated ist. heip (numbers)

Answers

To summarize, the values of r that make y = ke*(rm) a solution to the differential equation y'' - 64y = 0 are [tex]r = 64/m^2[/tex], where m can be any non-zero real number.

To find the values of r such that y = ke*(rm) satisfies the differential equation y'' - 64y = 0, we need to substitute y = ke*(rm) into the differential equation and solve for r.

First, let's find the derivatives of y with respect to the independent variable (let's assume it is x):

y = ke*(rm)

y' = krm * e*(rm)

y'' = krm*2 * e*(rm)

Now, substitute these derivatives into the differential equation:

y'' - 64y = 0

krm*2 * e*(rm) - 64 * ke*(rm) = 0

Next, factor out the common term ke^(rm):

ke*(rm) * (rm*2 - 64) = 0

ke*(rm) = 0:

For this equation to hold, we must have k = 0. However, if k = 0, then y = 0, which does not satisfy the form y = ke*(rm).

(rm*2 - 64) = 0:

Solve this equation for r:

rm*2 - 64 = 0

rm*2 = 64

m*2 = 64/r

m = ±√(64/r)

Therefore, the values of r that satisfy the differential equation are given by r = 64/m*2, where m can be any non-zero real number.

To know more about values,

https://brainly.com/question/32215382

#SPJ11


Question 11 Find the indicated area under the standard normal
curve. Between z = 0 and z = 2.53

Answers

The indicated area under the standard normal curve between z = 0 and z = 2.53 is approximately 0.9949 or 99.49%.

The standard normal distribution is a bell-shaped curve with mean 0 and standard deviation 1. The area under the standard normal curve between any two values of z represents the probability that a standard normal variable will fall between those two values.

In this case, we need to find the area under the standard normal curve between z = 0 and z = 2.53. This represents the probability that a standard normal variable will fall between 0 and 2.53.

To calculate this area, we can use a calculator or a standard normal table. Using a calculator, we can use the normalcdf function with a lower limit of 0 and an upper limit of 2.53. This function calculates the area under the standard normal curve between the specified limits.

The result of normalcdf(0, 2.53) is 0.9949, which means that there is a 99.49% probability that a standard normal variable will fall between 0 and 2.53. In other words, if we randomly select a value from the standard normal distribution, there is a 99.49% chance that it will be between 0 and 2.53.

Learn more about  area  from

https://brainly.com/question/25292087

#SPJ11

The graph of a function f(x),x element of [a,b] rotates about the x axis and creates a solid of revolution. Derive an integral formula for the volume V of revolution. Use this formula to calculate the volume of a cone of revolution(radius R, height H)

Answers

The volume of the cone of revolution is V = (1/3)πR^2H.

To derive the formula for the volume of revolution, we can use the method of disks. We divide the interval [a,b] into n subintervals of equal width Δx = (b-a)/n, and consider a representative point xi in each subinterval.

If we rotate the graph of f(x) about the x-axis, we get a solid whose cross-sections are disks with radius equal to f(xi) and thickness Δx. The volume of each disk is π[f(xi)]^2Δx, and the total volume of the solid is the sum of the volumes of all the disks:

V = π∑[f(xi)]^2Δx

Taking the limit as n approaches infinity and Δx approaches zero gives us the integral formula for the volume of revolution:

V = π∫[a,b][f(x)]^2 dx

To calculate the volume of a cone of revolution with radius R and height H, we can use the equation of the slant height of the cone, which is given by h(x) = (H/R)x. Since the cone has a constant radius R, the function f(x) is also constant and given by f(x) = R.

Substituting these values into the integral formula, we get:

V = π∫[0,H]R^2 dx

= πR^2[H]

Therefore, the volume of the cone of revolution is V = (1/3)πR^2H.

learn more about volume here

https://brainly.com/question/13338592

#SPJ11

Q SN​ [f;a,b] when N=123 ? (There may be different ways to represent the composite Simpson rule. If so, find the representation with the smallest number of function evaluations.) a. 122 b. 123 c. 124 d. 245 e. 246 f. 247 g. 368 h. 369 i. 370

Answers

The correct answer is option (c) 124. We are given that N=123, which is an odd number. However, the composite Simpson's rule requires an even number of subintervals to be used to approximate the definite integral. Therefore, we need to increase N by 1 to make it even. So, we use N=124 for the composite Simpson's rule.

The composite Simpson's rule with 124 points uses a quadratic approximation of the function over each subinterval of equal width (h=(b-a)/N). In this case, since we have N+1=125 equally spaced points in [a,b], we can form 62 subintervals by joining every other point. Each subinterval contributes to the approximation of the definite integral as:

(1/6) h [f(x_i) + 4f(x_i+1) + f(x_i+2)]

where x_i = a + (i-1)h and i is odd.

Therefore, the composite Simpson's rule evaluates the function at 124 points: the endpoints of the interval (a and b) plus 62 midpoints of the subintervals. Hence, the correct answer is option (c) 124.

It is important to note that there are different ways to represent the composite Simpson's rule, but they all require the same number of function evaluations. The key factor in optimizing the method is to choose a partition with the desired level of accuracy while minimizing the computational cost.

learn more about Simpson's rule here

https://brainly.com/question/30459578

#SPJ11

My question was 21:
I have tried this though cant seem to get the right answer.
Please ensure that your answer is :
y^2 = 1 / (Ce^t-2x -1). Please try to disregard t was my typo
right around here.
Find general solutions of the differential equations in Prob-ioj lems 1 through 30. Primes denote derivatives with respect to x throughout. 1. (x+y) y^{\prime}=x-y 2. 2 x y y^{\prime}=x

Answers

The general solutions to the given differential equations are:

(x+y) y' = x - y: y^2 = C - xy

2xyy' = x: y^2 = ln|x| + C

The constant values (C) in the general solutions can vary depending on the initial conditions or additional constraints given in the problem.

Let's solve the given differential equations:

(x+y) y' = x - y:

To solve this equation, we can rearrange it as follows:

(x + y) dy = (x - y) dx

Integrating both sides, we get:

∫(x + y) dy = ∫(x - y) dx

Simplifying the integrals, we have:

(x^2/2 + xy) = (x^2/2 - yx) + C

Simplifying further, we get:

xy + y^2 = C

So, the general solution to this differential equation is y^2 = C - xy.

2xyy' = x:

To solve this equation, we can rearrange it as follows:

2y dy = (1/x) dx

Integrating both sides, we get:

∫2y dy = ∫(1/x) dx

Simplifying the integrals, we have:

y^2 = ln|x| + C

So, the general solution to this differential equation is y^2 = ln|x| + C.

Please note that the general solutions provided here are based on the given differential equations, but the specific constant values (C) can vary depending on the initial conditions or additional constraints provided in the problem.

To learn more about differential equations visit : https://brainly.com/question/1164377

#SPJ11

Other Questions
Use synthetic division to deteine whether the given number k is a zero of the polynomial function. If it is not, give the value of f(k). See Examples 2 and 3. f(x)=x ^2+2x8;k=2 f(x)=x ^2+4x5;k=5 f(x)=x ^33x ^2 +4x4;k=2f(x)=x ^3 +2x ^2x+6;k=3f(x)=2x ^36x ^29x+4;k=1 can someone show me a way using API.where i can pull forms that are already created in mysql. to some editting to mistakes or add something to the forms.the input valve are below Which of the following are advantages of English as a global lingua franca? (Be sure to click all that apply. There are multiple answers to this question.)- Everyone will get along better because they speak the same language.- Communications in international organizations like the Association of South-East Asian Nations is easier.- International travel is more accessible.- People for whom English is an L1 (ex: people in Great Britain and the US) don't have to learn more than one language.- English is sophisticated and easy to learn compared to other potential lingua francas, for instance Chinese. any individuals who work with the elderly, including those who are paid to care for the elderly, are designated mandatory reporters by law, and must report all cases of suspected abuse.Select one:TrueFalse2. Only the home care agency can investigate suspected elder abuseSelect one:TrueFalse3. Elder abuse is found mostly in lower income groups.Select one:TrueFalse Choose one vehicle and answer the following questions 1. What is the make and model of the vehicle?2. What is the total price listed for the vehicle?3. What is the monthly payment for the vehicle? Is this a lease payment or a purchase payment?4. How long is the term of the loan/lease? Examples: 24 months, 36 months, 48 months Which of the following is true of the cognitive approach to treatment?If you see a normal behavior, a symptom of underlying cause.Ignore the fact that life is in reality sometimes a rational.Is flexible and open to incorporating elements of the other approaches to treatment.It's six to bring unresolved past conflicts from the unconscious into the conscious. Polypropene can be made in three different fos, as shown below. Which fo would be expected to have the lowest melting point? Select one or more: A. X B. Z C. Y D. All three will have the sam Let e>0. For each of the following, find a >0 such that f(x) which best describes assumption of the risk in a negligence case 8. a. What does NGO stand for and what is an NGO? b. Identify two organizations that can be identified as NGOs. This assignment is about your project Mazer: Vision and Scope The due date: Thursday, September 8, 2022 at 1.00PM. Here are the details for the initial implementation of your project Mazer (Math Analyzer for mazers). At this stage, think about how you will implement it. We will discuss your ideas next week in class. 1. The Mazer is command line, as discussed in class. 2. Alphabet consists of: 09,+,(,),space,tab. 3. Valid forms: integers - int (can be signed - single, parenthesized - multiple) 4. White space is ignored, except between a+/ and int 5. Accept an input and indicate "Valid" "Invalid". 6. Repeat until the user enters 0. 7. + - must be followed by an int or something that evaluates to int. A + or - cannot follow a+ or . 8. Any other forms of mazer are invalid. Example of valid mazers: 123,+1 1,(1) etc. Examples of invalid mazers: 1+,++, (1 etc. Please implement the Mazer requirements in a language of your choice. As discussed in class, you must not use an evaluator, but read input chracter by character. Submit requirements, commented code, sample outputs, and test suites. Due: October 6,2022 by class time. Assume a merchandising company's estimated sales for January, February, and March are $108,000, $128.000, and $118.000, respectively. Its cost of goods sold is always 60% of its sales. The company always maintains ending merchandise Inventory equal to 25% of next month's cost of goods sold. What are the required merchandise purchases for January? Multiple Choice $79.000 $67800 $61,800 0 $7600 Martha's current marginal utility from consuming orange juice is 80 utlis per ounce and her marginal utility from consuming coffee is 50 utits per ounce. If orange juice costs $0.25 per ounce and coffee costs $0.20 per ounce, is Martha maximizing her total utilify from the two beverages? Instructions: Enter your responses as whole numbers. At her current level of consumption, Martha receives: utils per dollar spent on orange juice. At her current level of consumption, Martha receives. utils per dollar spent on coffee. Therefore, Martha maximizing her total utily because MU 0/P 0jis as a manager, happy is very conscious of how his subordinates feel about whether their work outcomes are as expected relative to the effort and contributions they put in. this is an example of the equity theory. True or False. Reflection helps a speaker identify and describe his or her emotions. Say that you are a pension fund or family officewhy do you need a GP? Why cant you pursue PE investing yourself? So whats the point of paying high fees to PE managers. If f(x) = 4x (sin x+cos x), findf'(x) =f'(1) = 1.1 Which OSI model layer provides the user interface in the form of an entry point for programs to access the network infrastructure? a. Application layer b. Transport layer c. Network layer d. Physical layer 1.2 Which OSI model layer is responsible for code and character-set conversions and recognizing data formats? a. Application layer b. Presentation layer c. Session layer d. Network layer 1.3 Which layers of the OSI model do bridges, hubs, and routers primarily operate respectively? (1) a. Physical layer, Physical layer, Data Link layer b. Data Link layer, Data Link layer, Network layer c. Data Link layer, Physical layer, Network layer d. Physical layer, Data Link layer, Network layer 1.4 Which OSI model layer is responsible for converting data into signals appropriate for the transmission medium? a. Application layer b. Network layer c. Data Link layer d. Physical layer 1.5 At which layer of the OSI model do segmentation of a data stream happens? a. Physical layer b. Data Link layer c. Network layer d. Transport layer 1.6 Which one is the correct order when data is encapsulated? a. Data, frame, packet, segment, bits b. Segment, data, packet, frame, bits c. Data, segment, packet, frame, bits d. Data, segment, frame, packet, bits Which pKa value corresponds to the weakest acid?Which pKa value corresponds to the weakest acid? Select one: a. 5 b. 20 c. 10 d. 16 e. -2 \begin{tabular}{r|l} 1 & import java.util. Scanner; \\ 2 & \\ 3 & public class OutputTest \{ \\ 4 & public static void main (String [ args) \{ \\ 5 & int numKeys; \\ 6 & \\ 7 & l/ Our tests will run your program with input 2, then run again with input 5. \\ 8 & // Your program should work for any input, though. \\ 9 & Scanner scnr = new Scanner(System. in); \\ 10 & numKeys = scnr. nextInt(); \\ 11 & \\ 12 & \} \end{tabular}