The total distance travelled by Brady is 518.4 ≈ 308.9 miles. The correct answer to the given problem is: 308.9 miles (rounded to the nearest tenth)
The number of gallons of gas bought by Brady is:
$14 ÷ $1.25/gallon = 11.2 gallons
The total amount of gas in the tank is:
8 + 11.2 = 19.2 gallons
The total distance the boys can travel is obtained by using the formula:
Distance = (miles per gallon) × (total number of gallons of gas)
Distance = 27 × 19.2
Distance = 518.4 miles
Hence, the total distance the boys could travel before refilling the gas again is 518.4 miles.
Rounding to the nearest tenth, we have:
Total distance = 518.4 ≈ 308.9 miles.
To know more about distance please visit :
https://brainly.in/question/80270
#SPJ11
The total distance the boys could travel is 516.4 miles (rounded to the nearest tenth). Hence, option (c) is correct.
Brady spends $14 on gas His jeep gets 27 miles per gallon for gas mileage.
He already has 8 gallons of gas in his tank. He buys more gas for $1.25 per gallon.
Total distance the boys could travel. Distance function used to represent this situation in terms of the amount of money spent on gas:d(s) = 21.65 + 216
Formula used: distance = (miles per gallon) × (gallons of gas)
Let the total distance the boys could travel = d miles Brady spends $14 on gas.
Brady buys gas for $1.25 per gallon.
He buys = 14 / 1.25
= 11.2 gallons of gas.
He already has 8 gallons of gas in his tank.
∴ Total gallons of gas = 11.2 + 8
= 19.2 gallons
His jeep gets 27 miles per gallon for gas mileage.
∴ Total distance that Brady can drive on 19.2 gallons of gas = (miles per gallon) × (gallons of gas)
= 27 × 19.2
= 516.4 miles
Therefore, the total distance the boys could travel is 516.4 miles (rounded to the nearest tenth).
Hence, option (c) is correct.
To know more about distance, visit:
https://brainly.com/question/13034462
#SPJ11
If 'a' and 'b' are two positive integers such that a = 14b, then find the H. C. F of 'a' and 'b'?
2.
The highest common factor (H.C.F.) of 'a' and 'b' can be determined by finding the greatest common divisor of 14 and 1 since 'a' is a multiple of 'b' and 'b' is a factor of 'a'. Therefore, the H.C.F. of 'a' and 'b' is 1.
Given that 'a' and 'b' are two positive integers and a = 14b, we can see that 'a' is a multiple of 'b'. In other words, 'b' is a factor of 'a'. To find the H.C.F. of 'a' and 'b', we need to determine the greatest common divisor (G.C.D.) of 'a' and 'b'.
In this case, the number 14 is a multiple of 1 (14 = 1 * 14) and 1 is a factor of any positive integer, including 'b'. Therefore, the G.C.D. of 14 and 1 is 1.
Since 'b' is a factor of 'a' and 1 is the highest common divisor of 'b' and 14, it follows that 1 is the H.C.F. of 'a' and 'b'.
In conclusion, the H.C.F. of 'a' and 'b' is 1, indicating that 'a' and 'b' have no common factors other than 1.
Learn more about H.C.F here:
https://brainly.com/question/23984588
#SPJ11
Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1,0, 3), (1,4,6), and (6,2,0).
To find the volume of a parallelepiped, we can use the formula V = |a · (b x c)|, where a, b, and c are vectors representing three adjacent sides of the parallelepiped.
In this case, we can choose the vectors a = <1, 0, 3>, b = <1, 4, 6>, and c = <6, 2, 0>. Note that these are the vectors from the origin to the adjacent vertices given in the problem.
To find the cross product of b and c, we can use the determinant:
b x c = |i j k|
|1 4 6|
|6 2 0|
= i(-24) - j(6) + k(-22)
= <-24, -6, -22>
Then, we can take the dot product of a and the cross product of b and c:
a · (b x c) = <1, 0, 3> · <-24, -6, -22>
= -66
Finally, we can take the absolute value of this dot product to find the volume of the parallelepiped:
V = |a · (b x c)| = |-66| = 66 cubic units.
Therefore, the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1,0,3), (1,4,6), and (6,2,0) is 66 cubic units.
To know more about parallelepiped refer here
https://brainly.com/question/29140066#
#SPJ11
The diameter of a cylindrical construction pipe is 7ft if the pipe is 34 ft long what is its volume
The volume of a cylindrical construction pipe with a diameter of 7 ft and a length of 34 ft can be calculated. The answer is provided in the following explanation.
To calculate the volume of a cylinder, we need to use the formula V = π[tex]r^2[/tex]h, where V represents the volume, r is the radius, and h is the height of the cylinder. Given that the diameter is 7 ft, we can determine the radius by dividing the diameter by 2, giving us a radius of 3.5 ft. The height of the cylinder is given as 34 ft.
Using these values, we can substitute them into the formula to calculate the volume: V = π[tex](3.5 ft)^2[/tex] * 34 ft. Simplifying the equation, we have V = π * [tex]3.5^2[/tex] * 34 [tex]ft^3[/tex]. Evaluating the expression further, V = π * 12.25 * 34 [tex]ft^3[/tex], which simplifies to V ≈ 1309.751 [tex]ft^3[/tex].
Therefore, the volume of the cylindrical construction pipe is approximately 1309.751 cubic feet.
Learn more about diameter here:
https://brainly.com/question/31445584
#SPJ11
(1 point) use spherical coordinates to evaluate the triple integral∭ee−(x2 y2 z2)x2 y2 z2−−−−−−−−−−√dv,where e is the region bounded by the spheres x2 y2 z2=1 and x2 y2 z2=16.
The value of the given triple integral is $\frac{\pi}{2}\left(1-e^{-16}\right)$.
In spherical coordinates, the volume element is $dV = \rho^2\sin\phi,d\rho,d\phi,d\theta$.
Using this, the given triple integral becomes:
[tex]∭��−(�sin�)2(�cos�)2�2�2sin� �� �� ��∭ E e −(ρsinϕ) 2 (ρcosϕ) 2 ρ 2 ρ 2 sinϕdρdϕdθ[/tex]
where $E$ is the region bounded by the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=16$.
Converting the bounds to spherical coordinates, we have:
[tex]1≤�≤4,0≤�≤�,0≤�≤2�1≤ρ≤4,0≤ϕ≤π,0≤θ≤2π[/tex]
Thus, the integral becomes:
[tex]∫02�∫0�∫14�−�2sin2�cos2��2sin[/tex]
[tex]� �� �� ��∫ 02π ∫ 0π ∫ 14 e −ρ 2 sin 2 ϕcos 2 ϕ ρ 2[/tex]
Since the integrand is separable, we can integrate each variable separately:
[tex]∫14�2�−�2 ��∫0�sin� ��∫02���∫ 14 ρ 2 e −ρ 2 dρ∫ 0π[/tex]
sinϕdϕ∫
02π dθ
Evaluating each integral, we get:
[tex]�2(1−�−16)2π (1−e −16 )[/tex]
Therefore, the value of the given triple integral is $\frac{\pi}{2}\left(1-e^{-16}\right)$.
Learn more about integral here:
https://brainly.com/question/18125359
#SPJ11
A parking garage has 230 cars in it when it opens at 8 ( = 0). On the interval 0 ≤ ≤ 10, cars enter the parking garage at the rate ′ () = 58 cos(0.1635 − 0.642) cars per hour and cars leave the parking garage at the rate ′ () = 65 sin(0.281) + 7.1 cars per hour (a) How many cars enter the parking garage over the interval = 0 to = 10 hours? (b) Find ′′(5). Using correct units, explaining the meaning of this value in context of the problem. (c) Find the number of cars in the parking garage at time = 10. Show the work that leads to your answer.
Therefore, (a) ∫58cos(0.1635t - 0.642)dt from 0 to 10 gives approximately 822.6 cars, (b) ′′(5) = -65cos(0.281) which is approximately -62.4 cars per hour per hour, (c) Approximately 559 cars in the garage at t = 10.
(a) To find the number of cars entering the parking garage over the interval 0 ≤ t ≤ 10, we need to integrate the rate of cars entering the garage with respect to time. ∫58cos(0.1635t - 0.642)dt from 0 to 10 gives approximately 822.6 cars.
(b) To find ′′(5), we need to differentiate the rate of cars leaving the garage with respect to time twice. ′′(t) = -65cos(0.281) and ′′(5) = -65cos(0.281) which is approximately -62.4 cars per hour per hour. This value represents the rate of change of the rate of cars leaving the garage at t = 5.
(c) To find the number of cars in the parking garage at time t = 10, we need to subtract the total number of cars leaving the garage from the total number of cars entering the garage from t = 0 to t = 10. This gives approximately 559 cars in the garage at t = 10.
Therefore, (a) ∫58cos(0.1635t - 0.642)dt from 0 to 10 gives approximately 822.6 cars, (b) ′′(5) = -65cos(0.281) which is approximately -62.4 cars per hour per hour, (c) Approximately 559 cars in the garage at t = 10.
To know more about the rate visit:
https://brainly.com/question/119866
#SPJ11
The work shows finding the sum of the algebraic expressions –3a 2b and 5a (–7b). –3a 2b 5a (–7b) Step 1: –3a 5a 2b (–7b) Step 2: (–3 5)a [2 (–7)]b Step 3: 2a (–5b) Which is used in each step to simplify the sum? Step 1: Step 2: Step 3:.
The expression given is –3a 2b + 5a (–7b). We need to find the sum of this algebraic expression. Step 1:We need to simplify the given expression. To simplify, we will use the distributive property.
-3a 2b + 5a (–7b) = -3a 2b – 35abStep 2:Now, we need to simplify further. For this, we will take out the common factors.-3a 2b – 35ab = –a(3b + 35)Step 3:So, the final expression is –a(3b + 35). Therefore, the steps used to simplify the given expression are as follows:Step 1: Simplify the given expression using distributive property.-3a 2b + 5a (–7b) = -3a 2b – 35abStep 2: Take out the common factor -a.-3a 2b – 35ab = –a(3b + 35)Step 3: The final expression is –a(3b + 35).Hence, we have found the sum of the given algebraic expression and also the steps used to simplify the expression.
To know more about sum visit:
brainly.com/question/31538098
#SPJ11
let a= ([7 4][−3 −1 ]) . an eigenvalue of a 5.find a basis for the corresponding eigenspace od A = ([10 -9][4 -2]) corresponding to the eigenvalue lambda = 4. Eigenspace: ___
A basis for the eigenspace corresponding to the eigenvalue λ = 4 is the set {[3; 2]}.
How to find the eigenspace of a matrix?To find the eigenspace of the matrix A = [10 -9; 4 -2] corresponding to the eigenvalue λ = 4, we need to find the nullspace of the matrix A - λI, where I is the 2x2 identity matrix and λ is the eigenvalue:
A - λI = [10 -9; 4 -2] - 4[1 0; 0 1]
= [6 -9; 4 -6]
To find the nullspace of this matrix, we need to solve the system of homogeneous linear equations:
6x - 9y = 0
4x - 6y = 0
We can simplify this system by dividing the first equation by 3, which gives:
2x - 3y = 0
4x - 6y = 0
We can see that the second equation is a multiple of the first equation, so we only need to solve one of the equations. We can choose the first equation and solve for x in terms of y:
2x = 3y
x = (3/2)y
So the eigenvector corresponding to the eigenvalue λ = 4 is a non-zero vector in the nullspace of A - λI, which in this case is the vector [3; 2] (or any non-zero scalar multiple of it).
Therefore, a basis for the eigenspace corresponding to the eigenvalue λ = 4 is the set {[3; 2]}.
Learn more about eigenspace
brainly.com/question/30001842
#SPJ11
Use the equations to complete the following statements.
Equation _ reveals its extreme value without needing to be altered. The extreme value of this equation has a _ at the point (_,_)
Equation f(x) = ax² + bx + c reveals its extreme value without needing to be altered.
The extreme value of this equation has a minimum or maximum at the point (h, k).
Explanation: The extreme value of a quadratic function is also known as the vertex of the parabola. The vertex is the highest or lowest point on the parabola, depending on the coefficient of the x² term. For a quadratic function of the form f(x) = ax² + bx + c, the vertex can be found using the formula: h = -b/2a and k = f(h) = a(h²) + b(h) + c. The value of h represents the x-coordinate of the vertex, while the value of k represents the y-coordinate of the vertex. The sign of the coefficient of the x² term determines whether the vertex is a minimum or maximum. If a > 0, the parabola opens upwards and the vertex is a minimum. If a < 0, the parabola opens downwards and the vertex is a maximum. Therefore, equation f(x) = ax² + bx + c reveals its extreme value without needing to be altered. The extreme value of this equation has a minimum or maximum at the point (h, k).
Know more about extreme value here:
https://brainly.com/question/30149628
#SPJ11
Mr. Smith was inflating 5 soccer balls for practice. How much air does he need if each soccer ball has a diameter of 22 cm
Mr. Smith needs approximately 27,876.4 cm³ of air to inflate 5 soccer balls, assuming there is no air leakage and the soccer balls are perfectly spherical.
To find out how much air is needed to inflate 5 soccer balls,
We first need to calculate the volume of one soccer ball. We can use the formula for the volume of a sphere:
V = (4/3)πr³, where V is the volume and r is the radius.
Since we are given the diameter of each soccer ball, we need to divide it by 2 to get the radius
.r = d/2 = 22/2 = 11 cm
Substituting this value into the formula, we get:
V = (4/3)π(11)³V ≈ 5575.28 cm³
Now we can calculate the total volume of air needed to inflate 5 soccer balls by multiplying the volume of one ball by 5:
Total volume = 5V ≈ 5(5575.28) ≈ 27,876.4 cm³
Therefore, Mr. Smith needs approximately 27,876.4 cm³ of air to inflate 5 soccer balls, assuming there is no air leakage and the soccer balls are perfectly spherical.
To learn about the volume here;
https://brainly.com/question/27710307
#SPJ11
What is the zero of the following function?
A x=-5
B. =5
С. X=1
D. X= -1
Hence, the zero of the given function is x = -5 and x = 5.
In order to find the zero of the given function, we need to substitute the values given for x in the function and find the value of y. Then, the zero of the function is the value of x for which y becomes zero. Here's how we can find the zero of the given function :f(x) = (x + 1)(x - 5)Substitute x = -5:f(-5) = (-5 + 1)(-5 - 5) = (-4)(-10) = 40Substitute x = 5:f(5) = (5 + 1)(5 - 5) = (6)(0) = 0Substitute x = 1:f(1) = (1 + 1)(1 - 5) = (2)(-4) = -8Substitute x = -1:f(-1) = (-1 + 1)(-1 - 5) = (0)(-6) = 0.Therefore, option A and option B are correct.
Know more about function here:
https://brainly.com/question/29686896
#SPJ11
how many teenagers (people from ages 13-19) must you select to ensure that 4 of them were born on the exact same date (mm/dd/yyyy)? simplify your answer to an integer.
Assuming that there are 365 days in a year (ignoring leap years) and that all dates are equally likely, we can use the Pigeonhole Principle to determine the minimum number of teenagers needed to ensure that 4 of them were born on the same date.
There are 365 possible days in a year on which a person could be born. Therefore, if we select k teenagers, the total number of possible birthdates is 365k.
To guarantee that 4 of them were born on the exact same date, we need to find the smallest value of k for which 365k is greater than or equal to 4 times the number of possible birthdates. In other words:365k ≥ 4(365)
Simplifying this inequality, we get: k ≥ 4
Therefore, we need to select at least 4 + 1 = 5 teenagers to ensure that 4 of them were born on the exact same date.
To know more about "Pogeonhole Principle" refer here:
https://brainly.com/question/31687163#
#SPJ11
Suppose f(x)=wxw−1,00 is a density function for a continuous random variable X.(a) Find E[X]. Write your answer in terms of w.(b) Let m EX] be the first moment of X. Find the method of moments estimator for w in terms of m (c) Find the method of moments estimate for w based on the sample data for X below 0.21,0.26, 0.3, 0.23,0.62,0.51, 0.28, 0.47
a. The value of E[X] = w.
b. The method of moments estimator for w in terms of m is w' = 1/n ∑xi.
c. The method of moments estimate for w based on the sample data for X is 0.35.
(a) The expected value of X is given by:
E[X] = ∫x f(x) dx
where the integral is taken over the entire support of X. In this case, the support of X is [0, 1]. Substituting the given density function, we get:
E[X] = ∫0^1 x wxw-1 dx
= w ∫0^1 xw-1 dx
= w [xw / w]0^1
= w
Therefore, E[X] = w.
(b) The method of moments estimator for w is obtained by equating the first moment of X with its sample mean, and solving for w. That is, we set m1 = 1/n ∑xi, where n is the sample size and xi are the observed values of X.
From part (a), we know that E[X] = w. Therefore, the first moment of X is m1 = E[X] = w. Equating this with the sample mean, we get:
w' = 1/n ∑xi
Therefore, the method of moments estimator for w is w' = 1/n ∑xi.
(c) We are given the sample data for X: 0.21, 0.26, 0.3, 0.23, 0.62, 0.51, 0.28, 0.47. The sample size is n = 8. Using the formula from part (b), we get:
w' = 1/8 (0.21 + 0.26 + 0.3 + 0.23 + 0.62 + 0.51 + 0.28 + 0.47)
= 0.35
Therefore, the method of moments estimate for w based on the sample data is 0.35.
Learn more about method of moments estimator at https://brainly.com/question/30435928
#SPJ11
A family wants to purchase a house that costs $165,000. They plan to take out a $125,000 mortgage on the house and put $40,000 as a down payment. The bank informs them that with a 15-year mortgage their monthly payment would be $791. 57 and with a 30-year mortgage their monthly payment would be $564. 57. Determine the amount they would save on the cost of the house if they selected the 15-year mortgage rather than the 30-year mortgage
The family wants to purchase a house worth $165,000 and intends to take a $125,000 mortgage on the house and put $40,000 as a down payment. The bank informs them that with a 15-year mortgage, their monthly payment would be $791.57 and with a 30-year mortgage, their monthly payment would be $564.57.
Let's determine the amount the family would save on the cost of the house if they selected the 15-year mortgage instead of the 30-year mortgage.
As per the question, With 15-year mortgage, the total number of months = 15 x 12 = 180Total amount paid = 180 x $791.57 = $142,281.6With 30-year mortgage, the total number of months = 30 x 12 = 360Total amount paid = 360 x $564.57 = $203,245.2.
Therefore, The family would save on the cost of the house if they selected the 15-year mortgage instead of the 30-year mortgage is: $203,245.2 - $142,281.6 = $60,963.6.
The amount they would save on the cost of the house if they selected the 15-year mortgage instead of the 30-year mortgage is $60,963.6.
To know more about bank visit:
https://brainly.com/question/29433277
#SPJ11
construct a polynomial function with the following properties: fifth degree, 33 is a zero of multiplicity 44, −2−2 is the only other zero, leading coefficient is 22.
This polynomial function has a fifth degree, 33 as a zero of multiplicity 4, -2 as the only other zero, and a leading coefficient of 22.
We construct a polynomial function with the given properties.
The polynomial function is of fifth degree, which means it has 5 roots or zeros.
One of the zeros is 33 with a multiplicity of 4.
This means that 33 is a root 4 times.
The only other zero is -2 (ignoring the extra -2).
The leading coefficient is 22.
Now we can construct the polynomial function using these properties:
Start with the root 33 and its multiplicity 4:
[tex](x - 33)^4[/tex]
Include the other zero, -2:
[tex](x - 33)^4 \times (x + 2)[/tex]
Add the leading coefficient, 22:
[tex]f(x) = 22(x - 33)^4 \times (x + 2)[/tex].
For similar question on polynomial function.
https://brainly.com/question/2833285
#SPJ11
The equation of the polynomial function is f(x) = 2(x - 3)⁴(x + 2)
Finding the polynomial functionFrom the question, we have the following parameters that can be used in our computation:
The properties of the polynomial
From the properties of the polynomial, we have the following highlights
x = 3 with multiplicity 4x = -2 with multiplicity 1Leading coefficient = 2Degrees = 5So, we have
f(x) = (x - zero) with an exponent of the multiplicity
Using the above as a guide, we have the following:
f(x) = 2(x - 3)⁴(x + 2)
Hence, the equation of the polynomial function is f(x) = 2(x - 3)⁴(x + 2)
Read more about polynomial at
brainly.com/question/7693326
#SPJ4
Solve the following system of DEs using three methods: substitution method, (2) operator method and (3) eigen-analysis method: Ş x' = x - 3y ly' = 3x + 7y
Answer:
Step-by-step explanation:
Substitution method:
We can solve for x from the first equation and substitute it into the second equation to get:
y' = (3/7)x' + (3/7)x
Substituting x' from the first equation and simplifying, we get:
y' = (1/7)(7x + 3y)
Now we have a first-order linear differential equation for y, which we can solve using an integrating factor:
y' - (1/3)y = (7/3)x
Multiplying both sides by e^(-t/3) (the integrating factor), we get:
e^(-t/3) y' - (1/3)e^(-t/3) y = (7/3)e^(-t/3) x
Taking the derivative of both sides with respect to t and using the product rule, we get:
e^(-t/3) y'' - (1/3)e^(-t/3) y' - (1/9)e^(-t/3) y = -(7/9)e^(-t/3) x'
Substituting x' from the first equation, we get:
e^(-t/3) y'' - (1/3)e^(-t/3) y' - (1/9)e^(-t/3) y = -(7/9)e^(-t/3) (x - 3y)
Now we have a second-order linear differential equation for y, which we can solve using standard techniques (such as the characteristic equation method or the method of undetermined coefficients).
Operator method:
We can rewrite the system of equations in matrix form:
[x'] [1 -3] [x]
[y'] = [3 7] [y]
The operator method involves finding the eigenvalues and eigenvectors of the matrix [1 -3; 3 7], which are λ = 2 and λ = 6, and v_1 = (1,1) and v_2 = (3,-1), respectively.
Using these eigenvalues and eigenvectors, we can write the general solution as:
[x(t)] [1 3] [c_1 e^(2t) + c_2 e^(6t)]
[y(t)] = [1 -1] [c_1 e^(2t) + c_2 e^(6t)]
where c_1 and c_2 are constants determined by the initial conditions.
Eigen-analysis method:
We can rewrite the system of equations in matrix form as above, and then find the characteristic polynomial of the matrix [1 -3; 3 7]:
det([1 -3; 3 7] - λI) = (1 - λ)(7 - λ) + 9 = λ^2 - 8λ + 16 = (λ - 4)^2
Therefore, the matrix has a repeated eigenvalue of λ = 4. To find the eigenvectors, we can solve the system of equations:
[(1 - λ) -3; 3 (7 - λ)] [v_1; v_2] = [0; 0]
Setting λ = 4 and solving, we get:
v_1 = (3,1)
However, since the eigenvalue is repeated, we also need to find a generalized eigenvector, which satisfies:
[(1 - λ) -3; 3 (7 - λ)] [v_2; v_3] = [v_1; 0]
Setting λ = 4 and solving, we get:
v_2 = (1/3,1), v_
To know more about system of DEs refer here
https://brainly.com/question/13156044#
#SPJ11
Find the equation of thw straight line through the point (4. -5)and is (a) parallel as well as (b) perpendicular to the line 3x+4y=0
Given information: A straight line through the point (4, -5).A line equation 3x + 4y = 0We need to find the equation of straight line through the point (4, -5) which is parallel and perpendicular to the given line respectively.
Concepts Used: Equation of a straight line in point-slope form. m Equation of a straight line in slope-intercept form. Method to solve the problem: We need to find the equation of straight line through the point (4, -5) which is parallel and perpendicular to the given line respectively.1. Equation of straight line parallel to the given line and passing through the point (4, -5):Equation of the given line 3x + 4y = 0 can be written in slope-intercept form as: y = (-3/4)x We can observe that the slope of given line is -3/4.
Now, the slope of the parallel line will also be -3/4 and the equation of the required straight line can be written in point-slope form as: y - y1 = m(x - x1)where m = -3/4 (slope of the line), (x1, y1) = (4, -5) (the given point)Therefore, y - (-5) = (-3/4)(x - 4)y + 5 = (-3/4)x + 3y = (-3/4)x - 2This is the equation of the straight line parallel to the given line and passing through the point (4, -5).2. Equation of straight line perpendicular to the given line and passing through the point (4, -5):We can observe that the slope of given line is -3/4.Now, the slope of the perpendicular line will be 4/3 and the equation of the required straight line can be written in point-slope form as:y - y1 = m(x - x1)where m = 4/3 (slope of the line), (x1, y1) = (4, -5) (the given point)
To know more about perpendicular visit:
brainly.com/question/12746252
#SPJ11
Given the system of equations 1/3x - 2/3y = 7 and 2/3x + 3y = 11
The system of equations has an answer of x = 255/13 and y = -9/13.
1/3x - 2/3y = 7 to solve the system of equations.
2/3x + 3y = 11
We can employ a number of techniques, like substitution or removal.
Let's use elimination to solve the system in this case.
We can multiply both equations by the denominators' least common multiple (LCM), which in this case is 3 to eliminate the fractions.
By doing so, we may eliminate the fractions and make the equations simpler.
The result of multiplying the first equation by 3 is:
[tex]3\times (1/3x - 2/3y) = 3 \times 7[/tex]
This simplifies to:
x - 2y = 21
Multiplying the second equation by 3 gives us:
[tex]3 \times (2/3x + 3y) = 3 \times 11[/tex]
This simplifies to:
2x + 9y = 33
Now we have the system of equations:
x - 2y = 21
2x + 9y = 33
To eliminate x, we can multiply the first equation by 2 and the second equation by -1, which gives us:
[tex]2(x - 2y) = 2 \times 21[/tex]
[tex]-1(2x + 9y) = -1 \times 33[/tex]
That amounts to:
2x - 4y = 42 -2x - 9y = -33
The two equations are combined to remove x:
(2x - 4y) + (-2x - 9y) = 42 + (-33)
When we simplify the equation, we get:
-13y = 9
We discover y = -9/13 after solving for it.
Now that we know what y is worth, we can add it back into one of the initial equations to find x.
Let's employ the first equation:
1/3x - 2/3(-9/13) = 7
When we simplify the equation, we get:
1/3x + 6/13 = 7
6/13 from both sides are subtracted, giving us:
1/3x = 7 - 6/13
In order to find a common factor, we have:
1/3x = 91/13 - 6/13
Putting the two together gets us:
1/3x = 85/13
The result of multiplying both sides by 3 is x = 255/13.
For similar question on equations.
https://brainly.com/question/22688504
#SPJ8
Let A = {2,3,4,6,8,9) and define a binary relation among the SUBSETS of A as follows: XRY X and Y are disjoint.. a) Is R symmetric? Explain. b) Is R reflexive? Explain. c) Is R transitive? Explain.
a) No, R is not symmetric. b) No, R is not reflexive. c) Yes, R is transitive.
To see this, consider the subsets {2, 4} and {3, 6}. These subsets are disjoint, so {2, 4}R{3, 6}. However, {3, 6} is also disjoint from {2, 4}, so {3, 6}R{2, 4} is not true. For any subset X of A, X and the empty set are disjoint, so XRX cannot be true. To see this, suppose that XRY and YRZ, where X, Y, and Z are subsets of A. Then X and Y are disjoint, and Y and Z are disjoint. Since the empty set is disjoint from any set, we have that X and Z are disjoint as well. Therefore, X and Z satisfy the definition of the relation, so XRZ is true. A binary relation R across a set X is reflexive if each element of set X is related or linked to itself.
Learn more about reflexive here:
https://brainly.com/question/29119461
#SPJ11
3x + 8y = -20
-5x + y = 19
PLS HELP ASAP
The system of equations are solved and x = -4 and y = -1
Given data ,
Let the system of equations be represented as A and B
where 3x + 8y = -20 be equation (1)
And , -5x + y = 19 be equation (2)
Multiply equation (2) by 8 , we get
-40x + 8y = 152 be equation (3)
Subtracting equation (1) from equation (3) , we get
-40x - 3x = 152 - ( -20 )
-43x = 172
Divide by -43 on both sides , we get
x = -4
Substituting the value of x in equation (2) , we get
-5 ( -4 ) + y = 19
20 + y = 19
Subtracting 20 on both sides , we get
y = -1
Hence , the equation is solved and x = -4 and y = -1
To learn more about equations click :
https://brainly.com/question/19297665
#SPJ1
Which of these routes for the horse is actually the shortest between the pair of nodes? Fruit - Hay = 160 Grass - Pond = 190' Fruit - Shade = 165 Barn - Pond = 200 300' Fruit Pond
The shortest routes between each pair of nodes are:
- Fruit - Hay: Fruit - Shade - Grass - Hay or Fruit - Shade - Barn - Hay (tied for shortest route)
- Grass - Pond: direct route with a distance of 190
To determine the shortest route between a pair of nodes, we need to consider all possible routes and compare their distances.
In this case, we have five pairs of nodes to consider: Fruit - Hay, Grass - Pond, Fruit - Shade, Barn - Pond, and Fruit - Pond.
Starting with Fruit-Hay, we don't have any direct distance given between these two nodes. However, we can find a route that connects them by going through other nodes.
One possible route is Fruit - Shade - Grass - Hay, which has a total distance of 165 + 95 + 60 = 320.
Another possible route is Fruit - Shade - Barn - Hay, which has a total distance of 165 + 35 + 120 = 320.
Therefore, both routes have the same distance and are tied for the shortest route between Fruit and Hay.
Moving on to Grass-Pond, we have a direct distance of 190 between these two nodes.
Therefore, this is the shortest route between them.
For Fruit-Shade, we already considered one possible route when looking at Fruit-Hay.
However, there is also another route that connects Fruit and Shade directly, which has a distance of 165.
Therefore, this is the shortest route between Fruit and Shade.
Looking at Barn-Pond, we don't have a direct distance given. We can find a route that connects them by going through other nodes.
One possible route is Barn - Hay - Grass - Pond, which has a total distance of 120 + 60 + 190 = 370. Another possible route is Barn - Shade - Fruit - Pond, which has a total distance of 35 + 165 + 300 = 500.
Therefore, the shortest route between Barn and Pond is Barn - Hay - Grass - Pond.
Finally, we already considered Fruit-Pond when looking at other pairs of nodes. The shortest route between them is direct, with a distance of 300.
In summary, the shortest routes between each pair of nodes are:
- Fruit - Hay: Fruit - Shade - Grass - Hay or Fruit - Shade - Barn - Hay (tied for shortest route)
- Grass - Pond: direct route with a distance of 190
- Fruit - Shade: direct route with a distance of 165
- Barn - Pond: Barn - Hay - Grass - Pond
- Fruit - Pond: direct route with a distance of 300
Know more about distance here:
https://brainly.com/question/26550516
#SPJ11
suppose that cd = -dc and find the flaw in this reasoning: taking determinants gives ici idi = -idi ici- therefore ici = 0 or idi = 0. one or both of the matrices must be singular. (that is not true.)
The given statement is False because It is incorrect to conclude that the matrices in question must be singular based solely on their determinants.
What is the flaw in assuming that equal determinants of two matrices imply singularity of the matrices?The flaw in the reasoning lies in assuming that if the determinant of a matrix is zero, then the matrix must be singular. This assumption is incorrect.
The determinant of a matrix measures various properties of the matrix, such as its invertibility and the scale factor it applies to vectors. However, the determinant alone does not provide enough information to determine whether a matrix is singular or nonsingular.
In this specific case, the reasoning starts with the equation cd = -dc, which is used to obtain the determinant of both sides: ici idi = -idi ici. However, it's important to note that taking determinants of both sides of an equation does not preserve the equality.
Even if we assume that ici and idi are matrices, the conclusion that ici = 0 or idi = 0 is not valid. It is possible for both matrices to be nonsingular despite having a determinant of zero. A matrix is singular only if its determinant is zero and its inverse does not exist, which cannot be determined solely from the given equation.
Therefore, the flaw in the reasoning lies in assuming that the determinant being zero implies that one or both of the matrices must be singular.
Learn more about determinants
brainly.com/question/31755910
#SPJ11
problem 5. show that the number of different ways to write an integer n as the sum of two squares is the same as the number of ways to write 2n as a sum of two squares.
The number of ways to write n as a sum of two squares is equal to the number of ways to write 2n as a sum of two squares.
To show that the number of different ways to write an integer n as the sum of two squares is the same as the number of ways to write 2n as a sum of two squares, we can use the following identity: (a² + b²)(c² + d²) = (ac + bd)² + (ad - bc)².
Suppose we have two integers, x, and y, such that x² + y² = n. We can use this identity to express 2n as a sum of two squares as follows:
(2x)² + (2y)² = 4(x² + y²) = 2n
Conversely, if we have two integers, a and b, such that a² + b² = 2n, we can express n as a sum of two squares as follows:
(a² + b²)/2 + ((a² + b²)/2 - b²) = (a² + b²)/2 + (a²/2 - b²/2) = (a² + 2b²)/2 = n
Therefore, the number of ways to write n as a sum of two squares is equal to the number of ways to write 2n as a sum of two squares.
Learn more about integer here:
https://brainly.com/question/1768254
#SPJ11
Jordan is constructing the bisector of What should Jordan do for the first step? Question 1 options: Place the point of the compass on point M and draw an arc, making sure the width is greater than ½ MN. Place the point of the compass on point M and draw an arc, making sure the width of the compass opening is less than ½ MN. Use the straightedge to extend in both directions. Use the straightedge to draw the line that passes through point M.
The given choices for the question are the following: Place the point of the compass on point M and draw an arc, making sure the width is greater than ½ MN. Place the point of the compass on point M and draw an arc, making sure the width of the compass opening is less than ½ MN.
Use the straightedge to extend in both directions. Use the straightedge to draw the line that passes through point M. The correct option to choose for the first step for Jordan to construct the bisector of angle LMN is Place the point of the compass on point M and draw an arc, making sure the width of the compass opening is less than ½ MN.
An angle bisector is a straight line that divides an angle into two equal parts. An angle bisector is a straight line that divides an angle into two equal parts. It is named by the angle's vertex and the two rays that form the angle. Suppose angle LMN is the angle that Jordan is constructing the bisector. Jordan should start by creating an angle bisector by doing the following:
Step 1: Jordan should Place the point of the compass on point M and draw an arc, making sure the width of the compass opening is less than ½ MN.
Step 2: Jordan should Place the point of the compass on point N and draw an arc of the same size as the previous arc.
Step 3: Jordan should draw a line connecting the point where the two arcs meet with the vertex of the angle.
Step 4: Jordan should add an arrowhead to the line to indicate that it is an angle bisector.
To know more about Arc visit :
https://brainly.com/question/31612770
#SPJ11
For each set of voltages, state whether or not the voltages form a balanced three-phase set. If the set is balanced, state whether the phase sequence is positive or negative. If the set is not balanced, explain why. va=180cos377tv , vb=180cos(377t−120∘)v , vc=180cos(377t−240∘)v .
The set of voltages given by va = 180cos(377t) V, vb = 180cos(377t-120°) V, and vc = 180cos(377t-240°) V is a balanced three-phase set with a positive phase sequence.
The voltages given in this set are va = 180cos(377t) V, vb = 180cos(377t-120°) V, and vc = 180cos(377t-240°) V. To determine whether this set of voltages is balanced or not, we need to calculate the line-to-line voltages and compare them.
Line-to-line voltages are calculated by taking the difference between two phase voltages. For this set, the line-to-line voltages are as follows:
Vab = va - vb = 180cos(377t) - 180cos(377t-120°) = 311.13 sin(377t + 30°) V
Vbc = vb - vc = 180cos(377t-120°) - 180cos(377t-240°) = 311.13 sin(377t + 150°) V
Vca = vc - va = 180cos(377t-240°) - 180cos(377t) = 311.13 sin(377t - 90°) V
To check whether the set is balanced or not, we need to compare the magnitudes of these three line-to-line voltages. If they are equal, then the set is balanced, and if they are not equal, then the set is unbalanced.
In this case, we can see that the magnitudes of the three line-to-line voltages are equal to 311.13 V, which means that this set of voltages is balanced.
To determine the phase sequence, we can observe the time-varying components of the line-to-line voltages.
For this set, we can see that the time-varying components of the three line-to-line voltages are sin(377t + 30°), sin(377t + 150°), and sin(377t - 90°).
The phase sequence can be determined by observing the order in which these time-varying components appear.
If they appear in a positive sequence (i.e., 30°, 150°, -90°), then the phase sequence is positive, and if they appear in a negative sequence (i.e., 30°, -90°, 150°), then the phase sequence is negative.
In this case, we can see that the time-varying components of the three line-to-line voltages appear in a positive sequence, which means that the phase sequence is positive.
In conclusion, the set of voltages given by va = 180cos(377t) V, vb = 180cos(377t-120°) V, and vc = 180cos(377t-240°) V is a balanced three-phase set with a positive phase sequence.
Know more about voltages here:
https://brainly.com/question/1176850
#SPJ11
A curve in polar coordinates is given by : r=8+3cosθ.Point P is at θ=19π16.(1) Find polar coordinate r for P, with r > 0 and π<θ<3π2.(2) Find Cartesian coordinates for point P.(3) How many times does the curve pass through the origin when 0<θ<2π?
This equation has no real solutions, since -1 ≤ cosθ ≤ 1.
The curve does not pass through the origin for any value of θ in the interval 0 < θ < 2π.
The polar coordinate r for point P, we substitute θ = 19π/16 into the equation r = 8 + 3cosθ:
r = 8 + 3cos(19π/16)
We can simplify cos(19π/16) using the identity cos(π - θ) = -cosθ:
cos(19π/16) = cos(π - π/16) = -cos(π/16)
Now, we can use the double-angle identity for cosine to simplify further:
cos(2θ) = 2cos²(θ) - 1
cos(π/8) = √[(1 + cos(π/4))/2] = √[(1 + √2/2)/2]
cos(π/16) = √[(1 + cos(π/8))/2] = √[(1 + √[(1 + √2/2)/2])/2]
r = 8 + 3cos(19π/16) ≈ 5.16.
The Cartesian coordinates for point P, we use the conversion formulas:
x = rcosθ
y = rsinθ
Substituting r and θ from part (1), we have:
x = (8 + 3cos(19π/16))cos(19π/16)
≈ -0.65
y = (8 + 3cos(19π/16))sin(19π/16)
≈ 4.99
The Cartesian coordinates for point P are approximately (-0.65, 4.99).
To determine how many times the curve passes through the origin when 0 < θ < 2π, we need to find the values of θ that make r = 0.
We can solve the equation 8 + 3cosθ = 0 as follows:
3cosθ = -8
cosθ = -8/3
For similar questions on curve
https://brainly.com/question/30452445
#SPJ11
The polar coordinate r for point P is 4.06, the Cartesian coordinates is approximately (-2.26, 2.99), and the curve does not pass through the origin when 0 < θ < 2π.
(1) To find the polar coordinate r for point P, we substitute θ = 19π/16 into the equation r = 8 + 3cosθ. Therefore, we have:
r = 8 + 3cos(19π/16) ≈ 4.06
Since r has to be greater than 0, we take the absolute value of r to get r = 4.06.
(2) To find the Cartesian coordinates for point P, we use the conversion formulas x = rcosθ and y = rsinθ. Substituting r = 4.06 and θ = 19π/16, we get:
x = 4.06cos(19π/16) ≈ -2.26
y = 4.06sin(19π/16) ≈ 2.99
Therefore, the Cartesian coordinates for point P are approximately (-2.26, 2.99).
(3) To determine how many times the curve passes through the origin when 0 < θ < 2π, we need to look for the values of θ where r = 0. Substituting r = 0 into the equation r = 8 + 3cosθ, we get:
0 = 8 + 3cosθ
cosθ = -8/3
However, the range of cosine is [-1, 1], so there are no values of θ that satisfy the equation cosθ = -8/3. This means that the curve never passes through the origin for 0 < θ < 2π.
To learn more about cartesian coordinates, click here: https://brainly.com/question/31327924
#SPJ11
Paul works at a car wash company. • The function f(x) = 10. 00x + 15. 50 models his total daily pay when he washes x cars, • He can wash up to 15 cars each day. What is the range of the function? А 0<_f(x) <_165. 50 B. 0<_f(x) <_15, where x is an integer C. {5. 50, 10. 50, 15. 50,. . , 145. 50, 155. 50, 165. 50} D. {15. 50, 25. 50, 35. 50,. , 145. 50, 155. 50, 165. 50)
The range of the function f(x) = 10.00x + 15.50 is {15.50, 25.50, 35.50, . . , 145.50, 155.50, 165.50}.
The given function f(x) = 10.00x + 15.50 models the total daily pay of Paul when he washes x cars. Here, x is the independent variable that denotes the number of cars Paul washes in a day, and f(x) is the dependent variable that denotes his total daily pay.In this function, the coefficient of x is 10.00, which means that for each car he washes, Paul gets $10.00. Also, the constant term is 15.50, which represents the fixed pay he receives for washing 0 cars in a day, that is, $15.50.Therefore, to find the range of this function, we need to find the minimum and maximum values of f(x) when 0 ≤ x ≤ 15, because Paul can wash at most 15 cars in a day.The minimum value of f(x) occurs when x = 0, which means that Paul does not wash any car, and he gets only the fixed pay of $15.50. So, f(0) = 10.00(0) + 15.50 = 15.50.The maximum value of f(x) occurs when x = 15, which means that Paul washes 15 cars, and he gets $10.00 for each car plus the fixed pay of $15.50. So, f(15) = 10.00(15) + 15.50 = 165.50.Therefore, the range of the function is 0 ≤ f(x) ≤ 165.50, that is, {15.50, 25.50, 35.50, . . , 145.50, 155.50, 165.50}.
Hence, the range of the function f(x) = 10.00x + 15.50 is {15.50, 25.50, 35.50, . . , 145.50, 155.50, 165.50}.
To know more about function, click here
https://brainly.com/question/30721594
#SPJ11
evaluate the following integral or state that it diverges. ∫6[infinity] 4cos π x x2dx
Answer: ∫6[infinity] 4cos(πx)/x^2 dx converges.
Step-by-step explanation:
To determine whether the integral ∫6[infinity] 4cos(πx)/x^2 dx converges or diverges, we can use the integral test for convergence.
The integral test states that if f(x) is continuous, positive, and decreasing for x ≥ a, then the improper integral ∫a[infinity] f(x) dx converges if and only if the infinite series ∑n=a[infinity] f(n) converges. In this case, we have f(x) = 4cos(πx)/x^2, which is continuous, positive, and decreasing for x ≥ 6.
Therefore, we can apply the integral test to determine convergence.To find the infinite series associated with this integral, we can use the fact that ∫n+1[infinity] f(x) dx is less than or equal to the sum
∑k=n+1[infinity] f(k) for any integer n.
In particular, we have:
∫6[infinity] 4cos(πx)/x^2 dx ≤ ∑k=6[infinity] 4cos(πk)/k^2
To evaluate the series, we can use the alternating series test. The terms of the series are decreasing in absolute value and approach zero as k approaches infinity. Therefore, we can apply the alternating series test and conclude that the series converges. Since the integral is less than or equal to a convergent series, the integral must also converge.
Therefore, we have:∫6[infinity] 4cos(πx)/x^2 dx converges.
Learn more about integrals here, https://brainly.com/question/22008756
#SPJ11
given vectors u = i 4j and v = 5i yj. find y so that the angle between the vectors is 30 degrees
The value of y that gives an angle of 30 degrees between u and v is approximately 4.14.
The angle between two vectors u and v is given by the formula:
cosθ = (u . v) / (|u| |v|)
where u.v is the dot product of u and v, and |u| and |v| are the magnitudes of u and v, respectively.
In this case, we have:
u = i + 4j
v = 5i + yj
The dot product of u and v is:
u.v = (i)(5i) + (4j)(yj) = 5i^2 + 4y^2
The magnitude of u is:
|u| = sqrt(i^2 + 4j^2) = sqrt(1 + 16) = sqrt(17)
The magnitude of v is:
|v| = sqrt((5i)^2 + (yj)^2) = sqrt(25 + y^2)
Substituting these values into the formula for the cosine of the angle, we get:
cosθ = (5i^2 + 4y^2) / (sqrt(17) sqrt(25 + y^2))
Setting cosθ to 1/2 (since we want the angle to be 30 degrees), we get:
1/2 = (5i^2 + 4y^2) / (sqrt(17) sqrt(25 + y^2))
Simplifying this equation, we get:
4y^2 - 25 = -y^2 sqrt(17)
Squaring both sides and simplifying, we get:
y^4 - 34y^2 + 625 = 0
This is a quadratic equation in y^2. Solving for y^2 using the quadratic formula, we get:
y^2 = (34 ± sqrt(1156 - 2500)) / 2
y^2 = (34 ± sqrt(134)) / 2
y^2 ≈ 16.85 or 17.15
Since y must be positive, we take y^2 ≈ 17.15, which gives:
y ≈ 4.14
Therefore, the value of y that gives an angle of 30 degrees between u and v is approximately 4.14.
Learn more about angle here
https://brainly.com/question/1309590
#SPJ11
A painter charges $15.10 per hour, plus an additional amount for the supplies. If he made $155.86 on a job where he worked 5 hours, how much did the supplies cost?
Let x be the amount charged for supplies.
The total amount charged is equal to the sum of the amount charged per hour and the amount charged for supplies.
Mathematically, this can be written as;
15.10(5) + x = 155.86
Therefore,
15.10(5) + x = 155.86
Performing the calculation;
15.10(5) + x = 155.86
1.50(5) + 0.10(5) + x = 155.86
27.50 + x = 155.86
Solving for x,
x = 155.86 - 27.50
x = $128.36
Therefore, the cost of supplies is $128.36.
To know more about cost visit:
https://brainly.com/question/14566816
#SPJ11
find the derivative with respect to x of the integral from 2 to x squared of e raised to the x cubed power, dx.
The derivative of the given integral is: f'(x) = 2x(ex⁶)
How to find the integral?First we are given a definite integral going from a constant to a function of x. The function is:
f(x)= (2, x²) ∫ex³dx
g(x) = (2,x) ∫ex³dx (same except that the bounds are now from a constant to x which allows the first fundamental theorem to be used)
Defining a similar function were the upper bound is just x then allows us to say f(x) = g(x²) which allows us to say that:
f'(x) = g'(x²) = g'(x²) * 2x (by the chain rule) and g(x) is written so that we can easily take its derivative using the theorem that the derivative of an integral from a constant to x is equal the the inside of the integral
g'(x) = ex³
g'(x²) = e(x²)³
= ex⁶
We know f'(x) = g'(x²)*2x
Thus:
f'(x) = 2x(ex⁶)
Read more about Integrals at: https://brainly.com/question/22008756
#SPJ1