If an ideal gas has a pressure of 1.99 atm, a temperature of 124C and has a volume of 85.81L how many moles of gas are in the sample

Answers

Answer 1

To determine the number of moles of gas in the sample, we can use the Ideal Gas Law: PV = nRT

n = PV/RT

n = (1.99 atm)(85.81 L) / (0.0821 Latm/(molK) * 397.15 K)

n = 6.51 moles

Therefore, there are 6.51 moles of gas in the sample.

What is an ideal gas?

An ideal gas is a theoretical gas composed of randomly moving point particles not subject to intermolecular interactions.

How can you describe the behavior of ideal gases?

The ideal gas law describes the behavior of ideal gases, which relates the pressure, volume, temperature, and number of moles of a perfect gas. Natural gases do not strictly obey the ideal gas law, particularly at high pressures and low temperatures where intermolecular interactions become significant.

To learn more about temperature, visit here:

https://brainly.com/question/7510619

#SPJ1


Related Questions

Speculate on how this effect of K+ on NCC action could simultaneously prevent hyperkalemia (from the high dietary K+ intake) AND promote increased Na+ excretion, leading to modulation of blood pressure.​

Answers

Answer:

When there is a high dietary intake of potassium (K+), there is a higher concentration of K+ in the extracellular fluid (ECF) which causes the cell membrane to depolarize. This could lead to hyperkalemia, which is a serious condition that can lead to cardiac arrhythmia, muscle weakness, and even death.

The Na-Cl cotransporter (NCC) plays a key role in the regulation of blood pressure by reabsorbing Na+ in the distal tubules of the kidneys. The NCC is regulated by the renin-angiotensin-aldosterone system (RAAS) and aldosterone increases reabsorption of Na+ through the NCC.

However, a high K+ intake can inhibit the actions of the RAAS, reducing aldosterone secretion and, therefore, reducing the reabsorption of Na+ through the NCC. This leads to increased Na+ excretion in the urine, which helps decrease blood pressure.

In addition, the increased excretion of Na+ will further limit any potential increases in serum potassium concentrations, reducing the chances of developing hyperkalemia. Therefore, the effect of K+ on NCC can simultaneously prevent hyperkalemia and promote increased Na+ excretion, leading to modulation of blood pressure.

. What is the relative rate of effusion of Ar compared to Cl₂?

Answers

Answer:

Ar effuses 1.37 times faster than Cl₂

Explanation:

The relative rate of effusion of two gases is given by the inverse ratio of the square root of their molar masses.

The molar mass of Ar is 39.95 g/mol

The molar mass of Cl₂ is 70.91 g/mol.

Therefore, the relative rate of effusion of Ar compared to Cl₂ can be calculated as follows:

Sqrt is the square root

sqrt(70.91)/sqrt(39.95) = 1.37

So, Ar effuses 1.37 times faster than Cl₂.

in the hydrolysis of pcl3 what mass of HCl can be produced from 15.0g of pcl3the equation for the reaction is Pcl3 +3H2O-- 3HCL + H3PO3​

Answers

To solve this problem, we need to use stoichiometry.

From the balanced chemical equation, we can see that 1 mole of PCl3 produces 3 moles of HCl. Therefore, we need to first calculate the number of moles of PCl3 in 15.0 g:

moles of PCl3 = mass / molar mass
moles of PCl3 = 15.0 g / 137.33 g/mol
moles of PCl3 = 0.109 mol

Now, we can use the mole ratio from the balanced chemical equation to find the number of moles of HCl produced:

moles of HCl = moles of PCl3 x (3 moles of HCl / 1 mole of PCl3)
moles of HCl = 0.109 mol x 3
moles of HCl = 0.327 mol

Finally, we can use the molar mass of HCl to convert the number of moles to mass:

mass of HCl = moles of HCl x molar mass
mass of HCl = 0.327 mol x 36.46 g/mol
mass of HCl = 11.9 g

Therefore, 15.0 g of PCl3 can produce 11.9 g of HCl.

The Tropic Zones:
are located near the Equator.
are the warmest temperature zones.
receive a lot of direct sunlight.
All of these choices are correct.

Answers

The warmest climate zones, the Tropic Zones are close to the Equator and receive a lot of direct sunlight.

Is the equator close to the region with tropical climate?

The tropics are parts of Earth that are situated essentially in the centre of the planet. the tropics that, in terms of latitude, are situated between the Tropics of Cancer and Capricorn. The equator and portions of North America are included in the tropics.

Why are the polar regions the coldest and the tropical regions the warmest?

As an illustration, hot places are typically found closer to the equator. Because the Sun shines most directly overhead at the equator, the climate is hotter there. Moreover, the North and South Poles are chilly because they receive the least direct sunlight and heat.

To know more about direct sunlight visit:-

https://brainly.com/question/19180305

#SPJ1

Could you guys please help me with this, I really don't have idea how to do?:(​

Answers

The results of this investigation indicate that the quantity of salt dissolved in water affects how quickly an iron nail rusts.

What are the steps of the investigation of the rusting of nails?

The steps of the investigation of the rusting of nails are as follows:

Introduction:

Rusting is a common process in which iron reacts with oxygen and water in the presence of an electrolyte to form hydrated iron (III) oxide, commonly known as rust. In this investigation, we will explore how the amount of salt dissolved in water affects the rusting reaction of an iron nail.

Materials:

Iron nail

Water

Salt

3 small beakers

Stopwatch

Paper towels

Procedure:

Fill each beaker with 50 ml of water.

Dissolve different amounts of salt in each beaker as follows:

Beaker 1: 0 grams of salt

Beaker 2: 5 grams of salt

Beaker 3: 10 grams of salt

Place an iron nail in each beaker.

Record the time and observe the nails every hour for 6 hours.

Record your observations and take photos of the nails at the end of each hour.

At the end of the experiment, dry the nails with paper towels and compare their appearance.

Observations:

Beaker 1: No visible rust on the nail throughout the experiment.

Beaker 2: A small amount of rust appeared on the nail after 2 hours. The rust increased over time and covered about 25% of the nail surface after 6 hours.

Beaker 3: A significant amount of rust appeared on the nail after 1 hour. The rust increased rapidly and covered about 80% of the nail surface after 6 hours.

Conclusion:

The results of this investigation suggest that the rusting reaction of an iron nail depends on the amount of salt dissolved in water. When no salt was added to the water, no visible rust appeared on the nail. However, when salt was added, rust appeared on the nail. The amount of rust increased with the amount of salt added, indicating that the rusting reaction is accelerated in the presence of an electrolyte such as salt. This is because the presence of ions in the solution helps to conduct electricity, which facilitates the transfer of electrons between the iron and oxygen molecules, thus accelerating the rusting process.

Learn more about rusting of iron at: https://brainly.com/question/29136931

#SPJ1

The chemical process in which small organic molecules called monomers bond together to form a chain is called __________.

Answers

polymerization.
you’re welcome <3

Answer:

polymerization

Explanation:

any process in which relatively small molecules, called monomers, combine chemically to produce a very large chainlike or network molecule, called a polymer.

Which slow carbon reservoir is being turned into a fast carbon reservoir by humans?

Answers

Humans are turning the slow carbon reservoir of fossil fuels into a fast carbon reservoir by burning them at a much faster rate than they were created. This is contributing to the increase in atmospheric carbon dioxide concentrations and global warming.

For the reaction, 2 N2O5(g) → 4 NO2(g) + O2(g), the rate of formation of NO2(g)
is 4.0 x 10-3 mol L-1s-1.
(a) Calculate the rate of disappearance of N2O5(g)
(b) Calculate the rate of appearance of O2(g).

Answers

The rate of disappearance of N2O5 is -2.0 x [tex]10^{-3}[/tex] mol[tex]L^{-1}[/tex] [tex]s^{-1}[/tex]. The rate of appearance of O2 is 1.0 x [tex]10^{-3}[/tex] mol [tex]L^{-1} s^{-1}[/tex].

How is the rate of disappearance of N2O5(g) calculated?

The stoichiometric coefficient of N2O5 in the balanced equation is 2, whereas the stoichiometric coefficient of NO2 is 4. As a result, the rate of N2O5 dissolution is proportional to the rate of NO2 production. As a result, the rate at which N2O5(g) dissipates is:

N2O5(g) rate of dissolution = - (1/2) (4.0 x [tex]10^{-3} mol L^{-1} s^{-1}[/tex]) = -2.0 x [tex]10^{-3} mol L^{-1} s^{-1}[/tex]

How do you determine the pace at which O2(g) appears?

O2(g) appears at a pace that is proportionally half as fast as N2O5 vanishes (g). As a result, the rate at which O2(g) appears is:

Rate of emergence of O2(g) = (1/2) × (2.0 × [tex]10^{-3} mol L^{-1} s^{-1}[/tex]) = 1.0 × [tex]10^{-3} mol L^{-1} s^{-1}[/tex]

To learn more about rate of a reaction visit:

brainly.com/question/8592296

#SPJ1

oxidation of 3-methyl-2-pentanol

Spell out the full name of the compound.

Answers

The product of oxidation of 3-methyl-2-pentanol is 3-methyl-pentan-2-one.

The oxidation of alcohol produces aldehyde and ketones.

What is oxidation of alcohol?

Alcohols are a class of substances that have one, two, or more hydroxyl (-OH) groups bonded to the single alkane bond. These substances all have the generic formula R-OH. They play a crucial role in organic chemistry since they can be altered or transformed into other chemicals, including aldehydes and ketones, among others. There are two distinct sorts of alcohol reactions. These reactions have the ability to break the R-O bond or even the O-H bond.

The oxidation process transforms the alcohols into aldehydes and ketones. One of the most significant reactions in the study of organic chemistry is this one.

To know more about Alcohols, visit;

https://brainly.com/question/14229343

#SPJ9

What is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.100 mol of HCl were added?

Answers

the pH of the buffer solution after adding 0.100 mol of HCl is 2.99.

how to solve this problem, we will use the Henderson-Hasselbalch equation ?

pH = pKa + log([A-]/[HA])

where pKa is the dissociation constant of the weak acid, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the weak acid.

First, we need to calculate the concentrations of HF and NaF in the buffer solution. Since we have 0.300 mol of HF and 0.200 mol of NaF in 1.0 L of solution, the concentrations are:

[HF] = 0.300 M

[NaF] = 0.200 M

Next, we need to calculate the ratio of [A-]/[HA]. Since NaF is the conjugate base of HF, we can use the stoichiometry of the acid-base reaction to find that:

[A-]/[HA] = [NaF]/[HF] = 0.200/0.300 = 0.667

Now we can plug in the values into the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

pH = -log(6.8 × 10⁻⁴) + log(0.667)

pH = 3.17 + (-0.177)

pH = 2.99

Therefore, the pH of the buffer solution after adding 0.100 mol of HCl is 2.99.

To learn more about Henderson-Hasselbalch equation follow the given link:

https://brainly.com/question/29466914

#SPJ1

Explain the role of gravity in the formation of galaxies.

Answers

Answer:

Gravity is the long-range force that can pull entities with mass together over great distances to form galaxies, stars and planetary material. These objects are all the consequence of atoms and ions being first clustered into huge clouds of gas.

Given the made up equation
2X + 3Y --> 8Z
If we need to make 23.3 moles of Z, how many moles of Y would we need to start with?

Answers

According to the fictitious equation, 8.74 moles of Y would be required to initiate the reaction if we needed to produce 23.3 moles of Z.

How many moles of Y are there, exactly?

The balanced chemical equation states that 2 moles of X and 3 moles of Y combine to create 8 moles of Z. In other words, 3 moles Y / 8 moles Z = x moles Y / 23.3 moles Z indicates that the mole ratio of Y to Z is 3:8.

where x is the required number of moles of Y.

Y = 3 moles * 23.

8 moles Z times x moles Y equals 3 moles Z.

69.9 = 8x

x = 8.74

As a result, 8.74 moles of Y would be required to make 23.3 moles of Z.

To learn more about number of moles visit:

brainly.com/question/14919968

#SPJ1

2.11 A 1.0-g sample of carbon dioxide (CO2) is fully decomposed into its elements, yielding 0.273 g of carbon and 0.727 g of oxygen. (a) What is the ratio of the mass of O to C? (b) If a sample of a different compound decomposes into 0.429 g of carbon and 0.571 g of oxygen, what is its ratio of the mass of O to C? (c) According to Dalton's atomic theory, what is the empirical formula of the second compound?

Answers

The mole ratio of carbon to oxygen is therefore 1:1, which means that the empirical formula of the second compound is CO.

What is Dalton's atomic theory?

According to Dalton's atomic theory, the empirical formula of a compound gives the smallest whole-number ratio of atoms in the compound. To determine the empirical formula of the second compound, we need to calculate the mole ratio of carbon to oxygen using the masses given in the problem.

The moles of carbon can be calculated as:

moles of C = 0.429 g / 12.01 g/mol = 0.0357 mol

The moles of oxygen can be calculated as:

moles of O = 0.571 g / 16.00 g/mol = 0.0357 mol

To know more about mole visit:-

brainly.com/question/26416088

#SPJ1

Based on the first table, can someone answer these questions in the second image?

Answers

a).017 moles of copper will react with 4 x 0.017 = 0.068 moles of HNO3.

B)  As excess HNO3 is 0.019mol, so for this reaction 0.019 mol/2 =  0.0095 mol of Na2CO3 will be required.

What uses does copper have?

Due to its ductility and excellent conductivity, copper is primarily used in electrical generators, home and auto wiring, and the wires in electronics like radios, TVs, computers, lights, and motors.

Mass of copper = 1.07 g

Molar mass of copper = 63.55 g / mol

Moles of copper = mass/ molar mass = 1.07g/ 63.55g/mol = 0.017 mol

Vol of HNO3 = 5.5 ml

Concentration of HNO3  = 15.8 M

Moles of HNO3 = vol x concentration = (5.5/1000)L x 15.8 mol/L = 0.087 mol

(Since concentration is given in moles/L the volume also needs to be converted to liters. 5.5ml =  5.5/1000 L)

Based on the balanced chemical equation, 4 moles of HNO3 will react with 1 mole of copper to give 1 mole of copper nitrate.

So 0.017 moles of copper will react with 4 x 0.017 = 0.068 moles of HNO3.

Excess moles of HNO3 = moles of HNO3 added - moles of HNO3 reacted = 0.087mol- 0.068mol = 0.019 mol

On addition of Na2CO3 following reactions will occur

2) 2HNO3 + Na2CO3 ----------> 2NaNO3 + CO2 + H2O

This is the reaction that will take place between sodium carbonate and excess nitric acid. 2 moles of HNO3 will react with 1 mole of Na2CO3. As excess HNO3 is 0.019mol, so for this reaction 0.019 mol/2 =  0.0095 mol of Na2CO3 will be required.

Learn more about copper

https://brainly.com/question/13677872

#SPJ1

How many liters of NaN3 react to produce 14.7 Liters of Na2O

Answers

Answer:

he balanced chemical equation for the reaction between NaN3 and Na2O is:

2 NaN3(s) → 2 Na(s) + 3 N2(g)

According to the stoichiometry of this equation, 2 moles of NaN3 will produce 2 moles of Na, which in turn will react with 3 moles of N2. Therefore, the volume of N2 gas produced is proportional to the volume of NaN3 used.

To find the volume of NaN3 required to produce 14.7 liters of N2, we need to use the ideal gas law:

PV = nRT

where P is the pressure of the gas, V is the volume of the gas, n is the number of moles of the gas, R is the gas constant, and T is the temperature of the gas.

Assuming standard temperature and pressure (STP), which is 0°C and 1 atmosphere, we can simplify the equation to:

V = n/22.4

where V is the volume of the gas in liters and n is the number of moles of the gas.

We can use this equation to convert the volume of N2 to moles:

n = PV/RT = (1 atm)(14.7 L)/(0.08206 L·atm/mol·K)(273 K) = 0.608 mol

According to the stoichiometry of the balanced equation, 2 moles of NaN3 will produce 0.608 mol of N2. Therefore, the number of moles of NaN3 required is:

n(NaN3) = 2 × n(N2) = 2 × 0.608 mol = 1.216 mol

Finally, we can use the molar volume of a gas at STP to convert the number of moles to volume:

V(NaN3) = n(NaN3)/22.4 = 1.216 mol/22.4 L/mol = 0.054 L

Therefore, 0.054 liters of NaN3 are required to produce 14.7 liters of Na2O.

We know that the specific heat of water c = 1 calorie/g/oC For water, the latent heat of evaporation is 540 calories per gram, and latent heat of melting (or freezing) is 80 calories per gram. Answer the following questions Question 1: How much heat would be required to heat 1 gram of pure liquid water from 10oC to 20oC?

Answers

Answer:

10 calories of heat would be required to heat 1 gram of pure liquid water from 10°C to 20°C.

Explanation:

To calculate the heat required to heat 1 gram of pure liquid water from 10°C to 20°C, we need to use the specific heat formula:

Q = m * c * ΔT

where Q is the heat required, m is the mass of the substance, c is the specific heat of the substance, and ΔT is the change in temperature.

In this case, m = 1 gram, c = 1 calorie/g/°C, and ΔT = (20°C - 10°C) = 10°C. Substituting these values into the formula, we get:

Q = 1 gram * 1 calorie/g/°C * 10°C

Q = 10 calories

Therefore, 10 calories of heat would be required to heat 1 gram of pure liquid water from 10°C to 20°C.

Suppose the following two reactions have yields of 82% and 65%, respectively. How many
grams of CH are needed to form 112 g of CH₂Cl₂? Assume there is an excess of Cl₂.
a. CH + Cl₂
→CH,CI + HCI
82% yield
b. CH,CI+ Cl₂CH₂Cl₂ + HCI
-
65% yield

Answers

63.4 g of CH is needed to form 112 g of CH₂Cl₂.

What is the purpose of assuming excess Cl₂ in the given reaction?

Excess Cl₂ is assumed in the given reaction to ensure that all the CH available is consumed completely in the reaction, and there is no Cl₂ left over.

Let's assume x grams of CH is needed to form 112 g of CH₂Cl₂.

From the balanced equation of the second reaction, we can say that one mole of CH produces one mole of CH₂Cl₂.

Molar mass of CH₂Cl₂ = 12.01 + 2(1.01) + 2(35.45) = 84.93 g/mol

Number of moles of CH₂Cl₂ = 112 g / 84.93 g/mol = 1.318 mol

Since 65% yield is given for the second reaction, the actual amount of CH,CI produced will be 0.65 mol.

From the balanced equation of the first reaction, we can say that one mole of CH reacts with one mole of Cl₂ to produce one mole of CH,CI.

Since 82% yield is given for the first reaction, the actual amount of CH needed will be 0.65 / 0.82 = 0.793 mol.

Now, we can calculate the mass of CH needed as follows:

Mass of CH needed = 0.793 mol x 16.04 g/mol = 12.71 g

Learn more about "balanced equation" here:

https://brainly.com/question/7181548

#SPJ1

Which of the following terms would best classify of pure sodium chloride

Answers

An example of a substance with a set proportion of elements that are chemically linked together to form a single entity is sodium chloride. These substances are referred to as compounds.

Why is NaCl entirely an ion?

The reason why NaCl is powerful and highly ionic by nature is due to the electrostatic force contained within the free ions. The fact that NaCl may conduct electricity while it is molten is another compelling argument for classifying it as an ion.

Why doesn't pure dry NaCl conduct?

There are no free ions in solid NaCl because the ions are bound in their lattice structure places, but the ions can move freely in liquid or molten form, which allows them to conduct electricity.

To learn more about Sodium Chloride visit:

brainly.com/question/9811771

#SPJ1

The given question is incomplete. The complete question is:

Which of the following terms would best classify a sample of pure sodium chloride?

A) An element

B) A highly reactive metal

C) A poisonous gas

D) A compound

How many moles of mg are present in 2.5 x10^25 atoms mg

Answers

The number of moles of the magnesium that is involved is 42 moles

How do we use moles to find the number of atoms?

To find the number of atoms using moles, we need to use Avogadro's number, which is the number of particles (atoms, molecules, ions, etc.) in one mole of a substance. Avogadro's number is approximately 6.022 x 10^23 particles per mole.

The formula to find the number of atoms using moles is:

Number of atoms = number of moles x Avogadro's number

We know that;

1 mole would contain 6.02 * 10^23 atoms

x moles will contain 2.5 x10^25 atoms

x = 42 moles

Learn more about moles:https://brainly.com/question/20486415

#SPJ1

A solution contains an unknown amount of dissolved calcium. Addition of 0.679 mol of K3PO4 causes complete precipitation of all of the calcium.

How many moles of calcium were dissolved in the solution?

What mass of calcium was dissolved in the solution?

Answers

Answer:

The balanced chemical equation for the reaction between calcium ions (Ca2+) and phosphate ions (PO43-) is:

3Ca2+ + 2PO43- → Ca3(PO4)2

According to the equation, 3 moles of calcium ions react with 2 moles of phosphate ions to form 1 mole of calcium phosphate.

If 0.679 mol of phosphate ions are added and all the calcium ions are removed from the solution, then the amount of calcium ions originally present must be (3/2) * 0.679 = 1.0185 moles.

To calculate the mass of calcium dissolved in the solution, we need to know the molar mass of calcium. The molar mass of calcium is 40.08 g/mol.

Therefore, the mass of calcium dissolved in the solution is:

1.0185 moles * 40.08 g/mol = 40.77 g

Does butan-2-one or butan-2-ol have higher boiling point?


MUST HAVE GOOD EXPLANATION 30 POINTS

Answers

Butan-2-one has a higher boiling point than butan-2-ol.

Why does butan-2-one have a higher boiling point than butan-2-ol?

Butan-2-one has a higher boiling point than butan-2-ol because it has a higher molecular weight and more polar carbonyl group, which results in stronger intermolecular forces between molecules.

What are some potential applications of butan-2-one and butan-2-ol?

Butan-2-one (also known as methyl ethyl ketone) is commonly used as a solvent in various industrial applications, such as in the production of plastics, textiles, and adhesives. Butan-2-ol (also known as sec-butanol) is also used as a solvent, as well as a chemical intermediate in the production of other chemicals such as butyl acetate and glycol ethers. Both compounds are also used as flavor and fragrance ingredients in food and cosmetic products.

Learn more about "Butan-2-one" here:

https://brainly.com/question/2142051

#SPJ1

Complete and balance each combustion reaction.
1.Al(s)+O2(g)→
2.C9H20(l)+O2(g)→
3.C8H18O(l)+O2 (g)→
4.SiC(s)+O2(g)→

Answers

The complete and balanced equation for each reaction would be as follows:

4Al(s) + 3O2(g) → 2Al2O3(s)C9H20(l) + 14O2(g) → 9CO2(g) + 10H2O(g)C8H18O(l) + 25O2(g) → 16CO2(g) + 18H2O(g)SiC(s) + 2O2(g) → SiO2(s) + CO2(g)

Balancing chemical reactions

To balance a chemical equation, you need to ensure that the number of atoms of each element is the same on both the reactant and product sides.

This is done by adjusting the coefficients (numbers in front of the chemical formulas) until the equation is balanced. The coefficients must be the smallest whole numbers possible, and it may be necessary to add additional reactants or products to balance the equation.

Thus, the complete and balanced chemical equations for the reactions would be:

4Al(s) + 3O2(g) → 2Al2O3(s)C9H20(l) + 14O2(g) → 9CO2(g) + 10H2O(g)C8H18O(l) + 25O2(g) → 16CO2(g) + 18H2O(g)SiC(s) + 2O2(g) → SiO2(s) + CO2(g)

More on balancing chemical equations can be found here: https://brainly.com/question/28294176

#SPJ1

Why are mass and volume extensive properties and why is density an intensive property?

Answers

Answer: Density is an intensive property because there is a narrow range of densities across the samples. No matter what the initial mass was, densities were essentially the same. Since intensive properties do not depend on the amount of material, the data indicate that density is an intensive property of matter.

Density is an intensive property of matter that illustrates how much mass a substance has in a given amount of volume.

4Na + O2 → 2Na2O


How many moles of sodium oxide, Na2O, are produced when oxygen gas and 17.0 moles of sodium react?

Answers

When oxygen gas and 17.0 moles of sodium combine, 8.50 moles of Na2O are created.

What is mole?

The unit of measurement known as a mole (mol) is used to represent the quantity of a substance. The amount of a substance that has the same number of particles (atoms, molecules, or ions) as there are in 12 grams of carbon-12 is referred to as a mole. This number, which is roughly 6.022 x 1023, is referred to as Avogadro's number.

How do you determine it?

For the interaction between sodium and oxygen to form sodium oxide, the balanced chemical equation is:

4Na + O2 → 2Na2O

We can deduce from the equation that when 4 moles of sodium combine with 1 mole of oxygen, 2 moles of sodium oxide are created.

So, we must use stoichiometry to calculate how many moles of Na2O are created when 17.0 moles of Na react:

17.0 moles of Na × (1 mole of O2/ 4 moles of Na) × (2 moles of Na2O / 1 mole of O2) = 8.50 moles of Na2O

Consequently, when oxygen gas and 17.0 moles of sodium combine, 8.50 moles of Na2O are created.

To know more about mole, visit:

https://brainly.com/question/26416088

#SPJ1

what is the fertilizer that they normally use to improve the soil

Answers

Answer:

Nitrogen fertilizers: These are used to promote leafy growth and overall plant development. Examples include ammonium nitrate, urea, and ammonium sulfate.

Phosphorus fertilizers: These are used to promote root development and flowering. Examples include superphosphate and triple superphosphate.

Potassium fertilizers: These are used to improve fruit quality and disease resistance. Examples include potassium chloride and potassium sulfate.

Organic fertilizers: These are derived from natural sources such as animal manure, compost, and bone meal. They provide a slow-release source of nutrients and can also improve soil structure and fertility.

Ultimately, the choice of fertilizer will depend on the specific needs of the plants and soil conditions, and it is important to use fertilizers in moderation to avoid over-fertilization and potential environmental problems.

Explanation:

Which of these is an example of an agricultural use for radiation?

A. making heavy isotopes to find new elements.

B. irradiating wheat to kill fungus.

C. diagnostic procedures that image inside the body, such as a PET scan.

D. locating leaks in a water line in a building. ​​​

Answers

Option B. irradiating wheat to kill fungus is an example of agricultural use for radiation.

What is the relative significance of agricultural use for radiation?

The relative significance of agricultural use for radiation is based on the fact that radiation is a physic mutagenic agent and therefore it can be sued to produce mutations in undesired organisms in order to kill them.

Therefore, with this data, we can see that the relative significance of agricultural use for radiation is based on the generation of triggered mutations in undesired organisms such as plagues.

Learn more about the use of radiation here:

https://brainly.com/question/1333944

#SPJ1

An unknown element X has the following isotopes: ⁵²X (90.00% abundant, atomic mass = 52.04 amu), ⁴⁹X (8.00% abundant, atomic mass = 48.99 amu), and ⁵⁰X (2.00% abundant, atomic mass = 50.09 amu). What is the average atomic mass of X in amu?

Answers

An unknown element X has the following isotopes: ⁵²X (90.00% abundant, atomic mass = 52.04 amu), ⁴⁹X (8.00% abundant, atomic mass = 48.99 amu), and ⁵⁰X (2.00% abundant, atomic mass = 50.09 amu). The average atomic mass of X is 51.72 amu.

What are isotopes?

Isotopes are variations of chemical elements that have a varied number of neutrons but the same number of protons and electrons. In other words, isotopes are different forms of the same element that have different amounts of nucleons (the sum of protons and neutrons) because of variations in the total number of neutrons in each of their individual nuclei.

For instance, the carbon isotopes carbon-14, carbon-13, and carbon-12 all exist. A total of 8 neutrons are present in carbon-14, 7 neutrons are present in carbon-13, and 6 neutrons are present in carbon-12.

Using the formula:

Average atomic mass=∑[tex]\frac{abundance}{100}[/tex]× Atomic mass

Substituting the values,

Average atomic mass = 51.72 amu

To know more about Neutrons, visit:

https://brainly.com/question/28992636

#SPJ9

If you want to seprate the liquid solvent from solution and not keep it what separation method can you use?

Answers

You can use the method of distillation to separate the liquid solvent from the solution. In distillation, the solution is heated to its boiling point, and the solvent evaporates into a gas. The gas is then condensed back into a liquid and collected in a separate container, leaving behind the solute. This method is useful when you want to recover the solvent for reuse or dispose of it properly.

What is barium bromide and chromium (II) sulfate net ionic equation. With the solubility signs.

Answers

Answer:

NET equation: 2Br^- (aq) + Cr2+ (aq) → CrBr2 (aq)

The solubility signs for each compound are:

Barium bromide (BaBr2): (aq) - aqueous (soluble)

Chromium (II) sulfate (CrSO4): (aq) - aqueous (slightly soluble)

Barium sulfate (BaSO4): (s) - solid (insoluble)

Chromium (II) bromide (CrBr2): (aq) - aqueous (soluble)

Explanation:

Barium bromide and chromium (II) sulfate are both ionic compounds that can dissociate into their constituent ions in aqueous solutions. To write the net ionic equation for the reaction between barium bromide and chromium (II) sulfate, we first need to determine the state of the reactants and products (whether they are soluble or insoluble in water) using solubility rules.

Barium bromide (BaBr2) is soluble in water, while chromium (II) sulfate (CrSO4) is slightly soluble. When the two are mixed in water, a double displacement reaction takes place, producing barium sulfate (BaSO4) and chromium (II) bromide (CrBr2) as the products:

BaBr2 (aq) + CrSO4 (aq) → BaSO4 (s) + CrBr2 (aq)

To write the net ionic equation, we need to eliminate any spectator ions that do not participate in the reaction. In this case, the barium and sulfate ions are spectator ions, as they appear unchanged on both sides of the equation. The net ionic equation is therefore:

2Br^- (aq) + Cr2+ (aq) → CrBr2 (aq)

where Br^- and Cr2+ are the ions that actually participate in the reaction.

The solubility signs for each compound are:

Barium bromide (BaBr2): (aq) - aqueous (soluble)

Chromium (II) sulfate (CrSO4): (aq) - aqueous (slightly soluble)

Barium sulfate (BaSO4): (s) - solid (insoluble)

Chromium (II) bromide (CrBr2): (aq) - aqueous (soluble)

Question 4:
1. Suppose a 70-kg individual drinks 2 L/day of water containing 0.1
mg/L of 1,1-dichloroethylene for 20 years.
(a) Find the hazard quotient for this exposure.
(b) Find the cancer risk.
(c) If the individual drinks this water for 30 years instead of just 20,
recompute the hazard quotient and the cancer risk.

Answers

(a) The hazard quotient is:

HQ = Intake / RfD = 0.0002 mg/day / 0.02 mg/kg/day = 0.01

(b) The cancer risk is 1 in 10,000.

(c) The cancer risk is 1 in 1,000.

What is Hazard quotient?

Hazard quotient (HQ) is a measure used in risk assessment to evaluate the potential health risk posed by exposure to a chemical or other hazard. It is calculated as the ratio of the dose or exposure level of the chemical to a reference dose (RfD) or reference concentration (RfC) established by regulatory agencies or scientific bodies as a safe level of exposure. If the hazard quotient is greater than 1, it suggests that the level of exposure is of potential concern and additional risk assessment may be needed.

(a) The hazard quotient (HQ) is calculated as the daily intake of a chemical divided by its reference dose (RfD). The RfD for 1,1-dichloroethylene is 0.02 mg/kg/day.

The daily intake of 1,1-dichloroethylene can be calculated as:

Intake = concentration × ingestion rate × body weight

Intake = 0.1 μg/L × 2 L/day × 70 kg = 14 μg/day = 0.0002 mg/day

The hazard quotient is:

HQ = Intake / RfD = 0.0002 mg/day / 0.02 mg/kg/day = 0.01

(b) The cancer risk from exposure to 1,1-dichloroethylene can be estimated using the unit risk factor (URF) for this chemical, which is 0.5 per mg/kg/day. The cancer risk is calculated as:

Risk = Intake × URF = 0.0002 mg/day × 0.5 per mg/kg/day = 0.0001

Therefore, the cancer risk is 1 in 10,000.

(c) If the individual drinks this water for 30 years, the total exposure would be:

Exposure = Intake × 365 days/year × 30 years = 2.19 mg

The new hazard quotient is:

HQ = Exposure / (RfD × body weight) = 2.19 mg / (0.02 mg/kg/day × 70 kg) = 1.57

The new cancer risk is:

Risk = Exposure × URF = 2.19 mg × 0.5 per mg/kg/day = 1.10

Therefore, the cancer risk is 1 in 1,000.

To know more about cancer, visit:

https://brainly.com/question/8590464

#SPJ1

Other Questions
A bicycle shop equips 60% of their bikes with a water bottle holder. 55% of the bikes they sell have a kickstand attached to the bike. 34% of the bikes sold have bothfeatures. What is the probability that a randomly selected bicycle will have a kickstand or a water bottle holder?Hurry What type of projects did workers of the Civil Works Administration (CWA)work on?A. Farming and ranchingB. Working as clerks and secretariesC. Building airports and schoolsD. Manufacturing goodsSUBMIT Find the smallest value of n such that Sn lies within the distance 70 x 10^-6 of the true sum Copper react with oxygen to form two oxide x and y , on analysis 1. 535g of x yielded 1. 160g of copper so determine the chemical formula of x and y 2. develop a. an achievement b. a delay C. a strategy d. a relief BRAINLIEST AND 50 POINTS IF YOU CAN ANSWER THIS (I cant do any more point than that sorry)Writing Assessment: Vorzuge (Preferences)As you learned in this lesson, preferences can be expressed with the phrase "haben lieber" and the word "als". In this writing assessment, you are going to say that the following people prefer the first item over the second, using the "lieber als" construction. The first two examples are done for you.Meine Mutter/ein blauer Rock/eine gelbe BluseMeine Mutter hat einen blauen Rock lieber als eine gelbe Bluse.Unsere Lehrerin/ Bleistifte/ KugelschrieberUnsere Lehrerin hat Blestifte lieber als Kugelschrieber.- Meine Schwester/Schokolade/Obst- Meine Vater/ ein Haus/ein Mietshaus- Meine Freunde/ein Auto/kein Auto- Ich/das Buch/der Film- Wir/der Lehrer/die Lehrerin What are the cultural values in the myth Hercules? Pls hurry Ill give brainliest Martha likes to knit hats and mittens for friends and family. Last fall, she knitted 3 hats and 3pairs of mittens, which took a total of 51 hours. This fall, she knitted 3 hats and 5 pairs ofmittens, which took a total of 77 hours. If each hat takes the same amount of time and eachpair of mittens takes the same time, how long does it take Martha to knit each item?hours to knit a pair of mittens.It takes Marthahours to knit a hat and HELPASAP.HURRY.. After two years of nonpayment of the installments of a mortgage loan by a mortgagor, a bank foreclosed on the mortgaged home pursuant to state law. The mortgagor owned and resided in the home and the bank had sent several requests for payment of the money owed under the mortgage to the mortgagor at his home address. The only notice of the foreclosure action provided to the mortgagor, however, was by publication in a local newspaper. A state statute permits "service by publication, mail, or personal service in any foreclosure action." The mortgagor does not subscribe to the local newspaper and never saw the newspaper notice. Following the foreclosure, the mortgagor filed a federal action under 1983 alleging that foreclosure without actual notice effected a deprivation of property without due process.Is the notice by publication constitutionally sufficient? A plane has a takeoff speed of 34 m/s. What acceleration is needed for it to effectively use a 275 m runway? What is South Asias least common type of land use? In your own words please! The cooler at a picnic contained 4 apple juice boxes, 8 orange juice boxes, and 6 fruit punch juice boxes. a juice box is selected at random. what is the probability of the complement of choosing an orange juice box? a. startfraction 1 over 18 endfraction b. startfraction 4 over 9 endfraction c. startfraction 5 over 9 endfraction d. startfraction 17 over 18 endfraction If c is 6x6 and the equation cx = v is consistent for every v in r^6, is it possible that for some v, the equation cx = v has more than one solution? A 5.66% annual coupon, 19-year bond has a yield to maturity of 4.14% . Assuming the par value is $1,000 and the YTM is expected not to change over the next year, what is the expected Current Yield for this bond? Please share your answer as a %. Dy Question 5Chartres Cathedral's rose window best illustratesO radial balance.O asymmetry.O asymmetrical balance.O the canonical faade. What information is available in NSLDS 4. Divide N275.00 among Eno and Musa so that for every N2.00 Eno gets, Musa gets N3.00. What are their shares? bags in such a way that one bag is twice as heavy NASA is conducting an experiment to find out the fraction of people who black out at G forces greater than 6. In an earlier study, the population proportion was estimated to be 0.41.How large a sample would be required in order to estimate the fraction of people who black out at 6 or more Gs at the 95% confidence level with an error of at most 0.04? Round your answer up to the next integer. Productivity for a small country was 25 units per worker hour in 2011. Productivity increased 20 percent between 2011 and 2016. What was the productivity figure for 2016? If the rate of increase is maintained, what will the figure be in 2021? In 2026?