if ab=20 and ac=12, and c is between a and b, what is bc?

Answers

Answer 1

Answer:

bc = 8

Step-by-step explanation:

We are given that,

ab = 20, (i)

ac = 12, (ii)

and,

c is between a and b,

we have to find bc,

Since c is between ab, so,

ab = ac + bc

which gives,

bc = ab - ac

bc = 20 - 12

bc = 8


Related Questions

If y varies directly as x, and y is 48 when x is 6, which expression can be used to find the value of y when x is 2?

Answers

Answer:

y= 8x

Step-by-step explanation:

y= 48

x= 6

48/6 = 8

y= 8x

x=2

y= 8(2)

y= 16

In a video game, Shar has to build a pen shaped like a right triangle for her animals. If she needs 8 feet of fence for the shortest side and 10 feet of fence for the longest side, how many feet of fencing is needed for the entire animal pen?

Answers

To find out how much fencing Shar needs in total, you need to find the length of the remaining side of the triangle. You can use the Pythagorean Theorem, which states that in a right triangle, the square of the length of the hypotenuse (longest side) is equal to the sum of the squares of the other two sides.

Using this formula, you can solve for the length of the remaining side:

a² + b² = c²
8² + b² = 10²
64 + b² = 100
b² = 36
b = 6

So the length of the remaining side is 6 feet. To find the total amount of fencing needed, you just add up the lengths of all three sides:

8 + 6 + 10 = 24

So Shar needs 24 feet of fencing in total.

X+x+y+y
can anyone simplify this for Mathswach as 2x+2y ain't work

Answers

Answer:

To simplify the expression "X + x + y + y," you can combine like terms:

X + x + y + y = (X + x) + (y + y) = 2x + 2y

So, the simplified form of the expression is 2x + 2y.

If a minimum spanning tree has edges with values a=7, b=9, c=13
and d=3, then what is the length of the minimum spanning tree?

Answers

The length of the minimum spanning tree is 32 units.

What is the length of the minimum spanning tree?

To calculate the length of the minimum spanning tree, we need to sum up the values of the edges in the tree.

Given the edge values:

a = 7

b = 9

c = 13

d = 3

To find the length of the minimum spanning tree, we simply add these values together:

Length = a + b + c + d

= 7 + 9 + 13 + 3

= 32

Which means that the length of the minimum spanning tree is 32.

Learn more about spanning trees at.

https://brainly.com/question/29991588

#SPJ4

The length of the minimum spanning tree, considering the given edges, is 32.

To calculate the length of the minimum spanning tree, we need to sum the values of all the edges in the tree. In this case, the given edges have the following values:

a = 7

b = 9

c = 13

d = 3

To find the minimum spanning tree, we need to select the edges that connect all the vertices with the minimum total weight. Assuming these edges are part of the minimum spanning tree, we can add up their values:

7 + 9 + 13 + 3 = 32

Therefore, the length of the minimum spanning tree, considering the given edges, is 32.

Learn more about minimum spanning tree here:

https://brainly.com/question/13148966

#SPJ11

Declan is moving into a college dormitory and needs to rent a moving truck. For the type of truck he wants, Company A charges a $30 rental fee plus $0.95 per mile driven, while Company B charges a $45 rental fee plus $0.65 per mile driven. For how many miles is the cost of renting the truck the same at both companies?

Answers

For distances less than 50 miles, Company B would be more cost-effective, while for distances greater than 50 miles, Company A would be the better choice.

To determine the number of miles at which the cost of renting a truck is the same at both companies, we need to find the point of equality between the total costs of Company A and Company B. Let's denote the number of miles driven by "m".

For Company A, the total cost can be expressed as C_A = 30 + 0.95m, where 30 is the rental fee and 0.95m represents the mileage charge.

For Company B, the total cost can be expressed as C_B = 45 + 0.65m, where 45 is the rental fee and 0.65m represents the mileage charge.

To find the point of equality, we set C_A equal to C_B and solve for "m":

30 + 0.95m = 45 + 0.65m

Subtracting 0.65m from both sides and rearranging the equation, we get:

0.3m = 15

Dividing both sides by 0.3, we find:

m = 50

Therefore, the cost of renting the truck is the same at both companies when Declan drives 50 miles.

For more such questions on distances

https://brainly.com/question/30395212

#SPJ8

Find the domain and range of the function graphed below

Answers

Answer:

Domain: [tex][-1,3)[/tex]

Range: [tex](-5,4][/tex]

Step-by-step explanation:

Domain is all the x-values, so starting with x=-1 which is included, we keep going to the left until we hit x=3 where it is not included, so we get [-1,3) as our domain.

Range is all the y-values, so starting with y=-5 which is not included, we keep going up until we hit y=4 where it is included, so we get (-5,4] as our range.

Write the expression as a single logarithm with a coefficlent of 1. Assume all variable expressions represent positive real numbers. log(6x)−(2logx−logy)

Answers

The expression log(6x)−(2logx−logy) can be simplified to log(6x/[tex]x^2^ * ^y[/tex]).

To simplify the given expression log(6x)−(2logx−logy), we can apply logarithmic properties to combine and rearrange the terms.

First, using the property log(a) - log(b) = log(a/b), we simplify the expression inside the parentheses:

2logx - logy = log[tex](x^2[/tex][tex])[/tex]- log(y) = log([tex]x^2^/^y[/tex])

Next, we substitute this simplified expression back into the original expression:

log(6x) - (log([tex]x^2^/^y[/tex])) = log(6x) - log([tex]x^2^/^y[/tex])

Now, using the property log(a) - log(b) = log(a/b), we can combine the terms:

log(6x) - log(([tex]x^2^/^y[/tex]) = log(6x / (([tex]x^2^/^y[/tex])) = log(6x * y / [tex]x^2[/tex]) = log(6y / x)

Thus, the simplified expression is log(6y / x) with a coefficient of 1.

Learn more about expression log

brainly.com/question/31800038

#SPJ11

(a) [8 Marks] Establish the frequency response of the series system with transfer function as specified in Figure 1, with an input of x(t) = cos(t). (b) [12 Marks] Determine the stability of the connected overall system shown in Figure 1. Also, sketch values of system poles and zeros and explain your answer with terms of the contribution made by the poles and zeros to overall system stability. x(t) 8 s+2 s² + 4 s+1 s+2 Figure 1 Block diagram of series system 5+

Answers

The collection gadget with the given transfer function and an enter of x(t) = cos(t) has a frequency response given through Y(s) = cos(t) * [tex][8(s+1)/(s+2)(s^2 + 4)][/tex]. The gadget is solid due to the poor real part of the pole at s = -2. The absence of zeros in addition contributes to system stability.

To set up the frequency reaction of the collection system, we want to calculate the output Y(s) inside the Laplace domain given the input X(s) = cos(t) and the transfer function of the device.

The switch function of the series machine, as proven in Figure 1, is given as H(s) = [tex]8(s+1)/(s+2)(s^2 + 4).[/tex]

To locate the output Y(s), we multiply the enter X(s) with the aid of the transfer feature H(s) and take the inverse Laplace remodel:

Y(s) = X(s) * H(s)

Y(s) = cos(t) * [tex][8(s+1)/(s+2)(s^2 + 4)][/tex]

Next, we want to determine the stability of the overall gadget. The stability is determined with the aid of analyzing the poles of the switch characteristic.

The poles of the transfer feature H(s) are the values of s that make the denominator of H(s) equal to 0. By putting the denominator same to zero and solving for s, we are able to find the poles of the machine.

S+2 = 0

s = -2

[tex]s^2 + 4[/tex]= 0

[tex]s^2[/tex] = -4

s = ±2i

The machine has one actual pole at s = -2 and complicated poles at s = 2i and s = -2i. To investigate balance, we observe the actual parts of the poles.

Since the real part of the pole at s = -2 is poor, the system is stable. The complicated poles at s = 2i and s = -2i have 0 real elements, which additionally contribute to stability.

Sketching the poles and zeros at the complex plane, we see that the machine has an unmarried real pole at s = -2 and no 0. The pole at s = -2 indicates balance because it has a bad real component.

In conclusion, the collection gadget with the given transfer function and an enter of x(t) = cos(t) has a frequency response given through Y(s) = cos(t) *[tex][8(s+1)/(s+2)(s^2 + 4)][/tex]. The gadget is solid due to the poor real part of the pole at s = -2. The absence of zeros in addition contributes to system stability.

To know more about the Laplace domain,

https://brainly.com/question/33309903

#SPJ4

The correct question is:

" Establish the frequency response of the series system with transfer function as specified in Figure 1, with an input of x(t) = cos(t). Determine the stability of the connected overall system shown in Figure 1. Also, sketch values of system poles and zeros and explain your answer in terms of the contribution made by the poles and zeros to overall system stability. x(t) 8 5 s+1 s+2 Figure 1 Block diagram of series system s+2 S² +4"

29. If N = 77, M1 = 48, M2 = 44, and SM1-M2 = 2.5, report the results in APA format. Ot(75) = 1.60, p < .05 t(77) = 2.50, p < .05 t(75) = 1.60, p > .05 t(76) 1.60, p > .05

Answers

The results in APA format for the given values are as follows: Ot(75) = 1.60, p < .05; t(77) = 2.50, p < .05; t(75) = 1.60, p > .05; and t(76) = 1.60, p > .05.

To report the results in APA format, we need to provide the relevant statistics, degrees of freedom, t-values, and p-values. Let's break down the provided information step by step.

First, we have Ot(75) = 1.60, p < .05. This indicates a one-sample t-test with 75 degrees of freedom. The t-value is 1.60, and the p-value is less than .05, suggesting that there is a significant difference between the sample mean and the population mean.

Next, we have t(77) = 2.50, p < .05. This represents an independent samples t-test with 77 degrees of freedom. The t-value is 2.50, and the p-value is less than .05, indicating a significant difference between the means of two independent groups.

Moving on, we have t(75) = 1.60, p > .05. This denotes a paired samples t-test with 75 degrees of freedom. The t-value is 1.60, but the p-value is greater than .05. Therefore, there is insufficient evidence to reject the null hypothesis, suggesting that there is no significant difference between the paired observations.

Finally, we have t(76) = 1.60, p > .05. This is another paired samples t-test with 76 degrees of freedom. The t-value is 1.60, and the p-value is greater than .05, again indicating no significant difference between the paired observations.

In summary, the provided results in APA format are as follows: Ot(75) = 1.60, p < .05; t(77) = 2.50, p < .05; t(75) = 1.60, p > .05; and t(76) = 1.60, p > .05.

Learn more about degrees of freedom here:

https://brainly.com/question/15689447

#SPJ11

In the accompanying diagram, AB || DE. BL BE
If mzA=47, find the measure of D.

Answers

Measure of D is 43 degrees by using geometry.

In triangle ABC, because sum of angles in a triangle is 180

It is given that AB is parallel to DE, AB is perpendicular to BE and AC is perpendicular to BD. This means that ∠B ∠ACD and ∠ACB = 90

Now,

m∠C = 90

m∠A = 47

m∠ABC = 180 - (90+47) = 43

In triangle BDC, because sum of angles in a triangle is 180

m∠DBE = 90 - ∠ABC = 90 - 43 = 47

∠ BED = 90 (Since AB is parallel to DE)

Therefore∠ BDE = 180 - (90 + 47) = 180 - 137 = 43

The required measure of ∠D = 43 degrees.

To know more about angles,

https://brainly.com/question/22440327

1. Search and solve the following and must show steps for each
problem
a. 23^100002 mod 41
b. 43^123456 mod 73

Answers

a. To find 23^100002 mod 41, we can use Fermat's Little Theorem and simplify the expression to 18.

b. To find 43^123456 mod 73, we can use the method of repeated squaring and simplify the expression to 43.

a. To find 23^100002 mod 41, we can use Fermat's Little Theorem, which states that if p is a prime number and a is an integer not divisible by p, then a^(p-1) mod p = 1. Since 41 is a prime and 23 is not divisible by 41, we have:

23^(41-1) mod 41 = 1

23^40 mod 41 = 1

23^100002 = 23^(40*2500 + 2)

Using the property (a^b * a^c) mod m = (a^(b+c)) mod m, we can simplify this to

23^100002 = (23^40)^2500 * 23^2

Taking both sides of the equation mod 41, we get:

23^100002 mod 41 = (23^40 mod 41)^2500 * 23^2 mod 41

23^100002 mod 41 = 23^2 mod 41 = 18

Therefore, 23^100002 mod 41 = 18.

b. To find 43^123456 mod 73, we can use the method of repeated squaring. We first write the exponent in binary form:

123456 = 11110001001000000

Starting with the base 43, we repeatedly square and take modulo 73, using the binary digits as a guide. For example, we have:

43^2 mod 73 = 15

43^4 mod 73 = 15^2 mod 73 = 56

43^8 mod 73 = 56^2 mod 73 = 27

43^16 mod 73 = 27^2 mod 73 = 28

43^32 mod 73 = 28^2 mod 73 = 12

43^64 mod 73 = 12^2 mod 73 = 16

43^128 mod 73 = 16^2 mod 73 = 19

43^256 mod 73 = 19^2 mod 73 = 55

43^512 mod 73 = 55^2 mod 73 = 42

43^1024 mod 73 = 42^2 mod 73 = 35

43^2048 mod 73 = 35^2 mod 73 = 71

43^4096 mod 73 = 71^2 mod 73 = 34

43^8192 mod 73 = 34^2 mod 73 = 43

Therefore, 43^123456 mod 73 = 43^8192 mod 73 = 43.

Learn more about Fermat's little theorem at brainly.com/question/8978786

#SPJ11

Witch expression is equal to 1/tan x + tan x
A 1/sin x
B sin x cos x
C 1/cos x
D1/sin x cos x

Answers

The expression 1/tan(x) + tan(x) is equal to cos(x) + sin(x). Therefore, option B. Sin(x)cos(x) is correct.

To simplify the expression 1/tan(x) + tan(x), we need to find a common denominator for the two terms.

Since tan(x) is equivalent to sin(x)/cos(x), we can rewrite the expression as:

1/tan(x) + tan(x) = 1/(sin(x)/cos(x)) + sin(x)/cos(x)

To simplify further, we can multiply the first term by cos(x)/cos(x) and the second term by sin(x)/sin(x):

1/(sin(x)/cos(x)) + sin(x)/cos(x) = cos(x)/sin(x) + sin(x)/cos(x)

Now, to find a common denominator, we multiply the first term by sin(x)/sin(x) and the second term by cos(x)/cos(x):

(cos(x)/sin(x))(sin(x)/sin(x)) + (sin(x)/cos(x))(cos(x)/cos(x)) = cos(x)sin(x)/sin(x) + sin(x)cos(x)/cos(x)

Simplifying the expression further, we get:

cos(x)sin(x)/sin(x) + sin(x)cos(x)/cos(x) = cos(x) + sin(x)

Therefore, the expression 1/tan(x) + tan(x) is equal to cos(x) + sin(x).

From the given choices, the best answer that matches the simplified expression is:

B. sin(x)cos(x)

for such more question on equivalent

https://brainly.com/question/9657981

#SPJ8

c. For the following statement, answer TRUE or FALSE. i. \( [0,1] \) is countable. ii. Set of real numbers is uncountable. iii. Set of irrational numbers is countable.

Answers

c. For the following statement, answer TRUE or FALSE. i. [0,1] is countable: FALSE. ii. The set of real numbers is uncountable: TRUE. iii. The set of irrational numbers is countable: FALSE.

For the first statement, [0, 1] is an uncountable set since we cannot count all of its elements. For the second statement, it is correct that the set of real numbers is uncountable. This result is called Cantor's diagonal argument and is one of the most critical results of mathematical analysis. The proof of this theorem is known as Cantor's diagonalization argument, and it is a significant proof that has made a significant contribution to the field of mathematics.

The set of irrational numbers is uncountable, so the statement is false. Because the irrational numbers are the numbers that are not rational numbers. And the set of irrational numbers is not countable as we cannot list them.

You can learn more about real numbers at: brainly.com/question/31715634

#SPJ11

The length of a lateral edge of the regular square pyramid ABCDM is 15 in. The measure of angle MDO is 38°. Find the volume of the pyramid. Round your answer to the nearest
in³.

Answers

The volume of the pyramid is approximately 937.5 cubic inches (rounded to the nearest cubic inch).

We can use the following formula to determine the regular square pyramid's volume:

Volume = (1/3) * Base Area * Height

First, let's find the side length of the square base, denoted by "s". We know that the length of a lateral edge is 15 inches, and in a regular pyramid, each lateral edge is equal to the side length of the base. Therefore, we have:

s = 15 inches

Next, we need to find the height of the pyramid, denoted by "h". We are given the measure of angle MDO, which is 38 degrees. In triangle MDO, the height is the side opposite to the given angle. To find the height, we can use the tangent function:

tan(38°) = height / s

Solving for the height, we have:

height = s * tan(38°)

height = 15 inches * tan(38°)

Now, we have the side length "s" and the height "h". Next, let's calculate the base area, denoted by "A". Since the base is a square, the area of a square is given by the formula:

A = s^2

Substituting the value of "s", we have:

A = (15 inches)^2

A = 225 square inches

Finally, we can substitute the values of the base area and height into the volume formula to calculate the volume of the pyramid:

Volume = (1/3) * Base Area * Height

Volume = (1/3) * A * h

Substituting the values, we have:

Volume = (1/3) * 225 square inches * (15 inches * tan(38°))

Using a calculator to perform the calculations, we find that tan(38°) is approximately 0.7813. Substituting this value, we can calculate the volume:

Volume = (1/3) * 225 square inches * (15 inches * 0.7813)

Volume ≈ 937.5 cubic inches

for such more question on volume

https://brainly.com/question/6204273

#SPJ8

Help please!!!!!!!!!!!!!

Answers

Answer:

x = 24.7

Step-by-step explanation:

Using law of sines,

[tex]\frac{15}{sin\;35} =\frac{x}{sin\;71} \\\\\frac{15*sin\;71}{sin\;35} =x\\[/tex]

x = 24.7

Use the method of reduction of order and the given solution to solve the second order ODE xy′′ −(x+2)y′ +2y=0, y1 =e^x

Answers

The solution to the given second-order ordinary differential equation (ODE) xy′′ - (x+2)y′ + 2y = 0, with one known solution y1 = e^x, can be found using the method of reduction of order.

Step 1: Assume a Second Solution

Let's assume the second solution to the ODE as y2 = u(x) * y1, where u(x) is a function to be determined.

Step 2: Find y2' and y2''

Differentiate y2 = u(x) * y1 to find y2' and y2''.

y2' = u(x) * y1' + u'(x) * y1,

y2'' = u(x) * y1'' + 2u'(x) * y1' + u''(x) * y1.

Step 3:Substitute y2, y2', and y2'' into the ODE

Substitute y2, y2', and y2'' into the ODE xy′′ - (x+2)y′ + 2y = 0 and simplify.

xy1'' + 2xy1' + 2y1 - (x+2)(u(x) * y1') + 2u(x) * y1 = 0.

Step 4: Simplify and Reduce Order

Collect terms and simplify the equation, keeping only terms involving u(x) and its derivatives.

xu''(x)y1 + (2x - (x+2)u'(x))y1' + (2 - (x+2)u(x))y1 = 0.

Since [tex]y1 = e^x i[/tex]s a known solution, substitute it into the equation and simplify further.

[tex]xu''(x)e^x + (2x - (x+2)u'(x))e^x + (2 - (x+2)u(x))e^x = 0.[/tex]

Simplify the equation to obtain:

xu''(x) + xu'(x) - 2u(x) = 0.

Step 5: Solve the Reduced ODE

Solve the reduced ODE xu''(x) + xu'(x) - 2u(x) = 0 to find the function u(x).

The reduced ODE is linear and can be solved using standard methods, such as variation of parameters or integrating factors.

Once u(x) is determined, the second solution y2 can be obtained as[tex]y2 = u(x) * y1 = u(x) * e^x.[/tex]

Learn more about the reduction of order method visit:

https://brainly.com/question/31399512

#SPJ11

Consider three urns, one colored red, one white, and one blue. The red urn contains 1 red and 4 blue balls; the white urn contains 3 white balls, 2 red balls, and 2 blue balls; the blue urn contains 4 white balls, 3 red balls, and 2 blue balls. At the initial stage, a ball is randomly selected from the red urn and then returned to that urn. At every subsequent stage, a ball is randomly selected from the urn whose color is the same as that of the ball previously selected and is then returned to that urn. Let Xn be the color of the


ball in the nth draw.



a. What is the state space?


b. Construct the transition matrix P for the Markov chain.


c. Is the Markove chain irreducible? Aperiodic?


d. Compute the limiting distribution of the Markov chain. (Use your computer)


e. Find the stationary distribution for the Markov chain.


f. In the long run, what proportion of the selected balls are red? What proportion are white? What proportion are blue?

Answers

a. The state space consists of {Red, White, Blue}.

b. Transition matrix P: P = {{1/5, 0, 4/5}, {2/7, 3/7, 2/7}, {3/9, 4/9, 2/9}}.

c. The chain is not irreducible. It is aperiodic since there are no closed paths.

d. The limiting distribution can be computed by raising the transition matrix P to a large power.

e. The stationary distribution is the eigenvector corresponding to the eigenvalue 1 of the transition matrix P.

f. The proportion of red, white, and blue balls can be determined from the limiting or stationary distribution.

a. The state space consists of the possible colors of the balls: {Red, White, Blue}.

b. The transition matrix P for the Markov chain can be constructed as follows:

P =

| P(Red|Red)   P(White|Red)  P(Blue|Red)   |

| P(Red|White) P(White|White) P(Blue|White) |

| P(Red|Blue) P(White|Blue) P(Blue|Blue) |

The transition probabilities can be determined based on the information given about the urns and the sampling process.

P(Red|Red) = 1/5 (Since there is 1 red ball and 4 blue balls in the red urn)

P(White|Red) = 0 (There are no white balls in the red urn)

P(Blue|Red) = 4/5 (There are 4 blue balls in the red urn)

P(Red|White) = 2/7 (There are 2 red balls in the white urn)

P(White|White) = 3/7 (There are 3 white balls in the white urn)

P(Blue|White) = 2/7 (There are 2 blue balls in the white urn)

P(Red|Blue) = 3/9 (There are 3 red balls in the blue urn)

P(White|Blue) = 4/9 (There are 4 white balls in the blue urn)

P(Blue|Blue) = 2/9 (There are 2 blue balls in the blue urn)

c. The Markov chain is irreducible if it is possible to reach any state from any other state. In this case, it is not irreducible because it is not possible to transition directly from a red ball to a white or blue ball, or vice versa.

The Markov chain is aperiodic if the greatest common divisor (gcd) of the lengths of all closed paths in the state space is 1. In this case, the chain is aperiodic since there are no closed paths.

d. To compute the limiting distribution of the Markov chain, we can raise the transition matrix P to a large power. Since the given question suggests using a computer, the specific values for the limiting distribution can be calculated using matrix operations.

e. The stationary distribution for the Markov chain is the eigenvector corresponding to the eigenvalue 1 of the transition matrix P. Using matrix operations, this eigenvector can be calculated.

f. In the long run, the proportion of selected balls that are red can be determined by examining the limiting distribution or stationary distribution. Similarly, the proportions of white and blue balls can also be obtained. The specific values can be computed using matrix operations.

For more question on matrix visit:

https://brainly.com/question/2456804

#SPJ8

900 % 5 9/14 2 a. Partition {1,2,....9} into the minsets generated by B₁ = {5,6,7}, B₂= {2,4,5,9}, and B3 = {3,4,5,6,8,9}. FS 136% b. How many different subsets of {1,2,...,9} can you create using B₁, B₂, and B with the standard set operations?

Answers

The number of different subsets that can be created using the sets B₁, B₂, and B₃ is 28.

When we consider the sets B₁ = {5, 6, 7}, B₂ = {2, 4, 5, 9}, and B₃ = {3, 4, 5, 6, 8, 9}, we can use the standard set operations (union, intersection, and complement) to create different subsets. To find the total number of subsets, we can count the number of choices we have for each element in the set {1, 2, ..., 9}.

Using the principle of inclusion-exclusion, we find that the total number of subsets is given by:

|B₁ ∪ B₂ ∪ B₃| = |B₁| + |B₂| + |B₃| - |B₁ ∩ B₂| - |B₁ ∩ B₃| - |B₂ ∩ B₃| + |B₁ ∩ B₂ ∩ B₃|

Calculating the values, we have:

|B₁| = 3, |B₂| = 4, |B₃| = 6,

|B₁ ∩ B₂| = 1, |B₁ ∩ B₃| = 1, |B₂ ∩ B₃| = 2,

|B₁ ∩ B₂ ∩ B₃| = 1.

Substituting these values, we get:

|B₁ ∪ B₂ ∪ B₃| = 3 + 4 + 6 - 1 - 1 - 2 + 1 = 10.

However, this count includes the empty set and the entire set {1, 2, ..., 9}. So, the number of distinct non-empty subsets is 10 - 2 = 8.

Additionally, there are two more subsets: the empty set and the entire set {1, 2, ..., 9}. Thus, the total number of different subsets that can be created using B₁, B₂, and B₃ is 8 + 2 = 10.

Learn more about: principle of inclusion-exclusion

brainly.com/question/32375490

#SPJ11

Question 3 Solve the system of linear equations using naïve gaussian elimination What happen to the second equation after eliminating the variable x? O 0.5y+3.5z-11.5 -0.5y+3.5z=-11.5 -0.5y-3.5z-11.5 0.5y-3.5z=11.5 2x+y-z=1 3x+2y+2z=13 4x-2y+3z-9

Answers

The second equation after eliminating the variable x is 0.5y + 3.5z = 11.5.

What happens to the second equation after eliminating the variable x?

To solve the system of linear equations using Gaussian elimination, we'll perform row operations to eliminate variables one by one. Let's start with the given system of equations:

2x + y - z = 13x + 2y + 2z = 134x - 2y + 3z = -9

Eliminate x from equations 2 and 3:

To eliminate x, we'll multiply equation 1 by -1.5 and add it to equation 2. We'll also multiply equation 1 by -2 and add it to equation 3.

(3x + 2y + 2z) - 1.5 * (2x + y - z) = 13 - 1.5 * 13x + 2y + 2z - 3x - 1.5y + 1.5z = 13 - 1.50.5y + 3.5z = 11.5

New equation 3: (4x - 2y + 3z) - 2 * (2x + y - z) = -9 - 2 * 1

Simplifying the equation 3: 4x - 2y + 3z - 4x - 2y + 2z = -9 - 2

Simplifying further: -0.5y - 3.5z = -11.5

So, the second equation after eliminating the variable x is 0.5y + 3.5z = 11.5.

Learn more about variable

brainly.com/question/15078630

#SPJ11

Pleeeeaase Answer ASAP!

Answers

Answer:

Step-by-step explanation:

Domain is where x direction part of the function where it exists,

The function exists from 0 to 9 including 0 and 9. Can be written 2 ways:

Interval notation

0 ≤ x ≤ 9

Set notation

[0, 9]

Each unit on the coordinate plane represents 1 NM. If the boat is 10 NM east of the y-axis, what are its coordinates to the nearest tenth?​

Answers

The boat's coordinates are (10, 0).

A coordinate plane is a grid made up of vertical and horizontal lines that intersect at a point known as the origin. The origin is typically marked as point (0, 0). The horizontal line is known as the x-axis, while the vertical line is known as the y-axis.

The x-axis and y-axis split the plane into four quadrants, numbered I to IV counterclockwise starting at the upper-right quadrant. Points on the plane are described by an ordered pair of numbers, (x, y), where x represents the horizontal distance from the origin, and y represents the vertical distance from the origin, in that order.

The distance between any two points on the coordinate plane can be calculated using the distance formula. When it comes to the given question, we are given that Each unit on the coordinate plane represents 1 NM.

Since the boat is 10 NM east of the y-axis, the x-coordinate of the boat's position is 10. Since the boat is not on the y-axis, its y-coordinate is 0. Therefore, the boat's coordinates are (10, 0).

For more such questions on coordinates, click on:

https://brainly.com/question/17206319

#SPJ8

Find the Taylor series expansion of In(1+x) at x=2?

Answers

The Taylor series expansion of ln(1+x) at x=2.

To find the Taylor series expansion of ln(1+x) at x=2, we can start by finding the derivatives of ln(1+x) with respect to x and evaluating them at x=2.

The derivatives of ln(1+x) are:

f(x) = ln(1+x)

f'(x) = 1/(1+x)

f''(x) = -1/(1+x)^2

f'''(x) = 2/(1+x)^3

f''''(x) = -6/(1+x)^4

...

Evaluating these derivatives at x=2, we get:

f(2) = ln(1+2) = ln(3)

f'(2) = 1/(1+2) = 1/3

f''(2) = -1/(1+2)^2 = -1/9

f'''(2) = 2/(1+2)^3 = 2/27

f''''(2) = -6/(1+2)^4 = -6/81

The Taylor series expansion of ln(1+x) centered at x=2 is given by:

ln(1+x) = f(2) + f'(2)(x-2) + f''(2)(x-2)^2/2! + f'''(2)(x-2)^3/3! + f''''(2)(x-2)^4/4! + ...

Substituting the values we calculated earlier, the Taylor series expansion becomes:

ln(1+x) = ln(3) + (1/3)(x-2) - (1/9)(x-2)^2/2 + (2/27)(x-2)^3/3 - (6/81)(x-2)^4/4 + ...

This is the Taylor series expansion of ln(1+x) at x=2.

Learn more about taylor series at https://brainly.com/question/32940568

#SPJ11

1. (K ⋅ B) ∨ (L ⊃ E)
2. ∼ (K ⋅ B)
3. ∼ E /∼ L

Answers

By performing a proof by contradiction and utilizing logical operations, we have derived ∼ L from the given premises. Hence, the conclusion of the argument is ∼ L.

To prove the conclusion ∼ L in the given argument, we can perform a derivation as follows:

(K ⋅ B) ∨ (L ⊃ E) (Premise)∼ (K ⋅ B) (Premise)∼ E (Premise)L (Assume for the sake of contradiction)K ⋅ B ∨ L⊃E (1, Addition)∼ K ⊕ ∼ B (2, De Morgan's Law)∼ K ⋅ ∼ B (6, Exclusive Disjunction)∼ K (7, Simplification)∼ K ⊃ L (5, Simplification)L (4, 9, Modus Ponens)K ⋅ B (5, 10, Modus Ponens)∼ K (8, Contradiction)∼ L (4-12, Proof by Contradiction)

Through the use of logical operations and proof by contradiction, we were able to derive L from the supplied premises. Consequently, the argument's conclusion is L.

Learn more about Modus Ponens

https://brainly.com/question/27990635

#SPJ11



Test your conjecture on other polygons. Does your conjecture hold? Explain.

Answers

The conjecture that opposite angles in a polygon are congruent holds true for all polygons. The explanation lies in the properties of parallel lines and the corresponding angles formed by transversals in polygons.

The conjecture that opposite angles in a polygon are congruent can be tested on various polygons, such as triangles, quadrilaterals, pentagons, hexagons, and so on. In each case, we will find that the conjecture holds true.

For example, let's consider a triangle. In a triangle, the sum of interior angles is always 180 degrees. If we label the angles as A, B, and C, we can see that angle A is opposite to side BC, angle B is opposite to side AC, and angle C is opposite to side AB. According to our conjecture, if angle A is congruent to angle B, then angle C should also be congruent to angles A and B. This is true because the sum of all three angles must be 180 degrees.
Similarly, we can apply the same logic to other polygons. In a quadrilateral, the sum of interior angles is 360 degrees. In a pentagon, it is 540 degrees, and so on. In each case, we will find that opposite angles are congruent.
The reason behind this is the properties of parallel lines and transversals. When parallel lines are intersected by a transversal, corresponding angles are congruent. In polygons, the sides act as transversals to the interior angles, and opposite angles are formed by parallel sides. Therefore, the corresponding angles (opposite angles) are congruent.
Hence, the conjecture holds true for all polygons, providing a consistent pattern based on the properties of parallel lines and transversals.

Learn more about polygons here:

https://brainly.com/question/17756657

#SPJ11

After the release of radioactive material into the atmosphere from a nuclear power plant in a country in 1997, the hay in that country was contaminated by a radioactive isotope (half-fe days). If it is safe to feed the hay to cows when 11% of the radioactive isotope remains, how long did the farmers need to wait to use this hay?
The farmers needed to wait approximately days for it to be safe to feed the hay to the cows. (Round to one decimal place as needed.)

Answers

The farmers needed to wait approximately 6.8 times the half-life for it to be safe to feed the hay to the cows.

To determine the time the farmers needed to wait for the hay to be safe to feed to the cows, we need to calculate the time it takes for the radioactive isotope to decay to 11% of its initial quantity. The decay of a radioactive substance can be modeled using the formula:

N(t) = N₀ * (1/2)^(t/half-life)

Where:

N(t) is the quantity of the radioactive substance at time t,

N₀ is the initial quantity of the radioactive substance,

t is the time that has passed, and

half-life is the time it takes for the quantity to reduce by half.

In this case, we know that when 11% of the radioactive isotope remains, the quantity has reduced by a factor of 0.11.

0.11 = (1/2)^(t/half-life)

Taking the logarithm of both sides of the equation:

log(0.11) = (t/half-life) * log(1/2)

Solving for t/half-life:

t/half-life = log(0.11) / log(1/2)

Using logarithm properties, we can rewrite this as:

t/half-life = logₓ(0.11) / logₓ(1/2)

Since the base of the logarithm does not affect the ratio, we can choose any base. Let's use the common base 10 logarithm (log).

t/half-life = log(0.11) / log(0.5)

Calculating this ratio:

t/half-life ≈ -2.0589 / -0.3010 ≈ 6.8389

Therefore, t/half-life ≈ 6.8389.

To find the time t, we need to multiply this ratio by the half-life:

t = (t/half-life) * half-life

Given that the half-life is measured in days, we can assume that the time t is also in days.

t ≈ 6.8389 * half-life

The farmers needed to wait approximately 6.8 times the half-life for it to be safe to feed the hay to the cows.

To know more about Logarithm here:

https://brainly.com/question/30226560.

#SPJ11

Let Ao be an 5 x 5-matrix with det(Ao) = 2. Compute the determinant of the matrices A1, A2, A3, A4 and As, obtained from Ao by the following operations: A₁ is obtained from Ao by multiplying the fourth row of Ao by the number 3. Det(A₁)= [2mark] Az is obtained from Ao by replacing the second row by the sum of itself plus the 4 times the third row. Det(A₂)= [2mark] A3 is obtained from Ao by multiplying Ao by itself. Det(A3) = [2mark] A4 is obtained from Ao by swapping the first and last rows of Ao- det(A4) = [2mark] As is obtained from Ao by scaling Ao by the number 3. Det(As) = [2 mark]

Answers

To compute the determinants of the matrices A₁, A₂, A₃, A₄, and As, obtained from Ao by the given operations, we will apply the determinant properties: the determinants of the matrices are:

det(A₁) = 6

det(A₂) = 2

det(A₃) = 4

det(A₄) = -2

det(As) = 54

Determinant of A₁: A₁ is obtained from Ao by multiplying the fourth row of Ao by the number 3. This operation scales the determinant by 3, so det(A₁) = 3 * det(Ao) = 3 * 2 = 6.

Determinant of A₂: A₂ is obtained from Ao by replacing the second row by the sum of itself plus 4 times the third row. This operation does not affect the determinant, so det(A₂) = det(Ao) = 2.

Determinant of A₃: A₃ is obtained from Ao by multiplying Ao by itself. This operation squares the determinant, so det(A₃) = (det(Ao))² = 2² = 4.

Determinant of A₄: A₄ is obtained from Ao by swapping the first and last rows of Ao. This operation changes the sign of the determinant, so det(A₄) = -det(Ao) = -2.

Determinant of As:

As is obtained from Ao by scaling Ao by the number 3. This operation scales the determinant by the cube of 3, so det(As) = (3³) * det(Ao) = 27 * 2 = 54.

Therefore, the determinants of the matrices are:

det(A₁) = 6

det(A₂) = 2

det(A₃) = 4

det(A₄) = -2

det(As) = 54

Learn more about matrices here

https://brainly.com/question/2456804

#SPJ11

Quesrion 4 Consider o LPP Maximize Z=2x_1+2x_2+x_3-3X_4
subject to
3x_1+x_2-x₁≤1
x_1+x_2+x_3+x_4≤2
-3x_1+2x_3 +5x_x4≤6
X_1, X_2, X_3,X_4, X_5, X_6, X_7>=0
Adding the slack variables and applying Simplex we arrive at the following final
X₁ X2 X3 X4 X5 X6 X7 sbv X3 -2 0 1 2 -1 1 0 1
X2 3 1 0 -1 1 0 0 1 X7 1 0 0 1 2 -2 1 4 Z 2 0 0 3 1 1 0 3 tableau.
4.1-Write the dual (D) of the problem (P) 4.2-Without solving (D), use tableau simplex and find the solution of (D)
4.3- Determine B^(-1)
4.4-Suppose that a change in vector b (resources) was necessary for [3 2 4]. The previous viable solution? Case remains optimal negative, use the Dual Simplex Method to restore viability

Answers

The previous viable solution remainsb optimal even after the change in the vector b (resources).

4.1 - To write the dual (D) of the given problem (P), we first identify the decision variables and constraints of the primal problem (P). The primal problem has four decision variables, namely X₁, X₂, X₃, and X₄. The constraints in the primal problem are as follows:

3X₁ + X₂ - X₃ ≤ 1

X₁ + X₂ + X₃ + X₄ ≤ 2

-3X₁ + 2X₃ + 5X₄ ≤ 6

To form the dual problem (D), we introduce dual variables corresponding to each constraint in (P). Let Y₁, Y₂, and Y₃ be the dual variables for the three constraints, respectively. The objective function of (D) is derived from the right-hand side coefficients of the constraints in (P). Therefore, the dual problem (D) is:

Minimize Z_D = Y₁ + 2Y₂ + 6Y₃

subject to:

3Y₁ + Y₂ - 3Y₃ ≥ 2

Y₁ + Y₂ + 2Y₃ ≥ 2

-Y₁ + Y₂ + 5Y₃ ≥ 1

4.2 - To find the solution of the dual problem (D) using the tableau simplex method, we need the initial tableau. Based on the given final tableau for the primal problem (P), we can extract the coefficients corresponding to the dual variables to form the initial tableau for (D):

X₃ -2 0 1 2 -1 1 0 1

X₂ 3 1 0 -1 1 0 0 1

X₇ 1 0 0 1 2 -2 1 4

Z 2 0 0 3 1 1 0 3

From the tableau, we can see that the initial basic variables for (D) are X₃, X₂, and X₇, which correspond to Y₁, Y₂, and Y₃, respectively. The initial basic feasible solution for (D) is Y₁ = 1, Y₂ = 1, Y₃ = 4, with Z_D = 3.

4.3 - To determine [tex]B^(-1)[/tex], the inverse of the basic variable matrix B, we extract the corresponding columns from the primal problem's tableau, considering the basic variables:

X₃ -2 0 1

X₂ 3 1 0

X₇ 1 0 0

We perform elementary row operations on this matrix until we obtain an identity matrix for the basic variables:

X₃ 1 0 1/2

X₂ 0 1 -3/2

X₇ 0 0 1

Therefore,[tex]B^(-1)[/tex] is:

1/2 1/2

-3/2 1/2

0 1

4.4 - Suppose a change in the vector b (resources) is necessary, with the new vector being [3 2 4]. To check if the previous viable solution remains optimal or not, we need to perform the dual simplex method. We first update the tableau of the primal problem (P) by changing the column corresponding to the basic variable X₇:

X₃ -2 0 1 2 -1 1 0 1

X₂ 3 1 0 -1 1 0 0 1

X₇ 1 0 0 1 2 -2 1 4

Z 2 0

Learn more about Optimality Preservation

brainly.com/question/28384740

#SPJ11

If alpha and beta are the zeroes of the polynomial f (x) =3x2+5x+7 then find the value of 1/alpha2+1/beta

Answers

The value of 1/α² + 1/β is -17/21.

Given a polynomial f(x) = 3x² + 5x + 7. And we need to find the value of 1/α² + 1/β. Now we need to use the relationship between zeroes of the polynomial and coefficients of the polynomial.

Let α and β be the zeroes of the polynomial f(x) = 3x² + 5x + 7 The sum of the zeroes of the polynomial = α + β, using relationship between zeroes and coefficients.

Sum of zeroes of a quadratic polynomial ax² + bx + c = - b/aSo, α + β = -5/3and,αβ = 7/3Now, we need to find the value of 1/α² + 1/βLet us put the values of α and β in the required expression 1/α² + 1/β = (α² + β²)/α²βNow, α² + β² = (α + β)² - 2αβ= (-5/3)² - 2(7/3)= 25/9 - 14/3= (25 - 42)/9= -17/9Now, αβ = 7/3So, 1/α² + 1/β = (α² + β²)/α²β= (-17/9)/(7/3)= -17/9 × 3/7= -17/21

Therefore, the value of 1/α² + 1/β is -17/21.

For more such questions on The value

https://brainly.com/question/30236354

#SPJ8

A _______is a rearrangement of items in which the order does not make a difference. Select one: - Permutation -Combination

Answers

A combination is a rearrangement of items in which the order does not make a difference.

In mathematics, both permutations and combinations are used to count the number of ways to arrange or select items. However, they differ in terms of whether the order of the items matters or not.

A permutation is an arrangement of items where the order of the items is important. For example, if we have three items A, B, and C, the permutations would include ABC, BAC, CAB, etc. Each arrangement is considered distinct.

On the other hand, a combination is a selection of items where the order does not matter. It focuses on the group of items selected rather than their specific arrangement. Using the same example, the combinations would include ABC, but also ACB, BAC, BCA, CAB, and CBA. All these combinations are considered the same group.

To determine whether to use permutations or combinations, we consider the problem's requirements. If the problem involves arranging items in a particular order, permutations are used. If the problem involves selecting a group of items without considering their order, combinations are used.

Learn more about combinations

brainly.com/question/31586670

#SPJ11

2. Which correlation coefficient below shows the least amount of association between the two variables?
(1) r=0.92
(3) r=-0.98
(2) r=-0.54
(4) r = 0.28

Answers

Answer:

(4) r = 0.28

Step-by-step explanation:

The correlation coefficient represents the amount of association between two variables,

so, the higher the coefficient, the stronger the association,

and conversely, the lower the coefficient, the weaker the association

in our case, the least amount of association is given by the smallest number of the bunch,

Hence, since r = 0.28 is the smallest number, it shows the least amount of association between two variables

Other Questions
A particle starts from the origin at t=0.0 s with a velocity of 8.1 i m/s and moves in the xy plane with a constant acceleration of (-9.3 i + 8.8 j)m/s2. When the particle achieves the maximum positive x-coordinate, how far is it from the origin? Which details support the central idea that information on the Internet is not protected well enough? Check all that apply.only a small fraction is securely encryptedthe remainder is poorly encryptedthe number of Internet userspeople take adequate precautions in terms of privacyanybody can get their hand What resistance R should be connected in series with an inductance L = 197 mH and capacitance C = 15.8 uF for the maximum charge on the capacitor to decay to 95.5% of its initial value in 72.0 cycles? #7 In a paragraph (7+ complete sentences) describe the action ofantidiuretic hormone. The Discontinuous North Question 27 options: is comprised of the Scandinavian countries, Norway, Denmark, and Sweden has a largely inhospitable higher-latitude climate is entirely separated by water from the rest of Europe is the least developed region of Europe, due to its peripheral location has always been able to exploit abundant natural resources Suppose you are an air traffic controller directing the pilot of a plane on a hyperbolic flight path. You and another air traffic controller from a different airport send radio signals to the pilot simultaneously. The two airports are 48 km apart. The pilot's instrument panel tells him that the signal from your airport always arrives 100 s (microseconds) before the signal from the other airport.d. Draw the hyperbola. Which branch represents the flight path? Write your own haiku. Make sure it it includes 17 syllablesconsisting of three metrical units of 5, 7, and 5 syllables. Also,make sure it includes a "kigo". 1. Harlow's monkey experiments demonstratedthe need for social interaction in primatesthat a lack of social interaction in primates for long enough can cause permanent damage.that a surrogate mother can offer some comfort to baby monkeys and delay damage for a time, but isn't a substitute for actual social interactionthat scientists can be unethical and cruel to animalsAll of the above are true.2. The studies of Genie and other feral children demonstratedthat there is a critical period for learning a first languagethat a lack of social interaction for long enough can cause permanent brain damage in humansthat socialization is necessary for development of human personalityAll of the above are true. Part A A stone is thrown vertically upward with a speed of 15.6 m/s from the edge of a cliff 75.0 m high (Figure 1). How much later does it reach the bottom of the cliff? Express your answer to three significant figures and include the appropriate units. + OI? f Value Units Submit Request Answer - Part B What is its speed just before hitting? Express your answer to three significant figures and include the appropriate units. Value Units Submit Request Answer - Part What total distance did it travel? Express your answer to three significant figures and include the appropriate units. + 2 123 Figure 1 of 1 Value Units Submit Request Answer Provide Feedback 1.Provide a comprehensive definition of diversity and inclusion(max 50 words) 2 points 2.Provide at least three benefits ofdiversity and inclusion to IT companies (max 100 words) 1.5points The 442nd Regiment of Japanese soldiers was one of the most decorated and heroic of World War II. O O True False 1. Prove that (1) Define an integer n to be great if n 1 is a multiple of 3. Prove that for any integer N, if N is great then N + 3 is great. (2) Let a Z. Prove that 3 | 8a if and only if 3 | a. (3) Prove that if n Z is even, then either n = 4k or n = 4k + 2 for some integer k. You may assume that every integer is either even or odd. (Food for thought: try to prove this fact.) Find the sum of the first 33 terms of the following series, to the nearestinteger.2, 11, 20,... 2/3 8=F) 5 1/3G) 3 1/3H) 1/8J) 1/12K) None You are required to design a flash mixer for coagulant addition to a water treatment plant using the following specifications. Use a baffled cylindrical tank with a turbine mixer with either a 4 or 6-bladed vaned disk. This style of impeller has the greatest power factor, meaning the slowest required rotation for a given power transfer to the water. The baffled tank has a baffle width which is 10% of the tank diameter, leaving 80% for the impeller. To allow for clearance, assume the impeller diameter is 70% of the tank diameter. Size the tank such that the depth is half of the tank diameter. The detention time in the tank is to be 30 seconds and the water flow is 430 m/day. The shear rate (velocity gradient) supplied by the mixer is to be at least 900 s-. Make a neat sketch(s) of the mixer and determine the following parameters: (a) The tank depth and width (b) Impeller diameter (c) Power consumption (in kW) (d) Impeller speed (rpm) The power number for a four or six bladed impeller may be considered constant at 6.3 for flow through the tank and the water viscosity is 110- Pascal-seconds. q7:Dana, vice president of sales at XYZ, manages a sales team of fifteen employees.Members of Dana's sales force vary in experience level. Six members of the sales team have worked at XYZ for less than one year. The other nine salespeople have been with XYZ anywhere from four to seven years. Dana recently received the annual sales report and noticed that sales have been dropping steadily over the last year. Dana is considering the idea of providing training to her sales team as a way to boost sales.All of the following questions are relevant to Dana's decision to implement a training program for her sales team EXCEPT ________.Select one:a. What were the results of attitude surveys distributed to the sales team?b. Does every salesperson understand what his or her performance standards are?c. What methods are used for recruiting and interviewing individuals for sales positions?d. What tools are available to sales team members to help them work efficiently? Question 1 (1 point)A force, F, is applied to an object with a displacement, d. When does the equation W = Fd equal the work done by the force on the object?Question 1 options:alwayswhen the force is in the same direction as the displacementwhen the force is perpendicular to the displacementwhen the force is at an angle of 450 to the displacementQuestion 2 (1 point)At a construction site, a constant force lifts a stack of wooden boards, which has a mass of 500 kg, to a height of 10 m in 15 s. The stack rises at a steady pace. How much power is needed to move the stack to this height?Question 2 options:1.9 x 102 W3.3 x 102 W3.3 x 103 W1.6 x 104 WQuestion 3 (1 point)SavedA mover pushes a sofa across the floor of a van. The mover applies 500 N of horizontal force to the sofa and pushes it 1.5 m. The work done on the sofa by the mover isQuestion 3 options:285 J396 J570 J750JQuestion 4 (1 point)A cart at the farmer's market is loaded with potatoes and pulled at constant speed up a ramp to the top of a hill. If the mass of the loaded cart is 5.0 kg and the top of the hill has a height of 0.55 m, then what is the potential energy of the loaded cart at the top of the hill?Question 4 options:27 J0.13 J25 J130 JQuestion 6 (1 point)Suppose that a spacecraft of mass 6.9 x 104 kg at rest in space fires its rockets to achieve a speed of 5.2 x 103 m/s. How much work has the fuel done on the spacecraft?Question 6 options:2.2 x 106 J1.8 x 109 J3.6 x 109 J9.3 x 1011 JQuestion 7 (1 point)A 60 kg woman jogs up a hill in 25 s. Calculate the power the woman exerts if the hill is 30 m high.Question 7 options:706W750W650W380WQuestion 8 (1 point)A shopper pushes a loaded grocery cart with a force of 15 N. The force makes an angle of 300 above the horizontal. Determine the work done on the cart by the shopper as he pushes the cart 14.2 m.Question 8 options:166J213J185J225JQuestion 9 (1 point)A car of mass 1.5 x 105 kg is initially travelling at a speed of 25 m/s. The driver then accelerates to a speed of 40m/s over a distance of 0.20 km. Calculate the work done on the car.Question 9 options:3.8x105 J7.3x107 J7.3x105 J7.3x103 JQuestion 10 (1 point)A 86g golf ball on a tee is struck by a golf club. The golf ball reaches a maximum height where its gravitational potential energy has increased by 255 J from the tee. Determine the ball's maximum height above the tee.303m34m0.3m30m A "null result" in fMRI research could reflect that: a.There was truly no effect of the experimental manipulation. b.There was an effect of the experimental manipulation, but the method was not sensitive enough to detect it. c.The study was not sufficiently powered to detect the true effect. d.All of the options You are planning to create a portfolio of two stocks: Amazon and Tesla. The Amazon beta is 1.16 and Tesla is 1.89. Using the US 10yr. treasury bond rate as a proxy of the risk free rate of return, we know that it is 1.70%. As a proxy for market average rate of return we use S&P 500 etf which is 15.40%. a) calculate the mean return of the portfolios consisting of: 50% of Amazon and 50% of Tesla. b) Calculate also the beta of the portfolio. Provide an example of sanction and tell how it is used inrelation to deviance