I need help with this question.

I Need Help With This Question.

Answers

Answer 1

Answer:

b. 14

Step by step explanation:


Related Questions

The volume of a cantaloupe is approximated by Upper V equals four thirds pi font size decreased by 5 r cubed . The radius is growing at the rate of 0.5 cm divided by week​, at a time when the radius is 6.4 cm. How fast is the volume changing at that​ moment?

Answers

Answer:

308.67 cm ^ 3 / week

Step-by-step explanation:

A cantaloupe is approximately a sphere, therefore its approximate volume would be:

V = (4/3) * pi * (r ^ 3)

They tell us that dr / dt 0.5 cm / week and the radius is 6.4 cm

if we derive the formula from the volume we are left with:

dV / dt = (4/3) * pi * d / dr [(r ^ 3)]

dV / dt = (4/3) * pi * 3 * (r ^ 2) * dr / dt

dV / dt = 4 * pi * (r ^ 2) * dr / dt

we replace all the values and we are left with:

dV / dt = 4 * 3.14 * (6.4 ^ 2) * 0.6

dV / dt = 308.67

Therefore the volume is changing at a rate of 308.67 cm ^ 3 / week

Weite the number names
31,19,624
4,06,85,012
6,500,000
25,430,756

Answers

Answer:

Thirty-one million, six hundred and twenty-four

Four billion, six million, eighty-five thousand, and twelve

six million five hundred thousad

twenty-five million, four hundred and thirty thousand and seven hundred and fifty-six

Step-by-step explanation:

SNOG PLEASE HELP! (x-1)(y+8)

Answers

Answer:

xy + 8x - y - 8

Step-by-step explanation:

We can use the FOIL method to expand these two binomials. FOIL stands for First, Outer, Inner, Last.

F: The First means that we multiply the first terms of each binomial together. In this case, that would be x · y = xy.

O: The Outer means that we multiply the outer terms, or the first term of the first binomial and the second term of the last binomial, together. In this case, that would be x · 8 = 8x.

I: The Inner means that we multiply the inner terms, or the second term of the first binomial and the first term of the second binomial, together. In this case, that would be (-1) · y = -y.

L: The Last means that we multiply the last terms of each binomial together. In this case, that would be (-1) · 8 = -8.

Adding all of these together, we get xy + 8x - y - 8 as our final answer.

Hope this helps!

Answer:

[tex]xy+8x-y-8[/tex]

Step-by-step explanation:

=> (x-1)(y+8)

Using FOIL

=> [tex]xy+8x-y-8[/tex]

Find the pattern and fill in the missing numbers: 1, 1, 2, 3, 5, 8, __, __, 34, 55

Answers

Answer:

13, 21

Step-by-step explanation:

Fibonacci sequence-

Each number is added to the number before it.

1+1=2

2+1=3

3+2=5

5+3=8

Answer:

The missing numbers are 13, and 21.

The pattern given is the Fibonacci Sequence, where each number is the sum of the two numbers before it, starting with 0 and 1. (i.e. 5 is 2+3)

The first card selected from a standard 52-card deck was a king. If it is returned to the deck, what is the probability that a king will be drawn on the second selection

Answers

Answer:

[tex]\frac{1}{13}[/tex]

Step-by-step explanation:

The probability P(A) that an event A will occur is given by;

P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]

From the question,

=>The event A is selecting a king the second time from a 52-card deck.

=> In the card deck, there are 4 king cards. After the first selection which was a king, the king was returned. This makes the number of king cards return back to 4. Therefore,

number-of-possible-outcomes-of-event-A = 4

=> Since there are 52 cards in total,

total-number-of-sample-space = 52

Substitute these values into equation above;

P(Selecting a king the second time) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]

The following lists the joint probabilities associated with smoking and lung disease among 60-to-65 year-old men. Has Lung Disease/smoker 0.1, No Lung Disease/Smoker 0.17, Lung Disease/Nonsmoker 0.03, No Lung Disease/Nonsmoker 0.7. One 60-to-65 year old man is selected at random. What is the probability of the following event: He has lung disease given that he does not smoke?

Answers

Answer:

4.11% probability that he has lung disease given that he does not smoke

Step-by-step explanation:

We use the conditional probability formula to solve this question. It is

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

In which

P(B|A) is the probability of event B happening, given that A happened.

[tex]P(A \cap B)[/tex] is the probability of both A and B happening.

P(A) is the probability of A happening.

In this question:

Event A: Does not smoke

Event B: Lung disease

Lung Disease/Nonsmoker 0.03

This means that [tex]P(A \cap B) = 0.03[/tex]

Lung Disease/Nonsmoker 0.03

No Lung Disease/Nonsmoker 0.7

This means that [tex]P(A) = 0.03 + 0.7 = 0.73[/tex]

What is the probability of the following event: He has lung disease given that he does not smoke?

[tex]P(B|A) = \frac{0.03}{0.73} = 0.0411[/tex]

4.11% probability that he has lung disease given that he does not smoke

Probabilities are used to determine the chances of an event.

The  probability that he has lung disease given that he does not smoke is 0.231

The required probability is calculated as:

[tex]\mathbf{P = \frac{P(Lung\ Disease\ and\ Non\ Smoker)}{P(Lung\ Disease)}}[/tex]

From the question, we have:

[tex]\mathbf{P(Lung\ Disease\ and\ Non\ Smoker) = 0.03}[/tex]

[tex]\mathbf{P(Lung\ Disease) = P(Has Lung Disease/smoker) + P(Lung Disease/Nonsmoker)}[/tex]

[tex]\mathbf{P(Lung\ Disease) = 0.1 + 0.03}[/tex]

[tex]\mathbf{P(Lung\ Disease) = 0.13}[/tex]

So, we have:

[tex]\mathbf{P = \frac{P(Lung\ Disease\ and\ Non\ Smoker)}{P(Lung\ Disease)}}[/tex]

[tex]\mathbf{P = \frac{0.03}{0.13}}[/tex]

[tex]\mathbf{P = 0.231}[/tex]

Hence, the  probability that he has lung disease given that he does not smoke is 0.231

Read more about probabilities at:

https://brainly.com/question/11234923

Multiply: –c2(3c – 2)

Answers

Answer:

3c^3+2c^2

Step-by-step explanation:

Answer:

3c^3 +2c^2

Step-by-step explanation:

–c^2(3c – 2)

Distribute

=c^2 * 3c - c^2 * -2

3c^3 +2c^2

Factor: 3d + 6d + 3.

Answers

Hey there! :)

Answer:

3(d + 1)²

Step-by-step explanation:

Given 3d² + 6d + 3:

Begin by factoring out '3' from each term:

3(d² + 2d + 1)

Factor terms inside of the parenthesis:

3(d + 1)(d + 1) or 3(d + 1)².

Consider the following sample information from Population A and Population B. Sample A Sample B n 24 16 s2 32 38 We want to test the hypothesis that the population variances are equal. The test statistic for this problem equals a. .84. b. .67. c. 1.50. d. 1.19.

Answers

Answer:

Always the numerator for the statistic needs to be higher than the denominator. And replacing we got:

[tex]F=\frac{s^2_2}{s^2_1}=\frac{38}{32}=1.19[/tex]

And the best option would be:

d. 1.19.

Step-by-step explanation:

Data given and notation  

[tex]n_1 = 24 [/tex] represent the sampe size 1

[tex]n_2 =16[/tex] represent the sample size 2

[tex]s^2_1 = 32[/tex] represent the sample variance for 1

[tex]s^2_2 = 38[/tex] represent the sample variance for 2

The statistic for this case is given by:

[tex]F=\frac{s^2_1}{s^2_2}[/tex]

Hypothesis to verify

We want to test if the true deviations are equal, so the system of hypothesis are:

H0: [tex] \sigma^2_1 = \sigma^2_2[/tex]

H1: [tex] \sigma^2_1 \neq \sigma^2_2[/tex]

Always the numerator for the statistic needs to be higher than the denominator. And replacing we got:

[tex]F=\frac{s^2_2}{s^2_1}=\frac{38}{32}=1.19[/tex]

And the best option would be:

d. 1.19.

A normally distributed data set with a mean of 35 and a standard deviation of 5 is represented by the normal curve. What is the z–score corresponding to 45?

Answers

Answer:

The z–score corresponding to 45 is z=2.

Step-by-step explanation:

We have a random variable X represented by a normal distribution, with mean 35 and standard deviation 5.

The z-score represents the value X relative to the standard normal distribution. This allows us to calculate probabilities for any given normal distribution with the same table.

The z-score for X=45 can be calculated as:

[tex]z=\dfrac{X-\mu}{\sigma}=\dfrac{45-35}{5}=\dfrac{10}{5}=2[/tex]

The z–score corresponding to 45 is z=2.

which of the following statements is false?

Answers

Answer:

A.

Step-by-step explanation:

It's the first one. The angles are supplementary not complementary.

Answer:

I would have to say A

Step-by-step explanation:

find the Pythagorean triplets of 5​

Answers

Answer:

The Pythagorean Triplet that has 5 is 3-4-5

Step-by-step explanation:

We can prove this using Pythagorean Theorem: a² + b² = c²

3² + 4² = 5²

9 + 16 = 25

25 = 25

Answer in POINT-SLOPE FORM:
Complete the point-slope equation of the line through (1,3) and (5,1) Use exact numbers!

Answers

Answer:

y - 3 = (1/2)(x - 1)

Step-by-step explanation:

As we go from (1, 3) to (5, 1), we see that x (the run) increases by 4 and y (the rise) decreases by 2.  Hence, the slope is m = rise / run = 2/4, or m = 1/2.

Then the desired point slope equation is  y - 3 = (1/2)(x - 1).

find the value of x

m<2= x + 122​

Answers

Answer:

x= -14

Step-by-step explanation:

Please see attached picture for full solution.

In a certain online dating service, participants are given a 4-statement survey to determine their compatibility with other participants. Based on the questionnaire, each participant is notified if they are compatible with another participant. Each question is multiple choice with the possible responses of "Agree" or "Disagree," and these are assigned the numbers 1 or −1, respectively. Participant’s responses to the survey are encoded as a vector in R4, where coordinates correspond to their answers to each question. Here are the questions:

Answers

The question is incomplete. Here is the complete question.

In a certain online dating service, participants are given a 4-statement survey to determine their compatibility with other participants. Based on the questionnaire, each particpant is notified if they are compatible with another participant. Each question is multiple choice with the possible responses of "Agree" or "Disagree", and these are assigned the numbers 1 or -1, respectively. pArticipnat's responses to the survey are encoded as a vector in R4, where coordinates coreespond to their answers to each question. Here are the questions:

Question #1: I prefer outdoor activities, rather than indoor activities.

Question #2: I prefer going out to eat in restaurants, rahter than cooking at home.

Question #3: I prefer texting, rather than talking on the phone.

Question #4: I prefer living in a small town, rather than in a big city.

Here are the results for the questionaire, with a group of 5 participants:

                        Question1     Question2   Question3       Question4

participant A           1                      1                   -1                      -1

participant B           -1                     1                    1                       1

participant C           -1                    -1                    1                       1

participant D           1                     -1                   -1                      -1

participant E            1                    -1                    1                       1

Two participants are considered to be "compatible" with each other if the angle between their compatibility vectors is 60° or less. Participants are considered to be "incompatible" if the angle between their compatibility vectors is 120° or larger. For angles between 60° or 120°, pairs of participants are warned that they "may or may not be compatible".

(a) Which pairs of paricipants are compatible?

(b) Which pairs of participants are incompatible?

(c) How would this method of testing compatibility change if the questionnaire also allowed the answer "Neutral", which would correspond to the number zero in a participant's vector? Would this be better than only

allowing  "Agree" or "Disagree"? Could anything go wrong if we allowed "Neutral" as an answer?

Answer: (a) Participants A and D; B and C; C and E.

(b) Participants A and B; A and C; A and E; B and D; C and D;

Step-by-step explanation: Vectors in R4 are vectors in a 4 dimensional space and are determined by 4 numbers.

Vectors form angles between themselves and can be found by the following formula:

cos α = [tex]\frac{A.B}{||A||.||B||}[/tex]

which means that the cosine of the angle between two vectors is equal the dot product of these vectors divided by the product of their magnitude.

For the compatibility test, find the angle between vectors:

1) The vectors magnitude:

Magnitude of a vector is given by:

||x|| = [tex]\sqrt{x_{i}^{2} + x_{j}^{2}}[/tex]

Since all the vectors have value 1, they have the same magnitude:

||A|| = [tex]\sqrt{1^{2} + 1^{2} + (-1)^{2} + (-1)^{2}}[/tex] = 2

||A|| = ||B|| = ||C|| = ||D|| = ||E|| = 2

2) The dot product of vectors:

A·B = 1(-1) + 1(1) + (-1)1 + (-1)1 = -2

cos [tex]\alpha_{1}[/tex] = [tex]\frac{-2}{4}[/tex] = [tex]\frac{-1}{2}[/tex]

The angle that has cosine equal -1/2 is 120°, so incompatible

A·C = 1(-1) + 1(-1) + (-1)1 + (-1)1 = -4

cos [tex]\alpha _{2}[/tex] = -1

Angle = 180° --------> incompatible

A·D = 1(1) + 1(-1) + (-1)(-1) + (-1)(-1) = 2

cos [tex]\alpha _{3}[/tex] = 1/2

Angle = 60° ---------> COMPATIBLE

A·E = 1.1 + 1(-1) + (-1)1 + (-1)1 = -2

cos [tex]\alpha_{4}[/tex] = -1/2

Angle = 120° --------> incompatible

B·C = (-1)(-1) + 1(-1) + 1.1 + 1.1 = 2

cos [tex]\alpha _{5}[/tex] = 1/2

Angle = 60° -------------> COMPATIBLE

B·D = (-1)1 + 1(-1) + 1(-1) + 1(-1) = -4

cos[tex]\alpha_{6}[/tex] = -1

Angle = 180° -----------> incompatible

B·E = (-1)1 + 1(-1) + 1.1 + 1.1 = 0

cos[tex]\alpha _{7}[/tex] = 0

Angle = 90° -------------> may or may not

C·D = (-1)1 + (-1)(-1) + 1(-1) + 1(-1) = -2

cos[tex]\alpha_{8} =[/tex] -1/2

Angle = 120° ---------------> Incompatible

C·E = (-1)1 + (-1)(-1) + 1.1 + 1.1 = 2

cos [tex]\alpha_{9}[/tex] = 1/2

Angle = 60° ---------------> COMPATIBLE

D·E = 1.1 + (-1)(-1) + (-1)1 + (-1)1 = 0

cos [tex]\alpha_{10}[/tex] = 0

Angle = 90° -----------------> may or may not

(c) Adding zero (0) as a component of the vectors would have to change the method of compatibility because, to determine the angle, it is necessary to calculate the magnitude of a vector and if it is a zero vector, the magnitude is zero and there is no division by zero. So, unless the service change the method, adding zero is not a good option.

A softball pitcher has a 0.626 probability of throwing a strike for each curve ball pitch. If the softball pitcher throws 30 curve balls, what is the probability that no more than 16 of them are strikes

Answers

Answer:

19.49% probability that no more than 16 of them are strikes

Step-by-step explanation:

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

Normal probability distribution

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].

In this problem, we have that:

[tex]n = 30, p = 0.626[/tex]

So

[tex]\mu = E(X) = np = 30*0.626 = 18.78[/tex]

[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{30*0.626*(1-0.626)} = 2.65[/tex]

What is the probability that no more than 16 of them are strikes

Using continuity correction, this is [tex]P(X \leq 16 + 0.5) = P(X \leq 16.5)[/tex], which is the pvalue of Z when X = 16.5. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{16.5 - 18.78}{2.65}[/tex]

[tex]Z = -0.86[/tex]

[tex]Z = -0.86[/tex] has a pvalue of 0.1949

19.49% probability that no more than 16 of them are strikes

A school district performed a study to find the main causes leading to its students dropping out of school. Thirty cases were analyzed, and a primary cause was assigned to each case. The causes included unexcused absences (U), illness (I), family problems (F), and other causes (O). The results for the thirty cases are listed below:

U U U I F O O U I F F O U I I F I I O U I F F U U I I O F U

Required:
Construct a table summarizing the frequency distribution of the primary causes leading to student dropout.

Answers

Answer:

See below for the table.

Step-by-step explanation:

The results for the thirty cases are listed below:

U U U I F O O U I F F O U I I F I I O U I F F U U I I O F U

The table summarizing the frequency distribution of the primary causes leading to student dropout is:

[tex]\left|\begin{array}{c|c}$Cause&$Frequency\\----------&----\\\\$Unexcused absences (U)&9\\$Illness (I)&9\\$Family problems (F)&7\\$Other causes (O)&5\\-----------&---\\$Total&30\end{array}\right|[/tex]

If AB= X and x=4, then the transitive property states

Answers

Answer:

AB=4

Step-by-step explanation:

The transitive property states if A=B and B+C than A+C  Next substitute

AB=x and x=4 so AB=4

Hope this helps, if it did, please give me brainliest, it helps me a lot. :)

Have a good day!

An electrical engineer wishes to compare the mean lifetimes of two types of transistors in an application involving high-temperature performance. A sample of 60 transistors of type A were tested and were found to have a mean lifetime of 1827 hours and a standard deviation of 168 hours. A sample of 180 transistors of type B were tested and were found to have a mean lifetime of 1658 hours and a standard deviation of 225 hours. Find a 95% confidence interval for the difference between the mean lifetimes of the two types of transistors.

Answers

Answer:

(115.2642, 222.7358).

Step-by-step explanation:

Given data:

type A: n_1=60, xbar_1=1827, s_1=168

type B: n_2=180, xbar_2=1658, s_2=225

n_1 = sample size 1, n_2= sample size 2

xbar_1, xbar_2 are mean life of sample 1 and 2 respectively. Similarly, s_1 and s_2 are standard deviation of 1,2.

a=0.05, |Z(0.025)|=1.96 (from the  standard normal table)

So 95% CI is

(xbar_1 -xbar_2) ± Z×√[s1^2/n1 + s2^2/n2]

=(1827-1658) ± 1.96×sqrt(168^2/60 + 225^2/180)

= (115.2642, 222.7358).

The diagram shows the first four patterns of a sequence. Find an expression for the numbers of squares in the nth pattern of the sequence.

Answers

Answer:

n^2+3

Step-by-step explanation:

As we can see in the diagram

1st pattern consists from 1 square 1x1 +3 squares 1x1 each

2nd pattern consists from 1 square 2x2 +3 squares 1x1 each

3-rd pattern consists from 1 square 3x3 +3 squares 1x1 each

4-th pattern consists from 1 square 4x4 + 3 squares 1x1  each

We can to continue :

5-th pattern consists from 1 square 5x5+3 squares 1x1 each

So the nth    pattern consists from 1 square nxn+3 squares 1x1 each

Or total amount of 1x1 squares in nth pattern N= n^2+3

The expression for the numbers of squares in the nth pattern of the sequence is  [tex]n^{2} +3[/tex].

What is nth term of a sequence?

"The nth term of a sequence is a formula that enables us to find any term in the sequence. We can make a sequence using the nth term by substituting different values for the term number(n) into it."

From the given diagram

We can see that every term is made up with a square which side is n and three small square side is 1.

So,

1st term is 1 × 1 + 3 = 4

2nd term is 2 × 2 + 3 = 4

3rd term is  3 × 3 + 3 = 12

4th term is 4 × 4 + 3 = 19

So, nth term is [tex]n^{2} +3[/tex]

Hence, The expression for the numbers of squares in the nth pattern of the sequence is  [tex]n^{2} +3[/tex].

Learn more about nth term of a sequence here

https://brainly.com/question/24306119

#SPJ2

Crane Company reports the following for the month of June.

Date
Explanation
Units
Unit Cost
Total Cost
June 1 Inventory 150 $4 $600
12 Purchase 450 5 2,250
23 Purchase 400 6 2,400
30 Inventory 80

Assume a sale of 500 units occurred on June 15 for a selling price of $7 and a sale of 420 units on June 27 for $8.

Calculate cost of goods available for sale.

Calculate Moving-Average unit cost for June 1, 12, 15, 23 & 27. (Round answers to 3 decimal places, e.g. 2.525.)

Answers

Answer:

Crane Company

June Financial Reports

a) Cost of goods available for sale = $5,250

b) Moving-Average unit cost for:

i) June 1:  = $5

ii)        12:  = $4.75

iii)       15: = $4.75

iv)      23:  = $5.75

v)       27:  = $5.25

Step-by-step explanation:

a) Calculations:

Date     Explanation   Units     Unit Cost    Total Cost   Moving Average Cost

June 1 Inventory          150        $4                $600         $4.000

      12 Purchase         450          5               2,250            4.750

      15 Sale                 500          7                      3,500     4.750

     23 Purchase         400          6               2,400            5.750

     27 Sale                 420          8                      3,360     5.250

     30 Inventory           80

Cost of goods available for sale = Cost of Beginning Inventory + Cost of Purchases = $5,250 + ($600 + 2,250 + 2,400)

b) Moving-Average unit cost for:

i) June 1: Cost of goods available/Units of goods available = $5 ($600/150)

ii)        12: Cost  of goods available/Units of goods available = $4.75 ($600 + 2,250/600)

iii)       15: Cost  of goods available/Units of goods available = $4.75 ($475/100)

iv)      23: Cost of goods available/Units of goods available = $5.75 ($475 + 2,400)/500

v)       27: Cost of goods available/Units of goods available = $5.25 ($420/80)

9. A line passes through (2, –1) and (8, 4). a. Write an equation for the line in point-slope form. b. Rewrite the equation in standard form using integers.

Answers

Answer:

Step-by-step explanation:

(4+1)/(8-2)= 5/6

y + 1 = 5/6(x - 2)

y + 1 = 5/6x - 5/3

y + 3/3 = 5/6x - 5/3

y = 5/6x - 8/3

6(y = 5/6x - 8/3)

6y = 5x - 16

-5x + 6y = -16

Which are not changed after a rotation? Check all that apply. angle measures orientation size shape position of center of rotation

Answers

Answer:

1 3 4 5

Step-by-step explanation:

The rotation does not change the angle measure, the side lengths and the shape of the shape that is being rotated.

What is an angle?

An angle measure the size, the shape, and the position of center of rotation do not change after rotation.

Which are not changed after rotation?

If one thing is rotated then it will not change the angle measures, the side lengths and shape of the body. The rotation does not change the center of object.

Learn more about angles at https://brainly.com/question/25716982

#SPJ2

The amount of soda a dispensing machine pours into a 12-ounce can of soda follows a normal distribution with a mean of 12.45 ounces and a standard deviation of 0.30 ounce. Each can holds a maximum of 12.75 ounces of soda. Every can that has more than 12.75 ounces of soda poured into it causes a spill and the can must go through a special cleaning process before it can be sold. What is the probability that a randomly selected can will need to go through this process?

Answers

Answer:

0.1587

Step-by-step explanation:

According to the situation, the solution and the data provided is as follows

mean = 12.45 ounces

Standard deviation = 0.30 ounces

maximum = 12.75 ounces

More than ounces of soda = 12.75

Based on the above information, the probability is

[tex]Z=\frac{X-\mu }{\sigma } \\\\Z=\frac{12.75-12.45 }{0.30 } \\\\\Z=\frac{0.30 }{0.30 } \\\\Z= 1 \\\\P(X> 12.75)=1-P(X< 12.75) \\\\\P(X> 12.75)=1-P(Z< 1) \\\\[/tex]

As we know that

P(Z<1) = 0.8413

So,

P (X > 12.75) = 1 - 0.8413

= 0.1587

The sports bar owner runs a regression to test whether there is a relationship between Red Sox away games and daily revenue. Which of the following statements about the regression output is true?A. The average daily revenue for days when the Red Sox do not play away is $1,768.32.B. The average daily revenue for days when the Red Sox play away is $1,768.32.C. The average daily revenue for days when the Red Sox play away is $2,264.57.D. The average daily revenue for days when the Red Sox do not play away is $1,272.07.E. On average, the bar’s revenue is $496.25 higher on days when the Red Sox play away than on days when they do not.
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.4746
R Square 0.2252
Adusted R square 0.2091
Standard Error 466.32
Observations 50
ANOVA
Significance F MS df 0.0005 13.95 3.03E 06 3.03E+06 Regression 1.04E+07 2.17E+05 48 Residual 135E+07 49 Total Lower 95% Upper 95% tStot Standard Error P-vatue Coefficients 1968.21 17.79 1,568.42 99 42 0.0000 1768.32 Intercept Red Sox away game 763.38 00005 3.74 229.13 132.85 (1-yes, 0-no) 496.25 The average daily revenue for days when the Red Sox do not play away is $1,768.32

Answers

Answer:

Options A, C and D are true.

- The average daily revenue for days when the Red Sox do not play away is $1,768.32.

- The average daily revenue for days when the Red Sox play away is $2,264.57.

- On average, the bar’s revenue is $496.25 higher on days when the Red Sox play away than on days when they do not.

Step-by-step explanation:

The complete Question is presented in the attached image to this solution.

Analyzing the options at a time

A) The average daily revenue for days when the Red Sox do not play away is $1,768.32.

This option is true as 1768.32 is the intercept which is the average daily revenue when the Red Sox=0, that is, 0=no, when red sox do not play away.

B) The average daily revenue for days when the Red Sox play away is $1,768.32.

This is false because when the Red Sox play away, the value is 1 and the average revenue = 1768.32 + 496.25 = $2,264.57

C) The average daily revenue for days when the Red Sox play away is $2,264.57.

This is true. I just gave the explanation under option B.

D) The average daily revenue for days when the Red Sox do not play away is $1,272.07.

This is false. The explanation is under option A.

E) On average, the bar’s revenue is $496.25 higher on days when the Red Sox play away than on days when they do not.

This is true. It is evident from the table that the 0 and 1 coefficient is 496.25. This expresses the difference in average daily revenue when the Red Sox games are played away and when they are not.

Hope this Helps!!!

Create a bucket by rotating around the y axis the curve y=5 ln(x-2) from y=0 to y=4. If this bucket contains a liquid with density 760 kg/m3 filled to a height of 3 meters, find the work required to pump the liquid out of this bucket (over the top edge). Use 9.8 m/s2 for gravity.

Answers

Answer:

The work will be "1909212.015 J". The further explanation is given below.

Step-by-step explanation:

The given values are:

Liquid's density

= 760 kg/m³

Height

= 3 meters

Gravity

g = 3.8 m/s²

Value of y is:

y = 5 log (x-2)

y = 0

y = 4

As we know,

⇒  [tex]\Delta V=\pi r^2 \Delta y[/tex]

⇒  [tex]y =5log(x-2)[/tex]

⇒  [tex]\frac{y}{5} =log (x-2)[/tex]

⇒  [tex]e^{\frac{y}{5}}=(x-2)[/tex]

⇒  [tex]x=e^{\frac{y}{5}}+2[/tex]

Now,

[tex]\Delta F=ma[/tex]

      [tex]=760 \pi (e^{\frac{y}{5}}+2)^2(9.8)\Delta y[/tex]

So that,

⇒  [tex]\Delta W = \Delta F.distance[/tex]

            [tex]=\Delta F(4-y)[/tex]

The required work will be:

⇒  [tex]W=760\times 9.8 \pi \int_{3}^{0}(e^{\frac{y}{5}}+2)^2 (\Delta-y)dy[/tex]

         [tex]=760\times 9.8 \pi[{-20(y-9)^{e^{\frac{y}{5}}}-2(y-8)y}][/tex]

         [tex]=760\times 9.8 \pi[81.455][/tex]

         [tex]=1909212.015 \ J[/tex]

16. How much money will I need to have at retirement so I can withdraw $60,000 a year for 20 years from an account earning 8% compounded annually? a. How much do you need in your account at the beginning b. How much total money will you pull out of the account? c. How much of that money is interest?

Answers

Answer:

starting balance: $636,215.95total withdrawals: $1,200,000interest withdrawn: $563,784.05

Step-by-step explanation:

a) If we assume the annual withdrawals are at the beginning of the year, we can use the formula for an annuity due to compute the necessary savings.

The principal P that must be invested at rate r for n annual withdrawals of amount A is ...

  P = A(1+r)(1 -(1 +r)^-n)/r

  P = $60,000(1.08)(1 -1.08^-20)/0.08 = $636,215.95

__

b) 20 withdrawals of $60,000 each total ...

  20×$60,000 = $1,200,000

__

c) The excess over the amount deposited is interest:

  $1,200,000 -636,215.95 = $563,784.05

11. If 4 < x < 14, what is the range for -x - 4?

Answers

Answer:

-18 < -x-4 < -8

Step-by-step explanation:

We start with the initial range as:

4 < x < 14

we multiplicate the inequation by -1, as:

-4 > -x > -14

if we multiply by a negative number, we need to change the symbols < to >.

Then, we sum the number -4, as:

-4-4> -x-4 > -14-4

-8 > -x-4 > -18

Finally, the range for -x-4 is:

-18 < -x-4 < -8

We are standing on the top of a 320 foot tall building and launch a small object upward. The object's vertical altitude, measured in feet, after t seconds is h ( t ) = − 16 t 2 + 128 t + 320 . What is the highest altitude that the object reaches?

Answers

Answer:

The highest altitude that the object reaches is 576 feet.

Step-by-step explanation:

The maximum altitude reached by the object can be found by using the first and second derivatives of the given function. (First and Second Derivative Tests). Let be [tex]h(t) = -16\cdot t^{2} + 128\cdot t + 320[/tex], the first and second derivatives are, respectively:

First Derivative

[tex]h'(t) = -32\cdot t +128[/tex]

Second Derivative

[tex]h''(t) = -32[/tex]

Then, the First and Second Derivative Test can be performed as follows. Let equalize the first derivative to zero and solve the resultant expression:

[tex]-32\cdot t +128 = 0[/tex]

[tex]t = \frac{128}{32}\,s[/tex]

[tex]t = 4\,s[/tex] (Critical value)

The second derivative of the second-order polynomial presented above is a constant function and a negative number, which means that critical values leads to an absolute maximum, that is, the highest altitude reached by the object. Then, let is evaluate the function at the critical value:

[tex]h(4\,s) = -16\cdot (4\,s)^{2}+128\cdot (4\,s) +320[/tex]

[tex]h(4\,s) = 576\,ft[/tex]

The highest altitude that the object reaches is 576 feet.

Find the lateral surface area, base area of a cylinder with radius 5 cm and height 16 cm

Answers

Answer:

      Lateral surface area is

502.65cm²

      Base area is

=

πr^2

Other Questions
choosing a place to apply for a summer job Find the slope of the line that passes through:(-2,-5) and (8, -11) 2. What factors explain Spain's central role in New World exploration and colonization Which period is older than the Triassic period? which solution can be used to fill in both blanks in the table For the data set represented by this box plot, what is the value of the maximum? maximum: Which of these results in kinetic energy of an object? a position b motion c mass d volume I WILL MARK YOU AS BRAINLIEST!!! An object is launched straight up into the air with an initial velocity of 40 meters per second, from a height 30 m above the ground. Assuming that gravity pulls it down, changing its position by about 4.9 /2, after how many seconds will the object hit the ground? Enter your answer as a number rounded to the nearest tenth, such as: 42.5 will give brainliest help plz i can't get back on the password won't go to my email and my little brother changed the password I am scared I lost everything PLZ HELP ME PLEASE HELP RIGHT AWAY!! THANK YOU :)Copper turns a green-brown when it is exposed to oxygen in air. What chemical property of oxygen causes this effect? A). its reactivityB). its massC). its flammabilityD). its volume What themes are found in "From Fugitive to Freedom: The Story of the Underground Railway"? 7. Which statement is true about teens that are in Marcias final state of identity formation? an element x atomic number 16 reacts with an element Y atomic number 20 to form a compound i) position of the elements in the modern periodic tableii) what type of bond will be formed between them ? give reasoniii) write the chemical formula of the compound 5x is equal to 8X raise to power - 1/3 What is cationic and anionic polymers? What was the plum-pudding atomic model? A. A description of atoms being balls of positive charge with electrons scattered outside B. A description of electrons orbiting the nucleus of the atom C. A description of electrons scattered inside the atom D. A description of negative charges being suspended between balls of positive charge Consider the line - 8x-5y = -7.What is the slope of a line perpendicular to this line?What is the slope of a line parallel to this line? Identify the choice that contains a sentence fragment.A Furthest northwestern state.B Alaska is the forty-ninth state in the union.C Juneau is its capital.D It became a state in 1959. which of the following descriptions represent the transformation shown in the image? Part 3c Read the following paragraph to infer what happened between the events. A. Jane and her father went fishing. They fished all day. B. Later, they returned home, tired and hungry. Mother could read the disappointment on their faces. What do you think happened between Event A and Event B?