Using the exponential notation, the correct expression which represents 5 × 5 × 5 × 5 is 5⁴
Given tha expression :
5 × 5 × 5 × 5Number of 5's = 4
The number of 5's can be used as the power of the base, since the base is common.
Base = 5
Hence,
5 × 5 × 5 × 5 = 5⁴
Learn more : https://brainly.com/question/25629067
Given f (x) = StartLayout Enlarged left-brace first row x squared minus one-third x, for x not-equals negative 1 second row negative 1, for x = negative 1 EndLayout. What is Limit of f (x) as x approaches negative 1?
Negative five-thirds
Negative four-thirds
Four-thirds
Five-thirds
Answer:
It's C, 4/3! Just did the question and got it right
Step-by-step explanation:
The limit of f(x) as x approaches negative 1 is four thirds.
What is Limits?Limits are defined as the value of a function as the input approaches a certain number. Limits are the concepts used essentially in calculus to define continuity, integrals and derivatives.
Given function is,
[tex]f(x) =\left \{ {{x^{2} -\frac{1}{3}x, x\neq -1 } \atop {-1, x=-1}} \right.[/tex]
We have to find the value of the limit as x approaches to negative 1.
This is not the same value as the value of the function at negative 1. Limit of the function as x approaches some value is the value of the function which is closest to the exact value of the function at the input.
We have,
f(x) = x² - [tex]\frac{1}{3}[/tex] x when x ≠ -1
Substitute x = -1 in the above equation
x² - [tex]\frac{1}{3}[/tex] x = (-1)² - (1 / 3) (-1)
= 1 + [tex]\frac{1}{3}[/tex]
= [tex]\frac{4}{3}[/tex]
[tex]\lim_{x \to -1} x^{2} -\frac{x}{3}[/tex] = [tex]\frac{4}{3}[/tex]
Hence the limit of f(x) = x² - [tex]\frac{1}{3}[/tex] x when x tends to -1 is 4/3.
To learn more about Limits, click on the link given below :
https://brainly.com/question/12207539
#SPJ2
2) Use the law of sines to find the length of SR
sin(A)/a=sin(B)/b=sin(C)/c
Answer:
take 28 degree as reference angle
using sine angle
sin28=p/h
0.46=10/h
0.46h=10
h=10/0.46
h=21.73
therefore hypotenuse =21.73
again using sine rule
take 25 degree as reference angle
sin 25=p/h
0.42=SR/21.73
0.42*21.73=SR
9.12=SR
9.1=SR
Step-by-step explanation:
help please ande hank ou
Answer:
5/27
Step-by-step explanation:
Assume the random variable x has a binomial distribution with the given probability of obtaining a success. Find the following. Probabilitygiven the number of trials and the probability of obtaining a success. Round your answer to four decimal places. P(x>10), n=14, p= .8
Answer:
P(x > 10) = 0.6981.
Step-by-step explanation:
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
In this question:
[tex]n = 14, p = 0.8[/tex]
P(x>10)
[tex]P(x > 10) = P(X = 11) + P(X = 12) + P(X = 13) + P(X = 14)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 11) = C_{14,11}.(0.8)^{11}.(0.2)^{3} = 0.2501[/tex]
[tex]P(X = 12) = C_{14,12}.(0.8)^{12}.(0.2)^{2} = 0.2501[/tex]
[tex]P(X = 13) = C_{14,13}.(0.8)^{13}.(0.2)^{1} = 0.1539[/tex]
[tex]P(X = 14) = C_{14,14}.(0.8)^{14}.(0.2)^{0} = 0.0440[/tex]
[tex]P(x > 10) = P(X = 11) + P(X = 12) + P(X = 13) + P(X = 14) = 0.2501 + 0.2501 + 0.1539 + 0.0440 = 0.6981[/tex]
So P(x > 10) = 0.6981.
A teacher is comparing the quarter grades between two of her classes. She takes a random sample of 8 students from each class and lists the grades as shown. Find the mean for Class A.
Class A: 80, 83, 74, 91, 76, 87, 93, 72
Class B: 90, 75, 82, 86, 73, 85, 79, 94
28)A regression equation is obtained for a collection of paired data. It is found that the total variation is 24.488, the explained variation is 15.405, and the unexplained variation is 9.083. Find the coefficient of determination.
Answer: The coefficient of determination = 0.6291
Step-by-step explanation:
Given: Total variation is 24.488, the explained variation is 15.405, and the unexplained variation is 9.083.
The coefficient of determination is computed as:
[tex]\text{ coefficient of determination} =\frac{\text{explained variation }}{\text{total variation}}[/tex]
Substituting given values, we get
[tex]\text{coefficient of determination} =\frac{15.405}{24.488}[/tex]
[tex]=0.6291[/tex]
Therefore, the coefficient of determination = 0.6291
Need help with it I don’t know how to do it
Consider a normal distribution of values with a mean of 32 and a standard
deviation of 1.5. Find the probability that a value is less than 36.8.
Anyone know?
Answer: The probability that a value is less than 36.8 is 0.9993.
Step-by-step explanation:
Let X be the random variable that normally distributed.
Given: [tex]\mu=32,\sigma=1.5[/tex]
The probability that a value is less than 36.8 = [tex]P(X<36.8)[/tex]
[tex]=P(\frac{X-\mu}{\sigma}<\frac{36.8-32}{1.5})\\\\=P(Z<3.2)\ \ \ [Z=\frac{X-\mu}{\sigma}]\\\\=0.9993[/tex][Using P-value calculator]
Therefore, The probability that a value is less than 36.8 is 0.9993.
Can someone help me please
Answer:
The length would be 25/5 which is 4.8
Answer:
l=8 or -3
Step-by-step explanation:
You can write this into an equation!
It will be l*(l-5)=24
Now, we can just solve.
We have to expand the equation and so on.
Solve number 3 please, with explanation
Answer:
97,655
Step-by-step explanation:
5(5)^(n-1) = 78,125
5^n = 78,125
n = 7
=> S7 = 5(5^7 -1) / (5-1)
= 5/4 (78, 125 -1)
= 5/4 (78 124) = 97,655
Hadley is driving to Colorado. She has been traveling for 4 hours, and she has driven 260 miles. Find her speed in miles per hour.
[tex]hey \\ 260miles \: in \: 4 \: hours \\ how \: many \: miles \: per \: hour = \\ 260 \div 4 = 65miles[/tex]
Order the following units of a capacity families to greatest gallon paint cup quart
Answer:
7 yards
Step-by-step explanation:
ellus
Find the surface area of the composite figure.
2 cm
7 cm
2 cm
12 cm
12 cm
7 cm
7 cm
SA = [?] cm2
Answer:
SA = 484 cm²
Step-by-step explanation:
Surface area of the composite figure = surface area of the larger rectangular prism + (surface area of the smaller rectangular prism - base area of the smaller rectangular prism)
✔️Surface are of the larger rectangular prism = 2(LW + LH + WH)
L = 7 cm
W = 7 cm
H = 12 cm
S.A = 2(7*7 + 7*12 + 7*12) = 434 cm²
✔️Surface are of the smaller rectangular prism = 2(LW + LH + WH)
L = 7 cm
W = 2 cm
H = 2 cm
S.A = 2(7*2 + 7*2 + 2*2) = 64 cm²
✔️Base area of the smaller rectangular prism = L*W
L = 7 cm
W = 2 cm
Area = 7*2 = 14 cm²
✅Surface area of the composite figure = 434 + (64 - 14)
= 434 + 50
= 484 cm²
Determine the cubic function that is obtained from the parent function y = x^3
after each sequence of transformations
Vertical stretch by a factor of 3; vertical translation up 4 units; horizontal translation left 2 units
Answer:
The answer here depends on whether you want to do them individually or collectively. If we go individually, then:
The vertical scaling gives us y = 3x³
The vertical translation gives us y = x³ + 4
The horizontal translation gives us y = (x + 2)³
On the other hand, if we want to apply all three at the same time, we get:
starting with a vertical scaling of 3, we get:
start with scaling: y = 3x³
add vertical translation: y = 3x³ + 4
and finally add horizontal translation: y = 3(x + 2)³ + 4
a model truck is 13.5 inches long 7.5 inches wide. the original truck was 12 feet long. how wide was the truck?
Answer:
w = 6ft 8in
Step-by-step explanation:
the proportions will be the same
w/7.5 = 12/13.5
multiply both sides by 7.5
w = 12/13.5 * 7.5
w = 6.6666666667ft
w = 6ft 8in
The original truck was 6.67 feet wide.
What is ratio?"It is a comparison of two or more numbers that indicates their sizes in relation to each other."
What is proportion?"It is an equation in which two ratios are set equal to each other."
For given example,
A model truck is 13.5 inches long 7.5 inches wide.
The ratio of length to width of a model truck would be,
13.5 : 7.5 ...........................(1)
The original truck was 12 feet long.
This means the original truck was 144 inches long.
Let 'x' be the width (in inches) of the original truck.
So, the ratio of the length to the width of the original truck would be,
144 : x .................................(2)
Also, the ratios given by (1) and (2) must be in proportion.
[tex]\Rightarrow \frac{13.5}{7.5} = \frac{144}{x} \\\\\Rightarrow 13.5 \times x = 144 \times 7.5\\\\\Rightarrow \bold{x=80~inches}\\\\\Rightarrow \bold{x=6.67~feet}[/tex]
Therefore, the original truck was 6.67 feet wide.
Learn more about ratio and proportion here:
https://brainly.com/question/26974513
#SPJ2
Given the set of data below, which measure(s) will change if the outlier is removed? (Check all that apply.) 1,6,8,8,8
mean
range
median
mode
The mean, range, and median will vary if the outlier is eliminated. Options A, B, and C are correct.
What is mean?The arithmetic mean is a term used to describe the average. It's the ratio of the total number of observations to the sum of the observations.
The data set is;
1,6,8,8,8
Outliers in a dataset or graph are extreme values that stand out significantly from the main pattern of values.
There is an aberration in the graph below, on the far left. The value in January is much lower than the value in the other months.
If the outlier is removed mean, range, and median will changes.
Hence options A, B and C are correct.
To learn more about mean refer:
https://brainly.com/question/13451489
#SPJ2
nessaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Answer:
1/18
Step-by-step explanation:
[tex]\frac{1}{9}[/tex]÷2
make 2 a fraction
[tex]\frac{1}{9}[/tex]÷[tex]\frac{2}{1}[/tex]
cross multiply
1*1
9*2
[tex]\frac{1*1}{9*2}[/tex]
[tex]\frac{1}{18}[/tex]
Answer:
Step-by-step explanation:
You always invert the second number in a division question and then multiply. This one is a little different. It has three levels. What do you do about that?
[tex]\frac{\frac{1}{9} }{\frac{2}{1} }[/tex]
Now you have a four level question which is handled the same way as all four level question.
Invert the bottom and multiply. Invert means turn upside down. So you turn the 2/1 upside down and you get 1/2
[tex]\frac{1}{9}*\frac{1}{2}[/tex]
What you get is 1/18 The green box with the question mark is a 1.
Problem 1
A right isosceles triangle has legs 6 meters long each. Find the length of the
hypotenuse to the nearest tenth of a meter.
Draw a picture
Solve the problem. Show your work!
Answer:
The hypotenuse measures 8.48 meters.
Step-by-step explanation:
Given that a right isosceles triangle has legs of 6 meters long each, to find the length of the hypotenuse to the nearest tenth of a meter the following calculation must be performed, through the application of the Pythagorean theorem:
6 ^ 2 + 6 ^ 2 = X ^ 2
36 + 36 = X ^ 2
√ 72 = X
8.48 = X
Therefore, the hypotenuse measures 8.48 meters.
Plz help me well mark brainliest if correct
all of the above which is e
If you know how to solve this, Please answer it. Thank You
The first one to answer the question right, will get Brainlist!
I PROMISE!!!!!
y = ( x + 9 )^2 - 2
................................
................................
One minus the product of four and a number z
Answer:
1-(4×z) is the expression
Answer:
1 - 4z
Feel free to mark this as brainliest :D
sume that the change in daily closing prices for stocks on the New York Stock Exchange is a random variable that is normally distributed with a mean of $0.35 and a standard deviation of $0.33. Based on this information, what is the probability that a randomly selected stock will close up $0.75 or mor
Answer:
0.1131 = 11.31% probability that a randomly selected stock will close up $0.75 or more.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a mean of $0.35 and a standard deviation of $0.33.
This means that [tex]\mu = 0.35, \sigma = 0.33[/tex].
What is the probability that a randomly selected stock will close up $0.75 or more?
This is 1 subtracted by the p-value of Z when X = 0.75. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{0.75 - 0.35}{0.33}[/tex]
[tex]Z = 1.21[/tex]
[tex]Z = 1.21[/tex] has a p-value of 0.8869.
1 - 0.8869 = 0.1131
0.1131 = 11.31% probability that a randomly selected stock will close up $0.75 or more.
convert 4/5 into percent
solve the following equation 4 x + 10 = 66
-> 4x= 66-10
-> 4x= 56
-> x= 56/4
-> x= 14
mark me brainliestttt plsss :)))
Answer:
x = 14.
Step-by-step explanation:
4x + 10 = 66
4x + 10 - 10 = 66 - 10
4x = 56
x = 56/4 = 14.
Divide the following complex numbers:
(4-i)/(3+4i)
A.-8/7 + 19/7i
B. 16/25 - 19/25i
C. 8/25 - 19/25i
D. -16/7 + 19/7i
Answer:
C. 8/25 - 19/25i
Step-by-step explanation:
Given that:
[tex]\dfrac{4-i}{3+4i}[/tex]
[tex]= \dfrac{(4-i) (3-4i)}{(3+4i)(3-4i)}[/tex]
[tex]= \dfrac{(4-i) (3-4i)}{(3+4i)(3-4i)} \\ \\ =\dfrac{12 -16i -3i+4i^2}{9 - 12i +12i -16i^2} \\ \\ = \dfrac{12-19i+4i^2}{9-16i^2} \\ \\ = \dfrac{8-19i}{25}[/tex]
[tex]=\dfrac{8}{25}- \dfrac{19i}{25}[/tex]
Can anyone help me find the function for this trig graph ? i need a specific answer for the function , not just telling me how to find it . 80 pts
Answer:
y = 5 sin (2x) + 4
Step-by-step explanation:
this is sines function,
the amplitude is [9 - (-1)]/2 = 10/2 = 5
the period is 2πx/π = 2x
the x-axis of actual function is at y = 4
so, the function is :
y = 5 sin (2x) + 4
I need help on this question
Answer:
C. y = 8x
Step-by-step explanation:
Using the slope formula, we can calculate the rate of Marisol's and Timothy's Machines.
[tex]m = \frac{y_1-y_2}{x_1-x_2}[/tex]
Marisol:
[tex]m = \frac{18-12}{3-2} \\m=6[/tex]
Timothy:
[tex]m=\frac{54-36}{6-4} \\m=\frac{18}{2} \\m=9[/tex]
Now that we know the rate of their machines, we need to choose a rate that is between 6 and 9. Therefore, the rate of Zorian's machine needs to be y = 8x.
An experimenter is studying the effects of temperature, pressure, and type of catalyst on yield from a certain chemical reaction. She considers 6 different temperatures, 5 different pressures, and 4 different catalysts are under consideration.
a. If any particular experimental run involves the use of a single temperature, pressure, and catalyst, how many experimental runs are possible?
b. How many experimental runs are there that involve use of the lowest temperature and two lowest pressures?
c. Suppose that five different experimental runs are to be made on the first day of experimentation. If the five are randomly selected from among all the possibilities, so that any group of five has the same probability of selection, what is the probability that a different catalyst is used on each run?
Answer:
a) 120 possible experimental runs
b) 8 possible experimental runs
c) 0
Step-by-step explanation:
a. For the experiment, there are 6 different temperatures (T), 5 different pressures (P), and 4 different catalysts (C). We can find the total number of combinations using the product rule.
N = T × P × C
N = 6 × 5 × 4 = 120
b) If we use only the lowest temperature, we have T = 1, and if we use the two lowest pressures, we have P = 2. We can find the total number of combinations using the product rule.
N = T × P × C
N = 1 × 2 × 4 = 8
c) If we perform 5 experimental runs with 4 possible catalysts, it is not possible to use a different catalyst each time. At least, 1 catalyst must be repeated twice. Then, the event "a different catalyst is used on each run" has a probability of 0.
. In this exercise, you will conduct regression analysis with binary and categorical variables. (a) Use the command tabulate to show the categories of the variable occupation and their frequencies. What is the relative frequency of the category Sales
A researcher selects a sample and administers a treatment for anxiety to the individuals in the sample. If the sample is used for a hypothesis test, what does the null hypothesis (H0) put forth about the treatment? *
Answer:
H0 : the treatment has no effect
Step-by-step explanation:
The test is formulated as hypothesis . Here the test ist that whether the treatment has affected or not . So the null hypothesis can be formulated as
H0 : the treatment has no effect
against the claim
Ha: the treatment has an effect.
The null hypothesis is the test performed and the alternate hypothesis is the claim against the test. Therefore they are opposite of each other.