Answer:
Within the factors hindering expression in music, tempo is the most important number of factors such as your mood.
Step-by-step explanation:
If one wants to convey a message, they should try these:
a) Use real life
b) introduce symbolism
c) convey sensory disruption, e.t.c.
Hope these helps.
What is the slope of the line that goes through the points (-2, 4) and (5, -1)
Answer:
-5/7
Step-by-step explanation:
The slope of a line is given by
m = (y2-y1)/(x2-x1)
= ( -1 -4)/(5 - -2)
= (-1-4)/(5+2)
-5/7
Slope formula: y2-y1/x2-x1
= -1-4/5-(-2)
= -5/7
Best of Luck!
Is –8 − –95 positive or negative?
Answer:
87, which is positive
Step-by-step explanation:
-8 --95
Subtracting a negative is like adding
-8 +95
87
Ellen baked 115 cookies and shared them equally with her 23 classmates. How many whole cookies each can Ellen and her classmates have?
Step-by-step explanation:
Ellen - 115/23
Classmates and Ellen got = 5 each
Determine which is the appropriate approach for conducting a hypothesis test. Claim: The mean RDA of sodium is 2400mg. Sample data: n150, 3400, s550. The sample data appear to come from a normally distributed population.
Answer:
Use the student t distribution
Step-by-step explanation:
Here is the formula
t = (x - u) ÷(s/√N)
From the information we have in the question:
n = 150
s = 550
x = 3400
u = mean = 2400
= 3400 - 2400÷ 500/√150
= 1000/44.9
= 22.27
At 0.05 significance level, df = 149 so t tabulated will be 1.65.
We cannot use normal distribution since we do not have population standard deviationWe cannot use normal distribution since we do not have population standard deviationChisquare cannot be used since we are not testing for population varianceWe cannot use normal distribution since we do not have population standard deviationChisquare cannot be used since we are not testing for population varianceThe parametric or bootstrap method cannot be used either.Please help. I’ll mark you as brainliest if correct!
Answer:
x and y can have many values
Step-by-step explanation:
-24x - 12y = -16
Then: 24x + 12y = 16
We know: 6x + 3y = 4
X and Y can have a lot of valoues.
6x + 3y = 4
3 ( 2x + y) = 4
2x + y= 4/3
2x+y= 1.333...
Select the correct answer -1/4(12x+8) is less than it equal to -2x+11
Answer:
x ≤ [tex]\frac{9}{5}[/tex]
Step-by-step explanation:
Given
[tex]\frac{1}{4}[/tex](12x + 8) ≤ - 2x + 11 ← distribute parenthesis on left side
3x + 2 ≤ - 2x + 11 ( add 2x to both sides )
5x + 2 ≤ 11 ( subtract 2 from both sides )
5x ≤ 9 ( divide both sides by 5 )
x ≤ [tex]\frac{9}{5}[/tex]
-¼(12x+8) ≤ -2x+11
• Divide by 44X-¼(12x+8) ≤-2x+11
= -12x + 8 ≤ -2x + 11
• Group like terms-12x + 2x ≤ 11 - 8
= -10x/10 ≤ 3/-10
x≤ 3/-10A quadrilateral has vertices A(3, 5), B(2, 0), C(7, 0), and D(8, 5). Which statement about the quadrilateral is true? A. ABCD is a parallelogram with non-perpendicular adjacent sides. B. ABCD is a trapezoid with only one pair of parallel sides. C. ABCD is a rectangle with non-congruent adjacent sides. D. ABCD is a rhombus with non-perpendicular adjacent sides.
Hey There!!
The answer to this is: A quadrilateral has vertices A(3, 5), B(2, 0), C(7, 0), and D(8, 5). Which statement about the quadrilateral is true?" Line BC is parallel to line AD because their slopes is equal i.e. (0 - 0) / (7 - 2) = (5 - 5) / (8 - 3) which gives 0 / 5 = 0 / 5 giving that 0 = 0. We check whether line AB is parallel to line CD. Slope of line AB is given by (0 - 5) / (2 - 3) = -5 / -1 = 5. Slope of line CD is given by (5 - 0) / (8 - 7) = 5 / 1 = 5 We have been able to prove that the opposite sides of the quadrilateral are parallel which means that the quadrilateral is not a trapezoid. Next we check whether the length of the sides are equal. Length of line AB is given by sqrt[(0 - 5)^2 + (2 - 3)^2] = sqrt[(-5)^2 + (-1)^2] = sqrt(25 + 1) = sqrt(26) Length of line BC is given by sqrt[(0 - 0)^2 + (7 - 2)^2] = sqrt[0^2 + 5^2] = sqrt(25) = 5 Length of line CD is given by sqrt[(5 - 0)^2 + (8 - 7)^2] = sqrt[5^2 + 1^2] = sqrt(25 + 1) = sqrt(26) Length of line DA is given by sqrt[(5 - 5)^2 + (8 - 3)^2] = sqrt[0^2 + 5^2] = sqrt(25) = 5 Thus, the length of the sides of the quadrilateral are not equal but opposite sides are equal which means that the quadrilateral is not a rhombus. Finally, we check whether adjacent lines are perpendicular. Recall the for perpendicular lines, the product of their slopes is equal to -1. Slope of line AB = 5 while slope of line BC = 0. The product of their slopes = 5 x 0 = 0 which is not -1, thus the adjacent sides of the quadrilateral are not perpendicular which means that the quadrilateral is not a rectangle. Therefore, ABCD is a parallelogram with non-perpendicular adjacent sides. Thus, For (option A).
Hope It Helped!~ ♡
ItsNobody~ ☆
Answer:
A. ABCD is a parallelogram with non-perpendicular adjacent sides.
Hope this helps!
Step-by-step explanation:
The area of a parallelogram is 60 f2.
The height is 5 ft. How long is the
base?
Answer:
12 feet
BRAINLIEST, PLEASE!
Step-by-step explanation:
Area = base x height
60 = base x 5
base = 60/5
base = 12
Identify the similar triangle. Then find each measure (round to the nearest tenth).
Answer:
ZWU ~ WYU
WY = 2.5
UY= 1.5
Step-by-step explanation:
ZUW ~ WUY ~ ZWY
5/3=x+1/x
Cross multiply
5x=3x+3
2x=3
x=3/2 OR 1.5
two identical rubber balls are dropped from different heights. Ball 1 is dropped from a height of 109 feet, and ball 2 is dropped from a height of 260 feet. Use the function f(t) -16t^2+h to determine the current height, f(t), of a ball from a height h, over given time t.
When does ball 1 reach the ground? Round to the nearest hundredth
Answer: 5.22 seconds
Step-by-step explanation:
t represents time and y represents the height.
Since we want to know when the ball hits the ground, find t when y = 0
Ball 1 starts at a height of 109 --> h = 109
0 = -16t² + 109
16t² = 109
[tex]t^2=\dfrac{109}{16}\\[/tex]
[tex]t=\sqrt{\dfrac{109}{16}}[/tex]
[tex]t=\dfrac{\sqrt{109}}{2}[/tex]
t = 5.22
=> H = 109
=> 0 = -16t² + 109
=> 16t² = 109
=> t² = 109/16
=> t = 109/2
=> t = 5.22 sec
Therefore, 5.22 second is the answer.
What is the solution to 4x + 2 = 6(-2x - 5) ?
O2
O 16
0-2
O -16
Please need help on this
4x+2=6(-2x-5)
<=>4x+2=-12x-30
<=>16x+32=0
<=>x=-2
Find the area of the triangle with vertices (0,0,0),(−4,1,−2), and (−4,2,−3).
Answer:
0.5*sqrt33
Step-by-step explanation:
A(0,0,0) B(-4,1,-2), c(-4,2,-3)
Vector AB is (-4-0,-1-0, -2-0)= (-4,-1,-2) The modul of AB is sqrt (4squared+
+(-1) squared+ (-2) squared)= sqrt (16+1+4)=sqrt21
Vector AC is (-4,2,-3) The modul of vector AC is equal to sqrt ((-4)squared+ 2squared+(-3)squared)= sqrt(16+4+9)= sqrt29
Vector BC is equal to (-4-(-4), 2-1, -3-(-2))= (0,1,-1)
The modul of BC is sqrt (1^2+(-1)^2)=sqrt2
Find the angle B
Ac^2= BC^2+AB^2-2*BC*AB*cosB
29= 2+21-2*sqrt2*sqrt21*cosB
29= 2+21-2*sqrt42*cosB
cosB= -3/ sqrt42
sinB= sqrt( 1-(-3/sqrt42)^2)=sqrt33/42= sqrt11/14
s=1/2* (sqrt2*sqrt21*sqrt11/14)=1/2*sqrt(42*11/14)= 0.5*sqrt33
Find the vertex of this parabola:
y = x2 + 2x - 3
Answer:
(-1,-4)
Step-by-step explanation:
The equation of a parabola os written as: ax^2+bx+c
This parabola's equation is x^2+2x-3
● a= 1
● b= 2
● c = -3
The coordinates of the parabola are: ( (-b/2a) ; f(-b/2a) )
● -b/2a = -2/2 = -1
● f(-b/2a) = (-1)^2+2×(-1)-3=1-2-3= -4
So the vertex coordinates are (-1,-4)
Answer:
-1+2X
Step-by-step explanation:
If mowing burns average $115 over 20 minutes how many calories are you burning in one hour
Answer:
345
Step-by-step explanation:
20*3 = 60 there's 60 minutes in one hour
115*3 = 345
During the 2014 season, the Los Angeles Dodgers won 58% of their games. Assuming that the outcomes of the baseball games are independent and that the percentage of wins this season will be the same as in 2014: What is the probability that the Dodgers will win at least one of their next seven games
Answer: 0.98
Step-by-step explanation:
given data:
probability they won a game = 58% = 0.58
since outcome of games are independent, and percentage would remain same as 2014.
probablility that Dodgers wins atleast 1 of their next 7 games
= 1 - p
= 1 - ( 0.58 )^ 7
= 1 - 0.02208
= 0.98
probabikotun that Dodgers would win one of their next seven games is 0.98
Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates.
a. (4,2,−4)
b. (0,8,15)
c. (√2,1,1)
d. (−2√3,−2,3)
Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:
[tex]\rho = \sqrt{x^{2}+y^{2}+z^{2}}[/tex]
[tex]\phi = cos^{-1}\frac{z}{\rho}[/tex]
For angle θ:
If x > 0 and y > 0: [tex]\theta = tan^{-1}\frac{y}{x}[/tex];If x < 0: [tex]\theta = \pi + tan^{-1}\frac{y}{x}[/tex];If x > 0 and y < 0: [tex]\theta = 2\pi + tan^{-1}\frac{y}{x}[/tex];Calculating:
a) (4,2,-4)
[tex]\rho = \sqrt{4^{2}+2^{2}+(-4)^{2}}[/tex] = 6
[tex]\phi = cos^{-1}(\frac{-4}{6})[/tex]
[tex]\phi = cos^{-1}(\frac{-2}{3})[/tex]
For θ, choose 1st option:
[tex]\theta = tan^{-1}(\frac{2}{4})[/tex]
[tex]\theta = tan^{-1}(\frac{1}{2})[/tex]
b) (0,8,15)
[tex]\rho = \sqrt{0^{2}+8^{2}+(15)^{2}}[/tex] = 17
[tex]\phi = cos^{-1}(\frac{15}{17})[/tex]
[tex]\theta = tan^{-1}\frac{y}{x}[/tex]
The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ = [tex]\frac{\pi}{2}[/tex]
c) (√2,1,1)
[tex]\rho = \sqrt{(\sqrt{2} )^{2}+1^{2}+1^{2}}[/tex] = 2
[tex]\phi = cos^{-1}(\frac{1}{2})[/tex]
[tex]\phi[/tex] = [tex]\frac{\pi}{3}[/tex]
[tex]\theta = tan^{-1}\frac{1}{\sqrt{2} }[/tex]
d) (−2√3,−2,3)
[tex]\rho = \sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}+3^{2}}[/tex] = 5
[tex]\phi = cos^{-1}(\frac{3}{5})[/tex]
Since x < 0, use 2nd option:
[tex]\theta = \pi + tan^{-1}\frac{1}{\sqrt{3} }[/tex]
[tex]\theta = \pi + \frac{\pi}{6}[/tex]
[tex]\theta = \frac{7\pi}{6}[/tex]
Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:
[tex]r=\sqrt{x^{2}+y^{2}}[/tex]
Angle θ is the same as spherical coordinate;
z = z
Calculating:
a) (4,2,-4)
[tex]r=\sqrt{4^{2}+2^{2}}[/tex] = [tex]\sqrt{20}[/tex]
[tex]\theta = tan^{-1}\frac{1}{2}[/tex]
z = -4
b) (0, 8, 15)
[tex]r=\sqrt{0^{2}+8^{2}}[/tex] = 8
[tex]\theta = \frac{\pi}{2}[/tex]
z = 15
c) (√2,1,1)
[tex]r=\sqrt{(\sqrt{2} )^{2}+1^{2}}[/tex] = [tex]\sqrt{3}[/tex]
[tex]\theta = \frac{\pi}{3}[/tex]
z = 1
d) (−2√3,−2,3)
[tex]r=\sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}}[/tex] = 4
[tex]\theta = \frac{7\pi}{6}[/tex]
z = 3
If a= -5 and b= -2,then what is the value of [a-b]2
Step-by-step explanation:
Substitute the values of a and b into [a-b]2
= [-5-(-2)]2
= [-5+2]2
= [-3]2
= -6
Which of the following is equal to the rational expression below when x=-1
or -8?
11(x+8)
/(x + 1)(x+8)
Answer:
11/(x + 1) thus d: is the answer
Step-by-step explanation:
Simplify the following:
(11 (x + 8))/((x + 1) (x + 8))
(11 (x + 8))/((x + 1) (x + 8)) = (x + 8)/(x + 8)×11/(x + 1) = 11/(x + 1):
Answer: 11/(x + 1)
An oil company is going to issue new ID codes to its employees. Each code will have one letter, followed by one digit, followed by three letters. The letters w, x, y, and z will not be used. So, there are 22 letters and 10 digits that will be used. Assume that the letters can be repeated. How many employee ID codes can be generated?
Answer:
2342560 combos
Step-by-step explanation:
so its 1 letter*1number*1 letter*1 letter*1 letter, or 22x10x22x22x22 which should equate to 2342560 possible ID codes, hope this helps :)
Find the least common multiple of 14 and 22.
An engineer wishes to determine the width of a particular electronic component. If she knows that the standard deviation is 3.6 mm, how many of these components should she consider to be 90% sure of knowing the mean will be within ± 0.1 ±0.1 mm?
Answer:
She must consider 3507 components to be 90% sure of knowing the mean will be within ± 0.1 mm.
Step-by-step explanation:
We are given that an engineer wishes to determine the width of a particular electronic component. If she knows that the standard deviation is 3.6 mm.
And she considers to be 90% sure of knowing the mean will be within ±0.1 mm.
As we know that the margin of error is given by the following formula;
The margin of error = [tex]Z_(_\frac{\alpha}{2}_) \times \frac{\sigma}{\sqrt{n} }[/tex]
Here, [tex]\sigma[/tex] = standard deviation = 3.6 mm
n = sample size of components
[tex]\alpha[/tex] = level of significance = 1 - 0.90 = 0.10 or 10%
[tex]\frac{\alpha}{2} = \frac{0.10}{2}[/tex] = 0.05 or 5%
Now, the critical value of z at a 5% level of significance in the z table is given to us as 1.645.
So, the margin of error = [tex]Z_(_\frac{\alpha}{2}_) \times \frac{\sigma}{\sqrt{n} }[/tex]
0.1 mm = [tex]1.645 \times \frac{3.6}{\sqrt{n} }[/tex]
[tex]\sqrt{n} = \frac{3.6\times 1.645}{0.1 }[/tex]
[tex]\sqrt{n}[/tex] = 59.22
n = [tex]59.22^{2}[/tex] = 3507.0084 ≈ 3507.
Hence, she must consider 3507 components to be 90% sure of knowing the mean will be within ± 0.1 mm.
Plzz help i cant figure this out..
Answer:
[tex]\large \boxed{\mathrm{B. \ \ \{-10, -6, 10\} }}[/tex]
Step-by-step explanation:
The domain is the x values.
D = {-1, 0, 4}
y = 4(-1) - 6 = -4 - 6 = -10
y = 4(0) - 6 = 0 - 6 = -6
y = 4(4) - 6 = 16 - 6 = 10
The range is the y values.
R = {-10, -6, 10}
Help ive been stuck on this forever
Answer:
3480
Step-by-step explanation:
It always help if you make clear how the state assesses taxes. Usually it is done the way I will do it, but it is no guarantee.
First 3000 = 3000 * 2/100 = 60.00
The next 2000 (excess over 3000) = 2000 * 3/100 = 60
The next 12000 (excess over 5000) = 12000 * 5/100 = 600
The next step would be excess over 12000 = 48000 * 5.75/100 = 2760
That's the way most taxes for federal taxes and state taxes work. What you have to know is this: does the question use the term excess anywhere? Or do your notes. If you are accustomed to the word then this is the way the question is done.
So the total taxes = 60 + 60 + 600 + 2760 = 3480
London bought snacks for her team's practice. She bought a bag of apples for $2.25
and a 18-pack of juice bottles. The total cost before tax was $9.63. Write and solve an
equation which can be used to determine j, how much each bottle of juice costs?
Answer:
9.63 - 2.25 = 18j
j = 0.41
Step-by-step explanation:
first you set the equation equal to 18 since you want to find out what each bottle of juice costs.
= 18j
if the total cost was 9.63 you need to subtract 2.25 form it to find out how much the 18-pack of juice bottles was. so you set 9.63 - 2.25 equal to 18j
9.63 - 2.25 = 18j
7.38 = 18j
0.41 = j
Check your work:
9.63 - 2.25 = 18(0.41)
7.38 = 7.38 true!
hope this helps! if you have any questions, let me know!
The U.S. Dairy Industry wants to estimate the mean yearly milk consumption. A sample of 21 people reveals the mean yearly consumption to be 74 gallons with a standard deviation of 16 gallons. Assume that the population distribution is normal. (Use t Distribution Table.)
a-1. What is the value of the population mean?
16
Unknown
74
a-2. What is the best estimate of this value?
Estimate population mean
c. For a 90% confidence interval, what is the value of t? (Round your answer to 3 decimal places.)
Value of t
d. Develop the 90% confidence interval for the population mean. (Round your answers to 3 decimal places.)
Confidence interval for the population mean is and .
e. Would it be reasonable to conclude that the population mean is 68 gallons?
a) Yes
b) No
c) It is not possible to tell.
Correct question is;
The U.S. Dairy Industry wants to estimate the mean yearly milk consumption. A sample of 21 people reveals the mean yearly consumption to be 74 gallons with a standard deviation of 16 gallons.
a. What is the value of the population mean? What is the best estimate of this value?
b. Explain why we need to use the t distribution. What assumption do you need to make?
c. For a 90 percent confidence interval, what is the value of t?
d. Develop the 90 percent confidence interval for the population mean.
e. Would it be reasonable to conclude that the population mean is 68 gallons?
Answer:
A) Best estimate = 74 gallons
B) because the population standard deviation is unknown. The assumption we will make is that the population follows the normal distribution.
C) t = 1.725
D) 90% confidence interval for the population mean is (67.9772, 80.0228) gallons
E) Yes
Step-by-step explanation:
We are given;
Sample mean; x' = 74
Sample population; n = 21
Yearly Standard deviation; s = 16
A) We are not given the population mean.
So the closest estimate to the population mean would be the sample mean which is 74.
B) We are not given the population standard deviation and as such we can't use normal distribution. So what is used when population standard deviation is not known is called t - distribution table. The assumption we will make is that the population follows the normal distribution.
C) At confidence interval of 90% and DF = n - 1 = 21 - 1 = 20
From t-tables, the t = 1.725
D) Formula for the confidence interval is;
x' ± t(s/√n) = 74 ± 1.725(16/√21) = 74 ± 6.0228 = 67.9772 or 80.0228
Thus 90% confidence interval for the population mean is (67.9772, 80.0228) gallons
E) 68 gallons lies within the range of the confidence interval, thus we can say that "Yes, it is reasonable"
A company finds that the rate at which the quantity of a product that consumers demand changes with respect to price is given by the marginal-demand function Upper D prime (x )equals negative StartFraction 5000 Over x squared EndFraction where x is the price per unit, in dollars. Find the demand function if it is known that 1006 units of the product are demanded by consumers when the price is $5 per unit.
Answer:
q = 5000/x + 6
Step-by-step explanation:
D´= dq/dx = - 5000/x²
dq = -( 5000/x²)*dx
Integrating on both sides of the equation we get:
q = -5000*∫ 1/x²) *dx
q = 5000/x + K in this equation x is the price per unit and q demanded quantity and K integration constant
If when 1006 units are demanded when the rice is 5 then
x = 5 and q = 1006
1006 = 5000/5 +K
1006 - 1000 = K
K = 6
Then the demand function is:
q = 5000/x + 6
Hello there are two questions in the link's if both were solved that would be awesome.
Answer:
[tex]\frac{x^{\frac{5}{6}} }{x^{\frac{1}{6}} } = x^{(\frac{5}{6} -\frac{1}{6}) }= x^{\frac{4}{6} }\\\sqrt{x} . \sqrt[4]{x} = x^{\frac{1}{2} } . x^{\frac{1}{4} } = x^{(\frac{1}{2} +\frac{1}{4}) } = x^{\frac{3}{4}[/tex]
Find the length of side
x in simplest radical form with a rational denominator.
Thanks in advance
Answer:
2
Step-by-step explanation:
Pythagoras. c² = a² + b²
since both "side angles" are equal (45 degrees), we know it is an isosceles triangle, that means also the other side = x.
and so,
8 = x² + x² = 2x²
4 = x²
x = 2
Answer:
x = 2
Step-by-step explanation:
sin(45)/x = sin(90)/[tex]\sqrt{8}[/tex]
[tex]\sin \left(45^{\circ \:}\right)=\frac{\sqrt{2}}{2}[/tex]
x = [tex]\sqrt{8}[/tex] [tex]\sin \left(45^{\circ \:}\right)[/tex]
[tex]x = \sqrt{8} \frac{\sqrt{2}}{2}[/tex]
x = [tex]\frac{\sqrt{16} }{2}[/tex]
x = 4/2
x = 2
If you randomly select a letter from the phrase "Sean wants to eat at Olive Garden," what is the probability that a vowel is randomly selected
Answer:
12/27
Step-by-step explanation:
Count all letters and all vowels then divide vowels by letters
The probability that a vowel is randomly selected in the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden", is 4/9.
What is the probability of an event in an experiment?The probability of any event suppose A, in an experiment is given as:
P(A) = n/S,
where P(A) is the probability of event A, n is the number of favorable outcomes to event A in the experiment, and S is the total number of outcomes in the experiment.
How to solve the given question?In the question, we are given an experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden".
We are asked to find the probability that the selected letter is a vowel.
Let the event of selecting a vowel from the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden" be A.
We can calculate the probability of event A by the formula:
P(A) = n/S,
where P(A) is the probability of event A, n is the number of favorable outcomes to event A in the experiment, and S is the total number of outcomes in the experiment.
The number of outcomes favorable to event A (n) = 12 (Number of vowels in the phrase)
The total number of outcomes in the experiment (S) = 27 (Number of letters in the phrase).
Now, we can find the probability of event A as:
P(A) = 12/27 = 4/9
∴ The probability that a vowel is randomly selected in the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden", is 4/9.
Learn more about the probability of an event at
https://brainly.com/question/7965468
#SPJ2
pril Heights (in inches) June Heights (in inches) 15 23 11 42 45 44 39 19 20 12 45 45 40 43 14 12 13 41 40 45 41 the difference between the mean height in April and the mean height in June? 34 inches B. 33 inches C. 30 inches D. 28 inches
Answer:
I need points plsss
Step-by-step explanation: