How many of the following substances are strong Bases? KOH(aq) NH4OH (aq) HNO2(aq) NaCl(aq) H2504 (aq) Ca(OH)2 (aq) Mg(OH)2 (aq) Al(OH)3 (aq) 6 4 2 3

Answers

Answer 1

Six substances are strong bases: KOH, [tex]NH_4OH[/tex], Ca(OH)2, Mg(OH)2, Al(OH)3, and NaOH.

Out of the given substances, only six are classified as strong bases.

These include potassium hydroxide (KOH), ammonium hydroxide (NH4OH), calcium hydroxide (Ca(OH)2), magnesium hydroxide (Mg(OH)2), aluminum hydroxide (Al(OH)3), and sodium hydroxide (NaOH).

These substances are characterized by their ability to dissociate completely in water to produce hydroxide ions (OH-), which makes them strong bases.

The other substances listed in the question, including nitrous acid ([tex]HNO_2[/tex]), sodium chloride (NaCl), and sulfuric acid ([tex]H_2SO_4[/tex]), are not bases at all.

Understanding the properties and classifications of substances is crucial in chemistry, as it helps us understand their behavior and how they interact with other substances.

For more such questions on substances, click on:

https://brainly.com/question/29108029

#SPJ11

Answer 2

KOH, Ca(OH)2, Mg(OH)2, and Al(OH)3 are strong bases that dissociate completely in water to produce hydroxide ions, increasing the hydroxide ion concentration. NH4OH and HNO2 are weak bases, while NaCl and H2SO4 are not based.

A strong base is a substance that dissociates completely in water to produce hydroxide ions (OH-) and has a high tendency to accept protons (H+). Potassium hydroxide (KOH), calcium hydroxide (Ca(OH)2), magnesium hydroxide (Mg(OH)2), and aluminum hydroxide (Al(OH)3) are examples of strong bases. These bases dissociate completely in water to form their respective metal cations and hydroxide ions, thereby increasing the concentration of hydroxide ions in the solution. In contrast, ammonium hydroxide (NH4OH) and nitrous acid (HNO2) are weak bases and do not dissociate completely in water to form hydroxide ions. Sodium chloride (NaCl) and sulfuric acid (H2SO4) are not bases at all.

learn more about hydroxide here:

https://brainly.com/question/31820869

#SPJ11


Related Questions

what is the coordination number around the central metal atom in tris(ethylenediamine)cobalt(iii) sulfate? ([co(en)₃]₂(so₄)₃, en = h₂nch₂ch₂nh₂)?

Answers

The coordination number around the central metal atom in tris(ethylenediamine)cobalt(III) sulphate ([Co(en)₃]₂(SO₄)₃, en = H₂NCH₂CH₂NH₂) is 6.

In this complex, the central metal atom is cobalt (Co), and it is surrounded by three ethylenediamine (en) ligands. Each ethylenediamine ligand have two nitrogen atoms that can bond with the central cobalt atom, forming two coordinate covalent bonds with the cobalt atom. Since there are three ethylenediamine ligands, the total number of bonds is 3 x 2 = 6, giving a coordination number of 6 around the central metal atom. Therefore, the complex has a octahedral shape with the cobalt ion at the centre and the ethylenediamine ligands surrounding it in a symmetric arrangement.

Learn more about coordination number : https://brainly.com/question/12498196

#SPJ11

what is the percent yield when 1.72 g of h2o2 decomposes and produces 375 ml of o2 gas measured at 42 oc and 1.52 atm? the molar mass of h2o2 is 34.02 g∙mol–1. 2h2o2(aq)2h2o(l) o2(g)

Answers

The percent yield of the reaction is 59.9%. When 1.72 g of H₂O₂ decomposes and produces 375 ml of O₂ gas measured at 42 oc and 1.52 atm

To calculate the percent yield of the reaction, we need to first determine the theoretical yield of oxygen gas that should have been produced based on the amount of hydrogen peroxide that decomposed.

From the balanced chemical equation, we can see that 2 moles of hydrogen peroxide (HO₂) produces 1 mole of oxygen gas (O₂).

2 H₂O₂ (aq) → 2 H₂O(l) + O₂(g)

First, we need to calculate the moles of hydrogen peroxide that decomposed;

1.72 g / 34.02 g/mol = 0.0505 mol H₂O₂

Since 2 moles of H₂O₂  produces 1 mole of O₂, we can calculate the theoretical yield of O2;

0.0505 mol H₂O₂  × (1 mol O₂ / 2 mol H₂O₂ )

= 0.0253 mol O₂

Next, we need to calculate the actual yield of O₂. We are given that 375 mL of O₂ gas was produced at 42 °C and 1.52 atm. We use the ideal gas law to calculate the number of moles of O₂;

PV = nRT

where P is pressure, V is volume, n is the number of moles, R is ideal gas constant (0.08206 L atm/mol K), and T is the temperature in Kelvin.

First, we convert the volume to liters and the pressure to atmospheres;

375 mL × (1 L / 1000 mL) = 0.375 L

1.52 atm

Next, we convert the temperature to Kelvin;

42 °C + 273 = 315 K

Now we can plug in the values and solve for the number of moles of O₂;

n = (1.52 atm)(0.375 L) / (0.08206 L atm/mol K)(315 K) = 0.0152 mol O₂

Finally, we can calculate the percent yield;

Percent yield = (actual yield/theoretical yield) × 100%

Percent yield = (0.0152 mol / 0.0253 mol) × 100%

= 59.9%

Therefore, the percent yield of the reaction will be 59.9%.

To know more about percent yield here

https://brainly.com/question/2506978

#SPJ4

what is the return value of the following function call? assume that infd is a valid file descriptor. lseek(infd, 0, seek_end); -1 1 0 the file size in bytes of the file corresponding to infd

Answers

The possible return values of this function call are:

If the function call succeeds, it returns the file size in bytes of the file corresponding to infd.

If the function call fails, it returns -1 and sets errno to indicate the error.

The return value of the function call lseek(infd, 0, SEEK_END) depends on whether it succeeds or fails. The lseek() function is used to change the file offset of the open file associated with the file descriptor infd. In this case, the function call sets the file offset to the end of the file.

If the function call succeeds, it returns the resulting file offset as a off_t type value. In this case, the resulting file offset will be the file size in bytes of the file corresponding to infd.

If the function call fails, it returns -1 and sets errno to indicate the error. Possible errors include EBADF if infd is not a valid file descriptor, ESPIPE if infd refers to a pipe or FIFO, or EINVAL if the whence argument (in this case, SEEK_END) is invalid.

Click the below link, to learn more about return value of function call:

https://brainly.com/question/12939282

#SPJ11

what is the name of [mn(cl)2(bipy)2]cl? bipy = bipyridine (neutral ligand)

Answers

The name of [Mn(Cl)2(bipy)2]Cl ; bipy = bipyridine (neutral ligand) is dichlorobis(bipyridine)manganese(II) chloride.

The complex contains a manganese(II) ion coordinated to two bipyridine (bipy) ligands and two chloride (Cl) ligands. The complex is positively charged due to the manganese(II) ion, and the overall charge is balanced by the chloride anion.

The systematic name is obtained by listing the ligands in alphabetical order, followed by the metal ion (with its oxidation state in parentheses), and then the counterion (if any). In this case, "dichlorobis" indicates the presence of two chloride ligands, and "manganese(II)" indicates the oxidation state of the metal ion.

For more question on neutral ligand click on

https://brainly.com/question/27731806

#SPJ11

If 0. 25 L of H2(g) are collected at 25 C and 1. 1 atm. What will the pressure of the gas be if the temperature of the gas is increased to 30 C at a constant volume?

Answers

The pressure of the gas will increase from 1.12 atm to a higher value when the temperature is increased from 25°C to 30°C at a constant volume.

According to the ideal gas law (PV = nRT), the pressure (P) of a gas is directly proportional to its temperature (T) when the volume (V), amount of gas (n), and gas constant (R) are constant.

To calculate the new pressure, we can use the equation P₁/T₁ = P₂/T₂, where P₁ and T₁ are the initial pressure and temperature, and P₂ and T₂ are the final pressure and temperature. Given that P₁ = 1.1 atm and T₁ = 25°C (298 K), and T₂ = 30°C (303 K), we can solve for P₂.

Rearranging the equation, we get P₂ = (P₁ × T₂) / T₁ = (1.1 atm × 303 K) / 298 K ≈ 1.12 atm. Therefore, the pressure of the gas will increase to approximately 1.12 atm when the temperature is increased to 30°C at a constant volume.

Learn more about Ideal gas law here: brainly.com/question/12624936

#SPJ11

How many grams of lithium nitrate, LINO3 , will be


needed to make 5. 31 grams of lithium sulfate, Li2SO4,


assuming that you have an adequate amount of lead(IV)


sulfate, Pb(SO4)2, to do the reaction? Round your final


answer to the tenth place, 1 decimal, and NO UNITS.

Answers

To determine the grams of lithium nitrate (LiNO3) needed to produce 5.31 grams of lithium sulfate (Li2SO4), we need to compare the molar masses and stoichiometry of the two compounds.

The balanced chemical equation for the reaction is:
3 LiNO3 + Pb(SO4)2 → 2 Li2SO4 + Pb(NO3)4

From the equation, we can see that 3 moles of LiNO3 react to produce 2 moles of Li2SO4.

To calculate the grams of LiNO3 needed, we can use the following steps:
1. Convert the given mass of Li2SO4 to moles using its molar mass.
2. Set up the mole ratio between LiNO3 and Li2SO4 from the balanced equation.
3. Use the mole ratio to calculate the moles of LiNO3 needed.
4. Convert the moles of LiNO3 to grams using its molar mass.

By following these steps and using the appropriate values, we can find the grams of LiNO3 required to produce 5.31 grams of Li2SO4.

 To  learn  more  about equation click here:brainly.com/question/29657983

#SPJ11

In a titration, a sample of HCI required 19. 14 mL of a 0. 7971 M NaOH solution to reach the endpoint. Calculate moles of NaOH dispensed

Answers

The moles of NaOH dispensed in the titration of HCI is 0.01523 moles.

To calculate the moles of NaOH dispensed, we can use the formula:

moles of NaOH = Molarity of NaOH x volume of NaOH used (in liters)

First, convert the volume of NaOH used from milliliters (mL) to liters (L) by dividing by 1000:

19.14 mL ÷ 1000 mL/L = 0.01914 L

Next, plug in the values into the formula:

moles of NaOH = 0.7971 M x 0.01914 L = 0.01523 moles

Therefore, the number of moles of NaOH dispensed during the titration of HCI is 0.01523 moles.

Learn more about moles here.

https://brainly.com/questions/15209553

#SPJ11

what is the molar solubility of lead sulfate in 1.0 × 10–3 m na2so4? solubility product constant pbso4 ksp = 1.8 × 10–8 (a) 1.8 × 10–2 (c) 1.8 × 10–5 (b) 1.3 × 10–4 (d) 5.0 × 10–6

Answers

The molar solubility of lead sulfate in 1.0 × 10⁻³ m Na2So4 is (c) 1.8 × 10⁻⁵

The molar solubility of a compound is defined as the amount (in moles) of the compound that can dissolve in one liter of a solution. To determine the molar solubility of PbSO₄, we need to calculate the concentration of Pb2+ ions in the presence of 1.0 × 10⁻³ M Na₂SO₄.

The solubility product constant (Ksp) expression for lead sulfate (PbSO₄) is:

PbSO₄ (s) ↔ Pb₂+ (aq) + SO₄⁻²(aq)

The Ksp expression can be written as:

Ksp = [Pb₂][SO4⁻²]

In the presence of 1.0 × 10–3 M Na₂SO₄, the concentration of SO₄⁻² is already given. Therefore, we need to calculate the concentration of Pb₂+ ions in order to determine the molar solubility of PbSO₄.

Using the Ksp expression, we can write:

Ksp = [Pb₂+][SO₄²⁻]

1.8 × 10^-8 = [Pb₂+][SO₄²⁻]

[Pb₂+] = 1.8 × 10^-8 / [SO₄²⁻]

[Pb₂+] = 1.8 × 10^-8 / 0.001

[Pb₂+] = 1.8 × 10^-5 M

Therefore, the molar solubility of PbSO4 in 1.0 × 10⁻³ M Na₂SO₄ solution is 1.8 × 10⁻⁵ M.

Therefore, the correct answer is (c) 1.8 × 10⁻⁵.

To learn more about molar solubility here

https://brainly.com/question/31588030

#SPJ4

The isoelectric point, pI, of the protein horse liver alcohol dehydrogenase is 6.8, while that of hexokinase P-II is 4.93. What is the net charge of horse liver alcohol dehydrogenase at pH5.1 ? What is the net charge of hexokinase P-II at pH5.5 ?

Answers

At pH 5.1, horse liver alcohol dehydrogenase will have a net positive charge of approximately +2.9.

At pH 5.5, hexokinase P-II will have a net negative charge of approximately -3.25.

Find the charge of horse liver alcohol dehydrogenase and hexokinase P-II at given pH values.

To calculate the net charge of the proteins at the given pH values, we need to compare the pH with the isoelectric point (pI) of the proteins.

For horse liver alcohol dehydrogenase:

If pH < pI, the protein is positively charged.

If pH > pI, the protein is negatively charged.

If pH = pI, the protein has no net charge.

Given that pH = 5.1 and pI = 6.8, we have pH < pI, so the protein will be positively charged. To determine the magnitude of the charge, we need to calculate the difference between the pH and pI values and convert it into a log scale using the Henderson-Hasselbalch equation:

pH - pI = log([A-]/[HA])

where [A-] is the concentration of deprotonated acidic groups (negative charges), and [HA] is the concentration of protonated acidic groups (neutral charges).

Assuming that the only acidic group present in horse liver alcohol dehydrogenase is the carboxyl group of the amino acid residues, which has a pKa of around 2.2, we can calculate the ratio of [A-]/[HA] at pH 5.1 as:

[A-]/[HA] = 10^(pH-pKa) = 10^(5.1-2.2) = 794.33

Taking the negative logarithm of this value gives us the number of charges per molecule:

-log([A-]/[HA]) = -log(794.33) = 2.9

For hexokinase P-II:

If pH < pI, the protein is positively charged.

If pH > pI, the protein is negatively charged.

If pH = pI, the protein has no net charge.

Given that pH = 5.5 and pI = 4.93, we have pH > pI, so the protein will be negatively charged. Using the same approach as before, we can calculate the ratio of [A-]/[HA] at pH 5.5 as:

[A-]/[HA] = [tex]10^(^p^H^-^p^K^a^)[/tex] = [tex]10^(^5^.^5^-^2^.^2^)[/tex] = 1778.28

Taking the negative logarithm of this value gives us the number of charges per molecule:

-log([A-]/[HA]) = -log(1778.28) = 3.25

Learn more about  charge

brainly.com/question/11944606

#SPJ11

calculate the amount of heat required to heat 725 g of water from 22.1oc to 100.0oc. (swater = 4.184jg-1oc-1) A. 236.3 kJB. 15.3 kJC. 0.51 kJD. -64.1 kJ

Answers

The amount of heat required to heat 725 g of water from 22.1oC to 100.0oC is approximately 236.3 kJ.


To calculate the amount of heat required to heat 725 g of water from 22.1oC to 100.0oC, we can use the formula:
Q = m × c × ΔT
where Q is the amount of heat, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature.

Substituting the given values, we get:
Q = 725 g × 4.184 J/g.oC × (100.0oC - 22.1oC)
Q = 725 g × 4.184 J/g.oC × 77.9oC
Q = 236337.08 J or 236.3 kJ (rounded to one decimal place)

Therefore, the amount of heat required to heat 725 g of water from 22.1oC to 100.0oC is approximately 236.3 kJ. This is a significant amount of heat and highlights the importance of understanding the properties of water when studying thermodynamics and heat transfer.

To know more about heat capacity of water visit:

https://brainly.com/question/24130199

#SPJ11

Calculate the molarity of a solution made by adding 0.126 g of ammonium acetate to enough water to make 250.0 mL of solution.
A. 3.70 x 10−3 M
B. 5.30 x 10−3 M
C. 6.54 x 10−3 M
D. 8.12 x 10−3 M
E. 8.25 x 10−3 M

Answers

The molarity of the solution is 5.30 x 10−3 M (option b).

To calculate the molarity of a solution, we need to know the number of moles of solute present in a given volume of solution.

First convert the mass of ammonium acetate (0.126 g) to moles using its molar mass (77.08 g/mol).

This gives us 0.00163 moles of ammonium acetate. Next, we need to convert the volume of the solution (250.0 mL) to liters (0.250 L).

Finally, we divide the number of moles of ammonium acetate by the volume of the solution in liters to get the molarity. The morality is 5.30 x 10−3 M, which is option B.

For more such questions on molarity, click on:

https://brainly.com/question/30404105

#SPJ11

The molarity is obtained by dividing the number of moles of ammonium acetate by the litres of the solution's volume. Option B has a morality of 5.30 x 103 M.

We need to know how many moles of solute there are in a specific volume of solution in order to calculate the molarity of a solution.

Using the molar mass of ammonium acetate (77.08 g/mol), first convert the mass of ammonium acetate (0.126 g) to moles.

We now have 0.00163 moles of ammonium acetate as a result. The volume of the solution (250.0 mL) must then be converted to litres (0.250 L).

The molarity is obtained by dividing the number of moles of ammonium acetate by the litres of the solution's volume. Option B has a morality of 5.30 x 103 M.

learn more about molarity here:

https://brainly.com/question/8732513

#SPJ11

What mass of solute is required to produce 545.1 ml of a 0.217 m solution of kbr?

Answers

To determine the mass of solute required to produce a 0.217 m solution of KBr in 545.1 mL of solution, we can use the formula: molarity = moles of solute / volume of solution (in liters). First, we need to convert the given volume of solution into liters: 545.1 mL = 0.5451 L

Next, we can rearrange the formula to solve for moles of solute:

moles of solute = molarity x volume of solution (in liters)

moles of solute = 0.217 mol/L x 0.5451 L

moles of solute = 0.1182 mol

Finally, we can use the molar mass of KBr (119.01 g/mol) to convert moles of solute into grams of KBr:

mass of KBr = moles of solute x molar mass

mass of KBr = 0.1182 mol x 119.01 g/mol

mass of KBr = 14.08 g

Therefore, we would need 14.08 grams of KBr to produce 545.1 mL of a 0.217 m solution.

To calculate the mass of solute required to produce 545.1 mL of a 0.217 M solution of KBr, follow these steps:

1. Convert the volume of the solution from mL to L:
545.1 mL = 0.5451 L

2. Use the molarity (M) formula, where M = moles of solute/L of solution:
0.217 M = moles of KBr / 0.5451 L

3. Solve for moles of KBr:
moles of KBr = 0.217 M × 0.5451 L = 0.1183 moles

4. Convert moles of KBr to grams, using the molar mass of KBr (39.1 g/mol for K + 79.9 g/mol for Br = 119 g/mol):
mass of KBr = 0.1183 moles × 119 g/mol = 14.08 g

So, 14.08 grams of solute is required to produce 545.1 mL of a 0.217 M solution of KBr.

To know more about solute visit:

https://brainly.com/question/30665317

#SPJ11

5.00 mL of 0.0020 M Fe(NO_3)_2, 3.00 mL of 0.0020 M KSCN, and 2.00 mL of H_2O are mixed. From the absorbance and calibration curve, the equilibrium concentration of FeNCS^2+ is found to be 6.63 times 10^-5 M. is the equilibrium concentration of SCN^- (in mol/L)? You must show your work for full credit.

Answers

The equilibrium concentration of SCN- is directly proportional to the inverse of the absorbance.

The first step is to calculate the initial moles of Fe(NO3)2 and KSCN:

[tex]moles Fe(NO_3)_2 = (0.0020 M) * (5.00 mL / 1000 mL) = 1.00 * 10^-5 moles \\\\moles KSCN = (0.0020 M) * (3.00 mL / 1000 mL) = 6.00 * 10^-6 moles[/tex]

Since FeNCS2+ is in equilibrium, its concentration can be used to find the amount of SCN- that has reacted:

[tex]FeNCS_2+ = 6.63 x 10^-5 M = [SCN-][FeNCS_2+] \\\\[SCN-] = 6.63 x 10^-5 M / [FeNCS_2+][/tex]

Next, we need to find the equilibrium concentration of FeNCS2+ using the absorbance data and calibration curve. Let's assume the absorbance is A:

[tex][FeNCS_2+][/tex] = (A - y-intercept) / slope

where the y-intercept and slope can be obtained from the calibration curve.

Once we know the equilibrium concentration [tex][FeNCS_2+][/tex] , we can calculate the concentration of SCN-:

[SCN-] = [tex]6.63 * 10^-5 M[/tex] /[tex][FeNCS_2+][/tex]

Plugging in the value of [tex][FeNCS_2+][/tex] from the calibration curve, we get:

[SCN-] =[tex]6.63 * 10^-5 M[/tex] / ((A - y-intercept) / slope)

To know more about equilibrium concentration, here

brainly.com/question/16645766

#SPJ4

The active ingredient in milk of magnesia is Mg(OH)2. Complete and balance the following equation. Mg(OH)2 + _____

Answers

The active ingredient in milk of magnesia is Mg(OH)₂. Complete and balance the following equation: Mg(OH)₂ + 2 HCl → MgCl₂ + 2 H₂O.

To balance the equation, we need to ensure that the number of atoms of each element is the same on both sides of the equation. We can start by counting the number of atoms of each element in the reactants and products:

Reactants: Mg(OH)₂ + HCl

Products: MgCl₂ + H₂O

Mg: 1 Mg in reactants, 1 Mg in products (balanced)

O: 2 O in reactants, 2 O in products (balanced)

H: 4 H in reactants, 2 H in products (not balanced)

Cl: 1 Cl in reactants, 2 Cl in products (not balanced)

To balance the equation, we can add a coefficient of 2 in front of HCl to balance the hydrogen atoms, and a coefficient of 1 in front of MgCl₂ to balance the chlorine atoms:

Mg(OH)₂ + 2 HCl → MgCl₂ + 2 H₂O

Now the equation is balanced, with 2 atoms of Mg, 4 atoms of O, 6 atoms of H, and 2 atoms of Cl on both sides.

To know more about milk of magnesia, refer here:

https://brainly.com/question/1619275#

#SPJ11

0.795 mol sample of carbon dioxide gas at a temperature of 19.0 °C is found to occupy a volume of 27.5 liters. The pressure of this gas sample is __ mm Hg.
A sample of helium gas collected at a pressure of 315 mm Hg and a temperature of 303 K has a mass of 2.45 grams. The volume of the sample is __ L.
A 17.4 gram sample of argon gas has a volume of 843 milliliters at a pressure of 3.93 atm. The temperature of the Ar gas sample is __°C.

Answers

1. The pressure of the carbon dioxide gas sample is approximately 46.9 mm Hg.

2. The temperature of the argon gas sample is approximately 299 °C.

3. The volume of the helium gas sample is approximately 0.0686 L.

1. To find the pressure of the gas sample, we can use the ideal gas law equation:

PV = nRT

Given that the temperature is 19.0 °C (which needs to be converted to Kelvin by adding 273.15) and the volume is 27.5 liters, we have:

P * 27.5 = 0.795 * R * (19.0 + 273.15)

Simplifying the equation, we can solve for P:

P = (0.795 * R * (19.0 + 273.15)) / 27.5

Using the ideal gas constant value of R = 0.0821 L·atm/(mol·K), we can substitute it into the equation to calculate the pressure P. The result will be in atmospheres (atm), so we need to convert it to millimeters of mercury (mm Hg) by multiplying it by 760.

2. We can use the ideal gas law equation to find the volume of the gas sample:

PV = nRT

Given that the pressure is 315 mm Hg (which needs to be converted to atmospheres by dividing by 760), the temperature is 303 K, and the mass is 2.45 grams (which needs to be converted to moles by dividing by the molar mass of helium), we have:

(315/760) * V = (2.45 / molar mass of helium) * 0.0821 * 303

Simplifying the equation, we can solve for V (volume):

V = ((2.45 / molar mass of helium) * 0.0821 * 303) / (315/760)

Substituting the given values and the molar mass of helium (4.00 g/mol), we can calculate the volume V in liters.

3. To find the temperature of the gas sample, we can use the ideal gas law equation:

PV = nRT

Given that the pressure is 3.93 atm, the volume is 843 milliliters (which needs to be converted to liters by dividing by 1000), and the mass is 17.4 grams (which needs to be converted to moles by dividing by the molar mass of argon), we have:

(3.93 * (843/1000)) = (17.4 / molar mass of argon) * R * T

Simplifying the equation, we can solve for T (temperature):

T = (3.93 * (843/1000)) / ((17.4 / molar mass of argon) * R)

Substituting the given values and the molar mass of argon (39.95 g/mol), we can calculate the temperature T in Kelvin. The result needs to be converted to Celsius by subtracting 273.15.

To learn more about temperature, pressure and volume, here

https://brainly.com/question/31329242

#SPJ4

write the complete nuclear equation for the bombardent of a be9 atom with an particle to yield b12 . show the atomic number and mass number for each species in the equation.

Answers

The atomic number of the Be-9 nucleus is 4 (since it has 4 protons).

The mass number of the Be-9 nucleus is 9 (since it has 4 protons and 5 neutrons).

The alpha particle (He-4) has an atomic number of 2 (since it has 2 protons) and a mass number of 4 (since it has 2 protons and 2 neutrons).

The B-12 nucleus has an atomic number of 5 (since it has 5 protons).

The mass number of the B-12 nucleus is 12 (since it has 5 protons and 7 neutrons).

The neutron (1n) emitted has an atomic number of 0 (since it has no protons) and a mass number of 1 (since it has only 1 neutron).

The nuclear equation for the bombardment of a Be-9 atom with an alpha particle (He-4) to yield B-12 can be written as follows:

9Be + 4He → 12B + 1n

This equation shows that when a Be-9 atom is bombarded with an alpha particle (He-4), it results in the formation of a B-12 nucleus and a neutron (1n) is emitted.

Here's a breakdown of the atomic number and mass number for each species involved in the reaction:

The atomic number of the Be-9 nucleus is 4 (since it has 4 protons).

The mass number of the Be-9 nucleus is 9 (since it has 4 protons and 5 neutrons).

The alpha particle (He-4) has an atomic number of 2 (since it has 2 protons) and a mass number of 4 (since it has 2 protons and 2 neutrons).

The B-12 nucleus has an atomic number of 5 (since it has 5 protons).

The mass number of the B-12 nucleus is 12 (since it has 5 protons and 7 neutrons).

The neutron (1n) emitted has an atomic number of 0 (since it has no protons) and a mass number of 1 (since it has only 1 neutron).

Click the below link, to learn more about Nuclear equation:

https://brainly.com/question/29664510

#SPJ11

using the experimental data for pH and the concentration of the solutions, calculate the Ka and Kb for each salt and show your work
solution / value of Ka or Kb
0.1 ZnCl2 0.1 K Al(SO4)2 0.1 NH4Cl 0.1 NaC2H3O2 0.1 Na2CO3

Answers

I can’t really read that

Oxygen gas reacts with aluminum powder to form aluminum oxide. how many liters of o2 gas, measured at 782 mmhg and 25°c, are required to completely react with 64.8 grams of aluminum?

Answers

Approximately 87.4 liters of O2 gas, measured at 782 mmHg and 25°C, are required to completely react with 64.8 grams of aluminum.

The balanced chemical equation for the reaction between oxygen gas (O2) and aluminum (Al) is:

4 Al + 3 O2 → 2 Al2O3

From this equation, we can see that 3 moles of O2 are required to react with 4 moles of Al, or 1.5 moles of O2 per mole of Al.

To find the amount of O2 required to react with 64.8 grams of Al, we first need to convert the mass of Al to moles:

64.8 g Al * (1 mol Al / 26.98 g) = 2.4 mol Al

Therefore, 2.4 mol Al will require:

1.5 mol O2/mol Al * 2.4 mol Al = 3.6 mol O2

Next, we can use the ideal gas law to calculate the volume of O2 required at the given conditions:

PV = nRT

where P is the pressure in atm, V is the volume in liters, n is the number of moles, R is the gas constant (0.08206 L atm/mol K), and T is the temperature in Kelvin.

We need to convert the pressure to atm and the temperature to Kelvin:

782 mmHg * (1 atm / 760 mmHg) = 1.03 atm

25°C + 273.15 = 298.15 K

Now we can rearrange the ideal gas law and solve for V:

V = nRT / P = (3.6 mol)(0.08206 L atm/mol K)(298.15 K) / 1.03 atm ≈ 87.4 L

Therefore, approximately 87.4 liters of O2 gas, measured at 782 mmHg and 25°C, are required to completely react with 64.8 grams of aluminum.

To know more about ideal gas law refer here

https://brainly.com/question/28257995#

#SPJ11

Consider the molecules SCl2, F2, CS2, CF4, and BrCl.(a) Which has bonds that are the most polar?(b) Which of the molecules have dipole moments?

Answers

Out of the given molecules, SCl2, F2, and BrCl have dipole moments due to their polar bonds.

(a) The most polar bond is the one with the largest electronegativity difference between the atoms involved. In this case, the bond between S and Cl in SCl2 has the highest electronegativity difference and is therefore the most polar.

(b) Dipole moment is a measure of the polarity of a molecule, and is determined by the distribution of charge within the molecule. A molecule has a dipole moment if there is an unequal distribution of electron density between its constituent atoms, resulting in a separation of charge across the molecule.

Out of the given molecules, SCl2, F2, and BrCl have dipole moments due to their polar bonds. CS2 and CF4 do not have dipole moments as they have symmetric, nonpolar bonds.

Learn more about molecule here,

https://brainly.com/question/475709

#SPJ11

Imagine a sealed plastic bag containing a gas a 40 F. If we increased the


temperature of the gas ten times what would happen? What gas law(s)


is(are) here in play?

Answers

If the temperature of a sealed plastic bag containing a gas is increased ten times, the volume of the gas will increase proportionally.

According to the Ideal Gas Law, the pressure, volume, and temperature of a gas are related. When the temperature of a gas is increased, the particles within the gas will gain more energy and move faster, causing an increase in pressure and volume.

In this specific scenario, if the temperature of the gas in the sealed plastic bag were to increase ten times, the volume of the gas would also increase ten times due to the direct relationship between temperature and volume in the Ideal Gas Law.

This increase in volume could potentially cause the plastic bag to expand or even burst open if the pressure becomes too great. It is important to note that other factors, such as the amount of gas and pressure within the sealed plastic bag, would also play a role in determining the outcome of this scenario.

Learn more about potentially here.

https://brainly.com/questions/28300184

#SPJ11

the chemical analysis of a macromolecule has been provided. what is this macromolecule?

Answers

The chemical analysis provided to the key characteristics of each macromolecule. To determine the identity of the macromolecule from the chemical analysis provided, please follow these steps:

1. Examine the chemical analysis for the presence of specific elements and molecular structures.
2. Compare the analysis to the four major types of macromolecules: carbohydrates, lipids, proteins, and nucleic acids.
3. Look for the following features in the analysis:
  - Carbohydrates: Composed of carbon, hydrogen, and oxygen with a general formula of Cm(H2O)n, where m and n are integers.
  - Lipids: Made up of carbon, hydrogen, and oxygen atoms, with a higher ratio of hydrogen to oxygen than carbohydrates. They also include structures like fatty acids, glycerol, and sterols.
  - Proteins: Composed of amino acids containing carbon, hydrogen, oxygen, and nitrogen atoms. They may also include sulfur atoms in some cases.
  - Nucleic acids: Made up of nucleotides containing a sugar, phosphate group, and nitrogenous base. They include DNA and RNA.

4. Match the elements and molecular structures from the chemical analysis to one of these macromolecule types.

By following these steps and comparing the chemical analysis provided to the key characteristics of each macromolecule, you can identify the specific macromolecule in question.

Based on the given data, the macromolecule is most likely a nucleic acid, specifically DNA or RNA.

Nucleic acids are large biomolecules that contain carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), and sometimes sulfur (S). The percentages of these elements align closely with the composition of nucleic acids.

The percentage of carbon (C) at 40% suggests the presence of a significant number of carbon atoms, which is consistent with nucleic acids. Hydrogen (H) at 10% and oxygen (O) at 33% are also within the expected range for nucleic acids.

The percentage of nitrogen (N) at 16% is particularly significant because nucleic acids, DNA, and RNA all contain nitrogenous bases, which contribute to their structure and function. Phosphorus (P) at 0.1% is also characteristic of nucleic acids since they contain phosphate groups.

The presence of a small amount of sulfur (S) at 1% further supports the identification of the macromolecule as a nucleic acid since some nucleic acids, such as certain RNA molecules, can contain sulfur.

In conclusion, based on the elemental composition provided, the macromolecule is likely a nucleic acid, such as DNA or RNA.

learn more about macromolecule here:

https://brainly.com/question/18337551

#SPJ11

The complete question is

What is the identity of the macromolecule based on the chemical analysis provided in the following image?

A typical airbag in a car is 139 liters. How many grams of sodium azide needs to be loaded into an airbag to fully inflate it at standard temperature and pressure?

Answers

Approximately 0.268 grams of sodium azide needs to be loaded into the airbag to fully inflate it at standard temperature and pressure.

To calculate the amount of sodium azide required to inflate an airbag, we first need to understand the chemical reaction that takes place. The sodium azide reacts with the potassium nitrate inside the airbag to produce nitrogen gas, which inflates the bag. The reaction is as follows:

[tex]2NaN_3 + 2KNO_3 \rightarrow3N_2 + 2Na_2O + K_2O[/tex]

From the balanced chemical equation, we can see that 2 moles of sodium azide (NaN3) react to produce 3 moles of nitrogen gas (N2).

The volume of the airbag is given as 139 liters, which is equivalent to 0.139 cubic meters. At standard temperature and pressure (STP), the volume of one mole of gas is 22.4 liters. Therefore, the number of moles of nitrogen gas required to fill the airbag is:

n = V/STP = 0.139/22.4 = 0.00620 moles

To produce 3 moles of nitrogen gas, we need 2 moles of sodium azide. Therefore, the number of moles of sodium azide required is:

n(NaAzide) = (2/3) x n(N2) = (2/3) x 0.00620 = 0.00413 moles

The molar mass of sodium azide is 65 grams/mole. Therefore, the mass of sodium azide required to inflate the airbag is:

Mass = n(NaAzide) x Molar mass = 0.00413 x 65 = 0.268 grams

For more such questions on sodium azide

https://brainly.com/question/28379904

#SPJ11

To fully inflate an airbag, about 50 grams of sodium azide is required. This chemical is stored in the airbag and when the sensor detects a crash, it is ignited, producing nitrogen gas which inflates the bag.

Sodium azide is a highly toxic and explosive substance, and must be handled with great care during the manufacturing and installation of airbags. Once the airbag is deployed, the nitrogen gas produced by the reaction of sodium azide with a metal oxide is harmless and rapidly dissipates into the atmosphere.It is important to note that tampering with an airbag or attempting to remove sodium azide from an airbag is extremely dangerous and should never be attempted. Only trained professionals should handle airbag installation and removal.

Learn more about sodium here:

brainly.com/question/28379904

#SPJ11

The ground-state electron configuration of a particular atom is (Kr]4d05825p'. The element to which this atom belongs is: Rb Cd In Sn Sr

Answers

The element to which this atom belongs is Indium (In).

The ground-state electron configuration provided is [Kr]4d10 5s2 5p1.

To determine the element this atom belongs to, we can add up the total number of electrons:

[Kr] represents Krypton, which has 36 electrons, plus:

4d10 → 10 electrons,

5s2 → 2 electrons,

5p1 → 1 electron.

Total electrons = 36 + 10 + 2 + 1 = 49.

The element with an atomic number of 49 is Indium (In).

To know more about the ground-state electron configuration, click below.

https://brainly.com/question/29423653

#SPJ11

Calcium phosphate used in fertilizers can be


made in the reaction described by the fol-


lowing equation:


2H3PO4(aq) + 3Ca(OH)(aq) —


Ca3(PO4)2(s) + 6H2O(aq)


What mass in grams of each product would


be formed if 7. 5 L of 5. 00 M phosphoric acid


reacted with an excess of calcium hydroxide?

Answers

To determine the mass of each product formed in the reaction between 7.5 L of 5.00 M phosphoric acid and an excess of calcium hydroxide, the stoichiometry of the reaction needs to be considered. The molar ratio between the reactants and products can be used to calculate the mass of each product.

The balanced equation for the reaction is [tex]2H_3PO_4(aq) + 3Ca(OH)_2(aq)[/tex] → [tex]Ca_3(PO_4)_2(s) + 6H_2O(aq).[/tex]

First, we need to calculate the number of moles of phosphoric acid used. To do this, we multiply the volume (7.5 L) by the molarity (5.00 M) to obtain the moles of H3PO4: 7.5 L × 5.00 mol/L = 37.5 mol.

Based on the stoichiometry of the reaction, we know that for every 2 moles of [tex]H_3PO_4[/tex], 1 mole of [tex]Ca_3(PO_4)_2[/tex] is formed. Therefore, the moles of [tex]Ca_3(PO_4)_2[/tex] formed can be calculated as 37.5 mol.

To calculate the mass of [tex]Ca_3(PO_4)_2[/tex] formed, we need to know the molar mass of [tex]Ca_3(PO_4)_2[/tex], which is 310.18 g/mol. Therefore, the mass of [tex]Ca_3(PO_4)_2[/tex] formed is 18.75 mol × 310.18 g/mol = 5,801.25 g.

Since water is also a product, we can calculate the moles of water formed as 6 times the moles of [tex]Ca_3(PO_4)_2[/tex]: 18.75 mol [tex]Ca_3(PO_4)_2[/tex] × 6 mol H2O / 1 mol [tex]Ca_3(PO_4)_2[/tex] = 112.5 mol [tex]H_2O[/tex].

The molar mass of water is 18.015 g/mol, so the mass of water formed is 112.5 mol × 18.015 g/mol = 2,023.12 g.

In summary, when 7.5 L of 5.00 M phosphoric acid reacts with an excess of calcium hydroxide, approximately 5,801.25 grams of calcium phosphate [tex]Ca_3(PO_4)_2[/tex] and 2,023.12 grams of water would be formed.

Learn more about molar ratio here:

https://brainly.com/question/30930200

#SPJ11

how much energy is released when a μ−μ− muon at rest decays into an electron and two neutrinos? neglect the small masses of the neutrinos

Answers

The energy released when a μ−μ− muon at rest decays into an electron and two neutrinos can be calculated using Einstein's famous equation E=mc². Since the muon has a rest mass of 105.7 MeV/c² and the electron has a rest mass of 0.511 MeV/c², the total mass before the decay is 2 x 105.7 MeV/c² = 211.4 MeV/c². After the decay,MeV/c².

Therefore, the energy released in this decay is E = (211.4 MeV/c²) - 0 MeV/c² = 211.4 MeV. So, approximately 211.4 MeV of energy is released when a μ−μ− muon at rest decays into an electron and two neutrinos, neglecting the small masses of the neutrinos.To determine the energy released when a muon at rest decays into an electron and two neutrinos, you'll need to consider the following terms: muon mass, electron mass, and energy conservation. Here's a step-by-step explanation:

Convert the muon and electron masses into energy using Einstein's famous equation, E=mc^2, where E is energy, m is mass, and c is the speed of light.The mass of a muon (μ-) is 105.7 MeV/c^2, and the mass of an electron is 0.511 MeV/c^2.Calculate the energy equivalent for the muon and electron masses:
  E_muon = (105.7 MeV/c^2) * (c^2) = 105.7 MeV
  E_electron = (0.511 MeV/c^2) * (c^2) = 0.511 MeV

To know more about electron visit:

https://brainly.com/question/28977387

#SPJ11

A(C4H8) reacts with cold aqueous sulfuric acid to give B(C4H10O). When B is treated with sodium metal in dry THF followed by methyl iodide, t-butyl methyl ether is produced. Draw the structure of A.

Answers

The structure of A is: 1-butene, which upon reacting with sulfuric acid forms 1-butanol (B). The subsequent reaction of B with sodium metal in dry THF followed by methyl iodide produces t-butyl methyl ether.

The reaction of A (C4H8) with cold aqueous sulfuric acid produces B (C4H10O). The subsequent reaction of B with sodium metal in dry THF followed by methyl iodide yields t-butyl methyl ether.

From the given information, we can infer that A is an unsaturated compound with a carbon-carbon double bond, which reacts with the sulfuric acid to form an alcohol B through hydration.

To draw the structure of A, we start by considering all the possible isomers of C4H8 with a carbon-carbon double bond. There are two isomers of butene: 1-butene and 2-butene.

Since the reaction of A with sulfuric acid produces an alcohol, we can infer that the double bond in A is terminal, and the resulting alcohol B has a primary alcohol group.

To know more about "THF" refer here:

https://brainly.com/question/31786567#

#SPJ11

How many coulombs of charge are required to cause reduction of 0.20 mole of Cr3+ to Cr? A) 0.60 C B) 3.0 C C) 2.9

Answers

The correct number of coulombs of charge required to cause a reduction of 0.20 mole of Cr3+ to Cr is 0.60 C. The correct option is (a).

To determine how many coulombs of charge are required to cause a reduction of 0.20 mole of Cr3+ to Cr, we need to use Faraday's constant, which is the amount of charge carried by one mole of electrons. Faraday's constant is equal to 96,485 coulombs per mole of electrons.

The balanced equation for the reduction of Cr3+ to Cr is:

Cr3+ + 3e- → Cr

From the equation, we can see that 3 moles of electrons are required to reduce 1 mole of Cr3+ to Cr. Therefore, to reduce 0.20 mole of Cr3+ to Cr, we need:

0.20 mol Cr3+ × (3 mol e- / 1 mol Cr3+) = 0.60 mol e-

Now, we can use Faraday's constant to convert the number of moles of electrons to coulombs of charge:

0.60 mol e- × (96,485 C / 1 mol e-) = 57,891 C

Therefore, the correct option is (a).

For more such questions on coulombs:

https://brainly.com/question/12498766

#SPJ11

The correct number of coulombs of charge required to cause a reduction of 0.20 mole of Cr3+ to Cr is 0.60 C. The correct option is (a).

To determine how many coulombs of charge are required to cause a reduction of 0.20 mole of Cr3+ to Cr, we need to use Faraday's constant, which is the amount of charge carried by one mole of electrons. Faraday's constant is equal to 96,485 coulombs per mole of electrons. 

The balanced equation for the reduction of Cr3+ to Cr is:Cr3+ + 3e- → CrFrom the equation, we can see that 3 moles of electrons are required to reduce 1 mole of Cr3+ to Cr. Therefore, to reduce 0.20 mole of Cr3+ to Cr, we need:0.20 mol Cr3+ × (3 mol e- / 1 mol Cr3+) = 0.60 mol e-Now, we can use Faraday's constant to convert the number of moles of electrons to coulombs of charge:0.60 mol e- × (96,485 C / 1 mol e-) = 57,891 C Therefore, the correct option is (a).

Learn more about coulombs here :

brainly.com/question/12498766#SPJ11

#SPJ11

in the production of potassium metal, the source of electrons in the reduction of k ions is a. h2(g). b. co(g). c. cao(s). d. electrolysis.

Answers

The production of potassium metal involves the reduction of potassium ions (K+) to form elemental potassium (K). This reduction process requires a source of electrons. the correct answer is (d) electrolysis.

In the case of potassium metal production, electrolysis is used to provide the necessary electrons.

During the electrolysis process, an external electric field is applied to an electrolytic cell containing a potassium-containing solution, causing K+ ions to be attracted to the negatively charged electrode (cathode) and gain electrons.

As a result, the K+ ions are reduced to form potassium atoms (K), which are deposited on the cathode surface to form metallic potassium. Therefore, the correct answer is (d) electrolysis.

To know more about electrolysis, refer here:

https://brainly.com/question/12054569#

#SPJ11

Calculate the change in entropy that occurs in the system when 15.0 g of acetone (C3H6O) vaporizes from a liquid to a gas at its normal boiling point (56.1 ∘C). Express your answer using three significant figures.

Answers

The change in entropy when 15.0 g of acetone vaporizes at its normal boiling point is 22.8 J/K, expressed with three significant figures.

To calculate the change in entropy (ΔS) when acetone vaporizes, you need to use the formula ΔS = q/T, where q is the heat absorbed during the phase change and T is the temperature in Kelvin.

First, convert the boiling point of acetone from Celsius to Kelvin: T = 56.1 + 273.15 = 329.25 K.

Next, find the enthalpy of vaporization (ΔHvap) for acetone, which is 29.1 kJ/mol.

Now, you need to determine the number of moles (n) of acetone in 15.0 g.

The molar mass of acetone is 58.08 g/mol, so n = 15.0 / 58.08 ≈ 0.258 mol.

Calculate the heat absorbed during vaporization:

q = n * ΔHvap = 0.258 mol * 29.1 kJ/mol = 7.50 kJ. Remember to convert this to J: q = 7500 J.

Finally, calculate the change in entropy:

ΔS = q/T = 7500 J / 329.25 K = 22.8 J/K.

Learn more about entropy at

https://brainly.com/question/13135498

#SPJ11

a basic solution is 1.35×10−5m in calcium hydroxide, ca(oh)2. what is the ph of the solution at 25.0∘c?

Answers

The pH of the basic solution is 9.43 at 25°C.

To solve this problem, we need to use the concept of pH and the equilibrium constant for the dissociation of calcium hydroxide. The dissociation equation is as follows:

Ca(OH)₂(s) ⇌ Ca²⁺(aq) + 2OH⁻(aq)


The equilibrium constant expression for this reaction is:

Kw = [Ca²⁺][OH⁻]²

where Kw is the ion product constant for water, which is 1.0×10⁻¹⁴ at 25°C.

We can use this expression to calculate the concentration of hydroxide ions, [OH⁻], in the solution.

First, we need to find the concentration of Ca²⁺ ions in the solution. Since calcium hydroxide is a strong base, it dissociates completely in water. Therefore, the concentration of Ca²⁺ ions is equal to the concentration of hydroxide ions, which is given by:

[OH⁻] = [tex]\sqrt{[tex]\frac{Kw}{[Ca²⁺] }[/tex]}[/tex] = [tex]\sqrt{(1.0×10⁻¹⁴)/(1.35×10⁻⁵)}[/tex] = 2.72×10⁻⁵ M



Next, we can use the definition of pH to calculate the pH of the solution:

pH = -log[H⁺]

Since this is a basic solution, the concentration of H⁺ ions is very low and can be neglected. Therefore, we can use the concentration of hydroxide ions to calculate the pH:

pH = 14 - pOH = 14 - (-log[OH⁻]) = 14 + log(2.72×10⁻⁵) = 9.43

Therefore, the pH of the solution is 9.43 at 25°C.

To know more about pH, refer here:

https://brainly.com/question/16001508#

#SPJ11

Other Questions
If a rectangle has an area of 4b - 10 and a length of 2 what is an expression to represent the width eather sells land (adjusted basis, $75,000; fair market value, $85,000) to a partnership in which she controls an 80% capital interest. The partnership pays her only $50,000 for the land. If an amount is zero, enter "0". a. How much loss does Heather realize and recognize? A trait has a third variation which is a combination of the other two variations. What is the pattern of inheritance for this trait? Codominant Dominant Polygenic Recessive the specifications for a product are 6 mm 0.1 mm. the process is known to operate at a mean of 6.05 with a standard deviation of 0.01 mm. what is the cpk for this process? 3.33 1.67 5.00 2.50 1.33 The specialized cell type involved in the entry of lymphocytes into lymph nodes are called:A M-cellsB Mesangial cellsC PALSD HEV endothelial cellsE Selectins You have read the text "I Like the Way You Move!" In your opinion, should a persons gait biometrics be recorded and used for security? Write an argumentative essay that supports your claim with clear reasons and relevant evidence. Provide details from the text to support your response. Your writing will be scored based on the development of ideas, organization of writing, and language conventions of grammar, usage, and mechanics evaluate the iterated integral. /4 0 5 0 y cos(x) dy dx On the following lines, write a paragraph responding to either "What Makes a Degas a Degas?" or "The American Idea." Underline the adjectives that have a positive degree of comparison, underline the adjectives or adjective phrases that are comparative twice, and underline the adjectives or adjective phrases that are superlative three times. Use at least six adjectives that show degrees of comparison.? Based on the excerpt from Ladies Home Journal in 1914, what can the reader assume aboutSundback's hookless fastener based on it being used on B.F. Goodrich's snow galoshes in 1925?The popularity of the hookless fastener increased after it was promoted in a women'smagazine.O The hookless fastener was renamed the zipper because it had been publicly criticized.The hookless fastener's design was charged to be more durable and less susceptible torust.O The producer of the hookless fastener was unable to keep up with demand. calculate the ph of a solution that is made by combining 55 ml of 0.060 m hydrofluoric acid with 125 ml of 0.120 m sodium fluoride. for ammonia, the entropy of fusion (melting) is 28.9 j/mol k, and its melting point is 78c. estimate the heat of fusion of ammonia. Simplify: -8(b-k) - 3(2b + 5k) Find the length and width of rectangle CBED, and calculate its area WINGSUIT A wingsuit flyer jumps off a tall cliff. He falls freely for a few seconds before deploying the wingsuit and -4.9x +420, where y is = slowing his descent. His height during the freefall can be modeled by the function y the height above the ground in meters and x is the time in seconds. After deploying the wingsuit, the flyer's height is given by the function y = 3x + 200. deploy the wingsuit? 1. A causal system is given the input x1(t) = 5 + u(t) and the output is y1(t) = e 2tu(t). Let y2(t) be the response of the same system to x2(t) = 5 + 3tu(t + 1). What is y2(t) for t < 1?Would this be possible without laplace transforms? If so, please do it without laplace Shareholders inject capital into a company. Which answer best describes how this transaction would be reflected in the balance sheet? Select one: Cash increases and common stock increases Cash increases and liabilities increase Capital account increases No change in the overall level of assets show that if f is integrable on [a, b], then f is integrable on every interval [c, d] [a, b]. For SSE = 10, SST=60, Coeff. of Determination is 0.86 Question 43 options: True False certain types of sunglasses are very effective at dimesining light reflecting from surfaces because ofa. interferenceb. specluar reflectionc. diffusiond. polorization ones ability to focus on a specific stimulus among many in the environment is called ___________.