Answer:
E 3.0 x 10² mL.
Explanation:
Hello there!
In this case, according to the formula for the calculation of the mass-volume percent:
[tex]\% m/V=\frac{m_{solute}}{V_{solution}}*100\%[/tex]
Whereas it is necessary to know the mass of the solute and the volume of the solution. Thus, given the mass of NaOH as the solute, the volume of the solution would be:
[tex]V_{solution}=\frac{m_{solute}}{\% m/V}*100\%[/tex]
Then, by plugging in we obtain:
[tex]V_{solution}=\frac{75g}{25\%}*100\%\\\\V_{solution}=3.0x10^2mL[/tex]
Thus, the answer is E 3.0 x 10² mL.
Best regards!
The process of breaking a compound down into its elements is called
rearrangement
recombination
decomposition
dessication
Can tell the answer pls
Explanation: where the article????
The speed of an electron is 1.68*10^8m/s what is the wavelength
Answer:
[tex]\lambda =4.33x10^{-12}m=4.33pm[/tex]
Explanation:
Hello there!
In this case, since the speed, wavelength and mass of an electron are related via the the Broglie wavelength:
[tex]\lambda =\frac{h}{m*v}[/tex]
Thus, by plugging in the mass of the electron and the Planck's constant, we obtain the following wavelength:
[tex]\lambda =\frac{6.626x10^{-34}J*s}{9.11x10^{-31}kg*1.68x10^{8}m/s}\\\\\lambda =4.33x10^{-12}m=4.33pm[/tex]
Best regards!
If 5.32 mols N2 and 15.8 mols H2 react together, what mass NH3 can be
produced? Which is the limiting reactant?
Answer:
2.87 gram
N2 is the limiting agent
Explanation:
We will find out if there is sufficient N2 and h2 to produce NH3
a) For 2.36 grams of N2
Molar mass of N2 = 28.02
Number of moles of N2 in 2.36 grams = 2.36/28.02
Mass of NH3 = 17.034 g
Now NH3 produced form 2.36 grams of N2 =
2.36/28.02 * 2 * 17.034 = 2.87 g NH3
b) For 1.52 g of H2
NH3 produced = 1.52/2.016 * (2/3) * 17.034 = 8.56
N2 Is not enough to produce 2.87 g of NH3 and also H2 is not enough to make 8.56 g of NH3.
N2 is the limiting agent as it has smaller product mass
What is the entropy of this collection of training examples with respect to the positive class B. What are the information gains of A1 and A2 relative to the training dataset For A3, which is a continuous attribute, compute the information gain for every possible split. C. What is the best split (among A1,A2, and A3) according to the information gain
The data set is missing in the question. The data set is given in the attachment.
Solution :
a). In the table, there are four positive examples and give number of negative examples.
Therefore,
[tex]$P(+) = \frac{4}{9}$[/tex] and
[tex]$P(-) = \frac{5}{9}$[/tex]
The entropy of the training examples is given by :
[tex]$ -\frac{4}{9}\log_2\left(\frac{4}{9}\right)-\frac{5}{9}\log_2\left(\frac{5}{9}\right)$[/tex]
= 0.9911
b). For the attribute all the associating increments and the probability are :
[tex]$a_1$[/tex] + -
T 3 1
F 1 4
Th entropy for [tex]$a_1$[/tex] is given by :
[tex]$\frac{4}{9}[ -\frac{3}{4}\log\left(\frac{3}{4}\right)-\frac{1}{4}\log\left(\frac{1}{4}\right)]+\frac{5}{9}[ -\frac{1}{5}\log\left(\frac{1}{5}\right)-\frac{4}{5}\log\left(\frac{4}{5}\right)]$[/tex]
= 0.7616
Therefore, the information gain for [tex]$a_1$[/tex] is
0.9911 - 0.7616 = 0.2294
Similarly for the attribute [tex]$a_2$[/tex] the associating counts and the probabilities are :
[tex]$a_2$[/tex] + -
T 2 3
F 2 2
Th entropy for [tex]$a_2$[/tex] is given by :
[tex]$\frac{5}{9}[ -\frac{2}{5}\log\left(\frac{2}{5}\right)-\frac{3}{5}\log\left(\frac{3}{5}\right)]+\frac{4}{9}[ -\frac{2}{4}\log\left(\frac{2}{4}\right)-\frac{2}{4}\log\left(\frac{2}{4}\right)]$[/tex]
= 0.9839
Therefore, the information gain for [tex]$a_2$[/tex] is
0.9911 - 0.9839 = 0.0072
[tex]$a_3$[/tex] Class label split point entropy Info gain
1.0 + 2.0 0.8484 0.1427
3.0 - 3.5 0.9885 0.0026
4.0 + 4.5 0.9183 0.0728
5.0 -
5.0 - 5.5 0.9839 0.0072
6.0 + 6.5 0.9728 0.0183
7.0 +
7.0 - 7.5 0.8889 0.1022
The best split for [tex]$a_3$[/tex] observed at split point which is equal to 2.
c). From the table mention in part (b) of the information gain, we can say that [tex]$a_1$[/tex] produces the best split.
__Zn+__HCI → _ZnCl2 + __H2
Answer:
1Zn+ 2HCI → 1ZnCl2 + 1H2
Why does a red object appear red?
O A. It reflects light of wavelengths other than red.
OB. It absorbs light of red wavelengths.
O C. It absorbs light of wavelengths other than red.
O D. It reflects infrared radiation.
Right answers only for brainly
Answer:
Objects appear different colours because they absorb some colours (wavelengths) and reflected or transmit other colours. ... For example, a red shirt looks red because the dye molecules in the fabric have absorbed the wavelengths of light from the violet/blue end of the spectrum
A red object appear red because it absorbs light of wavelengths other than red. Therefore, option C is correct.
What is wavelength ?The distance between identical points (adjacent crests) in adjacent cycles of a waveform signal propagated in space or along a wire is defined as the wavelength. This length is typically specified in wireless systems in meters (m), centimeters (cm), or millimeters (mm) (mm).
A transverse wave's wavelength is defined as the distance between two adjacent crests. A longitudinal wave's wavelength can be calculated as the distance between two adjacent compressions.
The wavelengths that are reflected or transmitted are what we see as colors. A red shirt, for example, appears red because the dye molecules in the fabric have absorbed light wavelengths from the violet/blue end of the spectrum. The only light reflected from the shirt is red light.
Thus, option C is correct.
To learn more about the wavelength, follow the link;
https://brainly.com/question/13533093
#SPJ6
How many moles of NaOH are contained in 56.0 mL of a 2.40 M solution of 1 point
NaOH in water? (**Use only numerical answers with 3 significant figures.
The units are given in the question.)
Your answer
Answer:
1.34 mol
Explanation:
Molarity, which is the molar concentration of a solution, can be calculated by dividing the number of moles (n) by the volume (V).
That is;
Molarity (M) = n/V
According to the information provided in this question;
M = 2.40M
V = 56.0 mL = 56/1000 = 0.056 L
Since molarity = n/V
number of moles = M × V
n = 0.056 × 24
n = 1.34 mol
If an equilibrium mixture of the three gases at 600K contains 2.92*10^-2 M COCH(g) and 1.76*10^2 M CO, what is the equilibrium
concentration of Cl2?
Answer:
C
Explanation:
Do nitrates always form precipitates?
Answer:
Nitrates compared to sulphates are much more soluble therefore won't form precipitates easily.
gases are really _______ and molecules are full of _______, bouncing around constantly
Answer:Gases are really spread out and the atoms and molecules are full of energy - , bouncing around constantly.
Explanation:
I am doing a exam in science need help.
What type of energy comes from the motion of tiny particles of matter?
Answer:
here you are
Explanation:
atomic energy
how many ions does magnesium phosphite have? how many of those are anions? please explain thought process.
Answer:
We can simply refer to the cation in the ionic compound as magnesium. Phosphorus, Pstart text, P, end text, is a group 15 element and therefore forms 3- anions.
Explanation:
Because it is an anion, we add the suffix -ide to its name to get phosphide as the name of the ion.
The reason for using 1-propanol as the solvent of choice for recrystallization is that triphenylphosphine oxide is more soluble in 1-propanol than the alkene product because triphenylphosphine oxide can use its oxygen to hydrogen-bond to 1-propanol, whereas the alkene has no hydrogen-bonding capability. Triphenylphosphine oxide, therefore, is removed based on its polarity and H-bonding ability.
a. True
b. False
Answer:
True
Explanation:
Hydrogen bonding is a bond that exists between hydrogen and a highly electronegative element such as oxygen, nitrogen, fluorine etc.
The greater solubility of the triphenylphosphine oxide owes to the hydrogen bonded interaction between it and the 1-propanol.
The alkene lacks such hydrogen bonded interaction because it does not have a highly electronegative atom in its structure.
Hence, triphenylphosphine oxide is removed based on its polarity and hydrogen bonding ability.
all metals rust please answer false or true
Answer:
True
Explanation:
All metals do rust but at different rates. Gold, platinum, and silver can rust if but at different rates. It can take time for it to rust, if you clean your metals, it won't rust, it'll take awhile before it rusts if you keep cleaning them.
Hopefully this helps :3 sorry if wrong :( plz mark brainiest if correct :D your bootiful/handsome! Have a great day luv <3
-Bee~
What is the speed of sound in dry air at 20°C?
Nitric oxide (NO) reacts with oxygen gas to produce nitrogen dioxide. A gaseous mixture contains 0.66 g of nitric oxide and 0.58 g of oxygen gas. After the reaction is complete, what mass of nitrogen dioxide is formed? Which reactant is in excess? How do you know? Suppose you actually recovered 0.91 g of nitrogen dioxide. What is your percent yield?
Answer:
NO is the limiting reagent.
In this reaction 0.886 mole of NO2 is produced
Explanation:
The chemical equation for this reaction is
2NO(g) + O2(g) → 2NO2(g)
In this limiting reagent reaction, 2 moles of NO reacts with one mole of O2 to produce 2 mole of 2NO2
0.886 mole of NO * (2 mole of NO2/2 mole of NO) = 0.886 mole of NO2
0.503 mole of O2 * (1 mole of NO2/1 mole of O2) = 1.01 mole of NO2
Hence, NO is the limiting reagent.
In this reaction 0.886 mole of NO2 is produced
arrange the following group of atoms in order of increasing atomic size:B,Al,Ga
Answer:
Al,Ga,B
Explanation:
Now since i helped you can you help me with this plz
Matteo took 5 math quizzes. The mean of the 5 quizzes was 8.2. Here are four of his quiz scores 7, 7, 8, 10. What is the 5th quiz score? Show work.
Boron ( B )
Aluminium ( Al )
Gallium ( Ga )
Help it’s due right now I will give you 15 points or more
Answer:
1. Temperature, the average kinetic energy of particles, indicates how warm something is. Thermal energy, or the overall kinetic energy of the particles, indicates how a substance or material will transmit heat or chill something else.
2. A thermal expansion is a matter to change in volume in response to a change in temperature.
3. Heat is the form of energy that is transferred between systems or objects with different temperatures.
4. Air temperature near or over bodies of water is much different from that over land due to differences in the way water and land heat and cool. Properties that affect water temperature are transparency, ability to circulate, and specific heat.
5. Radiation is the transfer of heat energy through space by electromagnetic radiation.
6. Radiation is natural and found everywhere, it comes from outer space, the air we breathe, and the earth we tread.
7. When a fluid, such as air or a liquid, is heated and then travels away from the source, it carries the thermal energy along. The fluid above a hot surface expands, becomes less dense, and rises.
8. Convection currents in the Earth occur in the mantle
9. The fire's heat causes molecules in the pan to vibrate faster, making it hotter. These vibrating molecules collide with their neighboring molecules, making them also vibrate faster.
10. Since air is a poor conductor, most energy transfer by conduction occurs right near Earth's surface. Conduction directly affects air temperature only a few centimeters into the atmosphere.
- Hope this helps!
A gas occupies a volume of 2.4 L at 0.14 ATM. What volume will the gas occupy at 0.84 ATM?
Answer:
0.4 L
Explanation:
Calculate by using Boyle's Law P₁V₁=P₂V₂
(0.14atm)(2.4L) = (0.84atm)(V₂)
0.336 atmL = (0.84atm)(V₂)
V₂ = 0.336 atmL/0.84atm
V₂ = 0.4 L
g At elevated temperatures, molecular hydrogen and molecular bromine react to partially form hydrogen bromide: H 2 (g) Br 2 (g) 2HBr (g) A mixture of 0.682 mol of H 2 and 0.440 mol of Br 2 is combined in a reaction vessel with a volume of 2.00 L. At equilibrium at 700 K, there are 0.516 mol of H 2 present. At equilibrium, there are ________ mol of Br 2 present in the reaction vessel.
Answer: At equilibrium , there are 0.274 moles of [tex]Br_2[/tex]
Explanation:
Moles of [tex]H_2[/tex] = 0.682 mole
Moles of [tex]Br_2[/tex] = 0.440 mole
Volume of solution = 2.00 L
Initial concentration of [tex]H_2[/tex] = [tex]\frac{0.682}{2.00}=0.341 M[/tex]
Initial concentration of [tex]Br_2[/tex] = [tex]\frac{0.440}{2.00}=0.220 M[/tex]
Equilibrium concentration of [tex]H_2[/tex] = [tex]\frac{0.516}{2.00}=0.258 M[/tex]
The given balanced equilibrium reaction is,
[tex]H_2(g)+Br_2(g)\rightleftharpoons 2HBr(g)[/tex]
Initial conc. 0.341 M 0.220 M 0 M
At eqm. conc. (0.341-x) M (0.220-x) M (2x) M
Given : (0.341-x) M = 0.258 M
x= 0.083 M
Thus equilibrium concentartion of [tex]Br_2[/tex] = (0.220-0.083) M = 0.137 M
Thus moles of [tex]Br_2[/tex] at equilibrium = [tex]0.137M\times 2.00L=0.274mol[/tex]
At equilibrium , there are 0.274 moles of [tex]Br_2[/tex]
What is the mass in grams of 3.40 x 10 24 atoms he
Answer:
Avogadro's constant says that
1
mole of any atom contains
6.022
⋅
10
23
atoms. In this case you have
3.40
⋅
10
22
atoms:
3.40
⋅
10
22
atoms
6.022
⋅
10
23
atoms
mol
=
5.65
⋅
10
−
2
m
o
l
Step 2
The atomic mass of helium (He) will give you the weight of one mole of this molecule:
1
mol =
4.00
gram:
4.00
g
mol
⋅
5.65
⋅
10
−
2
mol
=
0.226
g
So the
3.40
⋅
10
22
helium atoms weigh
0.226
gram
.
Explanation:
Mark as brainlyiest
What is the chemical formula for an acid?
A solution contains 1.817 mg of CoSO4 (155.0 grams/mole) per mL. Calculate the volume (in mL) of 0.009795 M Zn2 needed to titrate the excess complexing reagent after the addition of 70.00 mL of 0.009005 M EDTA to a 20.00 mL aliquot of the Co2 solution.
Answer:
85.952 ml [tex]Zn^2^+[/tex] needed to titrate the excess complexing reagent .
Explanation:
Lets calculate
After addition of 80 ml of EDTA the solution becomes = 20 + 70 = 90 ml
As the number of moles of [tex]CoSO_4[/tex] =[tex]\frac{Given mass }{molar mass}[/tex]
=[tex]\frac{1.817}{155}[/tex]
=0.01172
Molarity = [tex]\frac{no. of moles}{volume of solution}[/tex]
=[tex]\frac{0.01172}{20}[/tex]
=0.000586 moles
Excess of EDTA = concentration of EDTA - concentration of CoSO4
= 0.009005 - 0.000586
= 0.008419 M
As M1V1 ( Excess of EDTA ) = M2V2 [tex](Zn^2^+)[/tex]
[tex]0.008419\times100ml=0.009795\times V2[/tex]
[tex]V2=\frac{0.008419\times100}{0.009795}[/tex]
V2 =85.952 ml
Therefore , 85.952 ml [tex]Zn^2^+[/tex] needed to titrate the excess complexing reagent .
The solubility of a solid in a liquid generally increases with increase temperature.
True
Or
False
Answer:
False, Solubility increases with temperature for most solids.
Explanation:
1. What volume of a 2.50M Kl(aq) is needed to make 200 ml of a 1.OOM KI)aq)?
Answer:
80 ml
Explanation:
From the question,
Applying Dilution formular
MV = mv................... Equation 1
Where M = Molarity of Kl before dilution, V = Volume of Kl before dilution, m = molarity of Kl after dilution, v = volume of Kl after dilution.
make V the subject of the equation
V = mv/M............. Equation 2
Given: m = 1.00 M, v = 200 ml, M = 2.50 M
Substitute these values into equation 2
V = (1.00×200)/2.50
V = 80 ml
Please help ASAP
Identify the atom with the ground-state electron configuration shown for its valence shell.
3s^2 3p^1
Show the equation you will use to calculate the volume of 1 M Cu(NO3)2 (aq) needed to prepare a set of solutions that have concentrations in the range of 1 M to 1x10-4 M in a 10-mL volumetric flask. Write the reduction half-cell reaction for the copper(II) ion. What is the standard potential for an electrochemical cell that is prepared from a copper half-cell and a zinc half-cell
Answer:
Explanation:
The equation we use to calculate the volume needed to prepare other [tex](C_1,V_1)[/tex] the solution that has a concentration [tex]C_2[/tex] and volume [tex]V_2[/tex] is:
[tex]C_1V_1 =C_2V_2[/tex]
[tex]V_1=\dfrac{C_2V_2}{C_1}[/tex]
where;
[tex]C_1[/tex]= concentration of the first solution
[tex]V_1[/tex] = volume of the first solution
[tex]C_2[/tex] = concentration of the second solution
[tex]V_2[/tex] = volume of the second solution
2) Reduction half cell reaction for the copper (II) ion is:
[tex]Cu^{2+} + 2e^- \to Cu[/tex]
3) [tex]Cu^{+2} + 2e^- \to Cu \text{ \ \ \ E = 0.3370}[/tex]
[tex]Zn^{+2} + 2 e^- \to Zn \ \ \ \ \ \ E = -0.763[/tex]
[tex]Zn \to Zn^{+2} + 2 e^- \ \ \ \ \ \ E = +0.763[/tex]
Since the reduction potential of Cu is more; it means copper will go into reduction and zinc will undergo oxidation.
Standard Potential =[tex]E^0_{left} - E^0_{right}[/tex]
[tex]= -0.763 -0.337[/tex] ( since both are reduction potential)
[tex]\mathbf{E^0_{cell} = -1.100 volt}[/tex]
Use the following Balanced Equation to complete the question: 2 Al + 6 HBr → 2 AlBr3 + 3 H2
If you have 10 moles of Al how many moles of H2 can be produced?
*Will give Brainly!*
A student in the lab accidentally poured 45 mL of water into a graduated cylinder containing 15 mL of 3.0 M HCL. What is the concentration of the new solution?
Answer:
The correct approach is "1 M".
Explanation:
The given values are:
Volume of HCL,
V₁ = 45 ml
In prepared solution,
V₂ = 15 ml
Concentration,
C₁ = ?
C₂ = 3.0 M
As we know,
⇒ [tex]V_1C_1=V_2C_2[/tex]
or,
⇒ [tex]C_1=\frac{V_2C_2}{V_1}[/tex]
On substituting the values, we get
⇒ [tex]=\frac{15\times 3}{45}[/tex]
⇒ [tex]=\frac{45}{45}[/tex]
⇒ [tex]=1 \ M[/tex]