Answer:
The correct answer is 17.845 hours.
Explanation:
To solve the question, that is, to determine the hours required there is a need to combine the Faraday's law of electrolysis with the Ideal gas law.
Based on Faraday's law, m = Mit/nF
Here m is the mass in grams, M is the molecular mass, i is the current in amperes, t is time, n is the number of moles of electron per mole of oxygen formed and F is the Faraday's constant (the value of F is 96487 coulombs/mole).
From the above mentioned equation,
t = mnF/Mi ------(i)
Now based on ideal gas law's, PV = nRT or PV = m/M RT, here n = mass/molecular mass.
So, from the above gas law's equation, m = PVM/RT
Now putting the values of m in the equation (i) we get,
t = PVMnF/MiRT = PVnF/iRT
Based on the given information, the value of P is 750 torr or 750/760 atm = 0.98 atm, the value of v is 15.0 L, T is 30 degree C or 273 + 30 K = 303 K, i is 3.55 Amperes, and the value of R is 0.0821 atm L/mol K.
1 mole of oxygen gives 2 moles of electrons, therefore, 2 moles of oxygen will give 4 moles of electrons.
Now putting the values we get,
t = PVnF/iRT
= 0.98 atm × 15.0 L × 4 moles of electron × 96487 coulombs per mole / 3.55 coulomb per sec × 0.0821 atm L per mole-K × 303 K
= 64243.81 secs or 64243.81/3600 hr
= 17.845 hours
Gallium chloride is formed by the reaction of 2.25 L of a 1.50 M solution of HCl according to the following equation: 2Ga 6HCl --> 2GaCl3 3H2 Determine the mass of gallium chloride, in grams, produced. Group of answer choices
Answer:
198.56g of GaCl3
Explanation:
We'll begin by calculating the number of mole HCl in 2.25 L of a 1.50 M solution of HCl. This is illustrated below:
Molarity of HCl = 1.50 M
Volume = 2.25 L
Mole of HCl =..?
Molarity = mole /Volume
1.5 = mole /2.25
Cross multiply
Mole = 1.5 x 2.25
Mole of HCl = 3.375 mole
Next, we shall determine the number of mole Gallium chloride, GaCl3 produced from the reaction. This is shown below:
2Ga + 6HCl —> 2GaCl3 + 3H2
From the balanced equation above,
6 moles of HCl reacted to produce 2 moles of GaCl3.
Therefore, 3.375 mole of HCl will react to produce = (3.375 x 2)/6 = 1.125 mole of GaCl3.
Therefore, 1.125 moles of GaCl3 were produced from the reaction.
Next, we shall convert 1.125 mole of GaCl3 to grams. This is illustrated below:
Molar mass of GaCl3 = 70 + (35.5x3) = 176.5g/mol
Mole of GaCl3 = 1.125 mole
Mass of GaCl3 =..?
Mole = mass /Molar mass
1.125 = mass of GaCl3 /176.5
Cross multiply
Mass of GaCl3 = 1.125 x 176.5
Mass of GaCl3 = 198.56g
Therefore, 198.56g of GaCl3 were produced from the reaction.
For the reaction 2 A - Products, the concentration of A is monitored over time. A graph of [A] versus time was found to be linear, with a negative slope. Select the true statement regarding this reaction.
A) The reaction is first order with respect to A.
B) The reaction is second order with respect to A.
C) The rate constant has a negative value.
D) In 2 The reaction has a half-life equal to k.
E) None of these statements is true.
Answer:
none of these statements is true
according to the question E) None of these statements is true.
What is a concentration in chemistry?The concentration of a chemical substance expresses the amount of a substance present in a mixture. There are many different ways to express concentration. Chemists use the term solute to describe the substance of interest and the term solvent to describe the material in which the solute is dissolved
What is concentration in chemistry units?
Quantitative units of concentration include molarity, molality, mass percentage, parts per thousand, parts per million, and parts per billion.
Learn more about concentration here
https://brainly.com/question/24595796
#SPJ2
What is the mass number of an atom with 24 protons and 30 neutrons?
Answer:
54
Explanation:
Mass number = protones + neutrons
Mass number = 24 + 30
Mass number = 54
calculate the molarity of a solution containing 15.2 grams of nacl dissolved in 2.5 l of solution
Answer:
THE MOLARITY OF THE SOLUTION IS 0.1039 MOL/DM3
Explanation:
Molarity is the number of moles of solute in a given solution,
Molarity in mol / dm3 = Molarity in g/dm3 / Molar mass
Mass = 15.2 g
Volume of solution = 2.5 l
Molar mass of NaCl = (23 + 35.5) = 58.5 g/mol
First, we calculate the molarity in g/dm3
Molarity in g/dm3 = mass /volume
= 15.2 g * 1 L / 2.5 L
=6.08 g /dm3
Hence, we will introduce the values and solve for molarity in mol/dm3
Molarity = 6.08 g/dm3/ 58.5 g/mol
Molarity = 0.1039 mol/dm3
The molarity of the solution is 0.1039 mol/dm3
PLEASE ANSWER AS SOON AS POSSIBLE REALLY WOULD APPRECIATE IT
Answer:
The answer is option D.
Hope this helps you
Using the volumes of EDTA solution you just entered and the corresponding dry unknown sample masses entered earlier, calculate the percent mass of calcium carbonate in the unknown sample mixture.
Enter the calculated percent mass of calcium carbonate in the dry unknown sample for each of the 3 acceptable trials.
Be sure to enter your mass percentages to the correct number of significant digits and in the corresponding order that you entered your masses of your dry unknown samples and volumes of your EDTA previously. The dry unknown sample mass you entered for entry #1 below should correspond to the percent mass of calcium carbonate you enter for entry #1 here.
Trial #: Mass (Grams):
#1: 0.015
#2: 0.015
#3: 0.015
Volume (mL)
#1: 16.4
#2: 15.00
#3: 18.70
Molarity of EDTA Solution: 0.0675
Answer:
#1
Explanation:
molarity of EDTA solution 0.0675
no1
The substance used by homeowners and municipal workers to melt ice on sidewalks and roadways is usually calcium chloride rather than sodium chloride. Discuss two possible rea-sons for this preference.
Answer:
1. It dissolves much more ice faster than sodium chloride
2. Calcium chloride is more effective in melting ice at lower temperatures.
Explanation:
Salts are used to melt ice on roadways and sidewalks because they help to lower the freezing point of water.
Sodium chloride and calcium chloride are both salts used for this purpose but calcium chloride is usually preferred for the following two reasons:
1. It dissolves much more ice faster than sodium chloride: Calcium chloride dissolves much more ice faster than sodium chloride because when it dissociates, it produces three ions instead of the two produced when sodium chloride. Therefore, the heat of hydration of its ions is greater than that of sodium chloride.
2. Calcium chloride is more effective in melting ice at lower temperatures. It lowers the freezing point of water more than sodium chloride. Calcium chloride is able to lower the freezing point of water to about -52°C while sodium chloride only lowers it to about -6°C.
Lead can be prepared from galena [lead(II) sulfide] by first heating with oxygen to form lead(II) oxide and sulfur dioxide. Heating the metal oxide with more galena forms the metal and more sulfur dioxide. Write a balanced equation for the overall reaction by adding the balanced equations for the two steps.
Answer:
2 PbS(s) + 1.5 O₂(g) + PbO(s) ⇒ 2 SO₂(g) + 3 Pb(s)
Explanation:
Lead can be prepared from galena [lead(II) sulfide] by first heating with oxygen to form lead(II) oxide and sulfur dioxide. The corresponding chemical equation is:
PbS(s) + 1.5 O₂(g) ⇒ PbO(s) + SO₂(g)
Heating the metal oxide with more galena forms the metal and more sulfur dioxide. The corresponding chemical equation is:
2 PbO(s) + PbS(s) ⇒ 3 Pb(s) + SO₂(g)
We can get the overall reaction by adding both steps and canceling what is repeated on both sides.
2 PbS(s) + 1.5 O₂(g) + 2 PbO(s) ⇒ PbO(s) + 2 SO₂(g) + 3 Pb(s)
2 PbS(s) + 1.5 O₂(g) + PbO(s) ⇒ 2 SO₂(g) + 3 Pb(s)
How much MnO2(s) should be added to excess HCl(aq) to obtain 195 mL Cl2(g) at 25 °C and 715 Torr g
THIS IS THE COMPLETE QUESTION
Chlorine can be prepared in the laboratory by the reaction of manganese dioxide with hydrochloric acid, HCl(aq), as described by the chemical equation.
How much MnO2(s) should be added to excess HCl(aq) to obtain 185 mL of Cl2(g) at 25 °C and 715 Torr?
Answer:
0.62901mol of MnO2(s) should be added
Explanation:
Given:
P = 715/760 = 0.94078atm
v=195ml=0.195l
n = ? moles have to find
R = 0.0821 L atm/K/mole
T = 25 + 273 = 298 K
Then we will make use of below formula
PV = nRT
Insert the values
0.94078*0.195=n 0.0821*298
24.466n=0.1740443
n=0.174/24.466
n=0.007235 nb of moles of cl2
as 1 mole of Cl2 were obtained from 1 mole of MnO2
so 0.007235 of chlorine must have come from
0.007235 moles of MnO2
1 mole of MnO2 = 86.94 g/mole
so 0.007235 moles of MnO2== 86.94* 0.007235
=0.62901
Convert 120 degrees F to K.
[?]K
Answer:
322
Explanation:
This is easy
Carbon dioxide gas reacts with liquid water to produce aqueous carbonic acid.” Which chemical equation correctly translates this description? CO2 (s) + H2O (g) → H2CO3 (s) CO2 (l) + H2O (l) → H2CO3 (l) CO2 (g) + H2O (g) → H2CO3 (aq) CO2 (g) + H2O (l) → H2CO3 (aq)
Answer: CO2(g)+H2O(I) > H2CO3(Aq)
Explanation:
Got it right?
What is a heterogeneous mixture?
Answer:
The type of mixture whose components are seen through our naked eyes is known as heterogeneous mixture. it is a mixture of small constituent parts of substances.
for eg, mixture of sand and sugar.
hope it helps..
What is the maximum number of electrons in the second principal energy level?
02 32 8 18
Answer:
8 electrons
Explanation:
The second principal energy level has two sublevels: 2s and 2p
2s : 2 electrons
2p : 6 electrons (3 sublevels × 2 electrons each = 6 electrons)
It can hold a maximum of 8 electrons.
Hope this helps. :)
New technologies have allowed buildings to become taller and heavier than
ever before. This is an example of:
A. green design.
B. the engineering process.
C. the evolution of building techniques.
D. material failure.
Answer:
C. the evolution of building techniques
Hope this helps.
4. What are the potential sources of error that might cause disagreement between the activity series' prediction of reactions and your observations of reactions
Answer:
1. Not to have enough salt water on the foil
2.not cleaning the foil well to remove interfering materials
4Ga + 3S2 ⇒ 2Ga2S3
How many grams of Gallium Sulfide would form if 20.5 moles of Gallium burned?
Answer:
2415.9g (corrected to 1 d.p.)
Explanation:
(Take the atomic mass of Ga=69.7 and S=32.1)
Assuming Ga is the limiting reagent (because the question did not mention the amount of sulphur burnt),
From the balanced equation, the mole ratio of Ga:Ga2S3 = 4: 2 = 2: 1, which means, every 2 moles of Ga burnt, 1 mole of Ga2S3 is produced.
Using this ratio, let y be the no. of moles of Ga2S3 produced,
[tex]\frac{2}{1} =\frac{20.5}{y}[/tex]
y = 20.5 / 2
= 10.25 mol
Since mass = no. of moles x molar mass,
the mass of Ga2S3 produced = 10.25 x (69.7x2 + 32.1x3)
= 2415.9g (corrected to 1 d.p.)
g what would happen to the solubility of a gas in a solution if the pressure above the solution is increased
Answer: The solubility of gas increases in a solution if the pressure above the solution is increased
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the liquid.
To calculate the molar solubility, we use the equation given by Henry's law, which is:
[tex]C=K_H\times p[/tex]
where,
C = solubility
[tex]K_H[/tex] = Henry's constant
p = partial pressure
As the solubility is directly proportional to the pressure, thus increasing the pressure increases the solubility.
Calculate the volume of 0.500 M C2H3O2H and 0.500 M C2H3O2Na required to prepare 0.100 L of pH 5.00 buffer with a buffer strength of 0.100 M. The pKa of C2H3O2H is 4.75.
Answer:
You require 12.8mL of the 0.500M C₂H₃O₂Na and 7.2mL of the 0.500M C₂H₃O₂H
Explanation:
It is possible to obtain pH of a weak acid using H-H equation:
pH = pKa + log₁₀ [A⁻] / [HA]
For the buffer of acetic acid/acetate, the equation is:
pH = pKa + log₁₀ [C₂H₃O₂Na] / [C₂H₃O₂H]
Replacing:
5.00 = 4.75 + log₁₀ [C₂H₃O₂Na] / [C₂H₃O₂H]
1.7783 = [C₂H₃O₂Na] / [C₂H₃O₂H] (1)
Buffer strength is the concentration of the buffer, that means:
0.1M = [C₂H₃O₂Na] + [C₂H₃O₂H] (2)
Replacing (2) in (1):
1.7783 = 0.1M - [C₂H₃O₂H] / [C₂H₃O₂H]
1.7783 [C₂H₃O₂H] = 0.1M - [C₂H₃O₂H]
2.7783 [C₂H₃O₂H] = 0.1M
[C₂H₃O₂H] = 0.036MAlso:
[C₂H₃O₂Na] = 0.1M - 0.036M
[C₂H₃O₂Na] = 0.064MThe moles of both compounds you require is:
[C₂H₃O₂Na] = 0.1L × (0.064mol / L) = 0.0064moles
[C₂H₃O₂H] = 0.1L × (0.036mol / L) = 0.0036moles
Your stock solutions are 0.500M, thus, volume of both solutions you require is:
[C₂H₃O₂Na] = 0.0064moles × (1L / 0.500M) = 0.0128L = 12.8mL
[C₂H₃O₂H] = 0.0036moles × (1L / 0.500M) = 0.0072mL = 7.2mL
You require 12.8mL of the 0.500M C₂H₃O₂Na and 7.2mL of the 0.500M C₂H₃O₂HA sample of gas occupies a volume of 7.50 L at 0.988 atm and 301 K. At what temperature is the volume of the gas 4.00 L if the pressure is kept constant.
Answer:
160.53L
Explanation:
Since Pressure is kept constant we can use charles law
V1/T1 =V2/T2Write a balanced equation for the combustion of liquid methanol in air, assuming H2O(g) as a product.
Answer:
2 CH₃OH + 3 O₂ ⇒ 2 CO₂ + 4 H₂O
Explanation:
Methanol is CH₃OH. Oxygen is O₂. A combustion produces CO₂ and H₂O. Create an equation using this information and balance.
CH₃OH + O₂ ⇒ CO₂ + H₂O
2 CH₃OH + 3 O₂ ⇒ 2 CO₂ + 4 H₂O
The balanced equation for the combustion of liquid methanol in air, assuming H2O(g) as a product is
CH₃OH(l) + O₂(g) → CO₂(g) + H₂O(g)
From the question,
We are to write a balanced equation for the combustion of liquid methanol in air.
The combustion of liquid methanol in air is the reaction between methanol (CH₃OH) and oxygen (O₂). The reaction yields carbon(IV) oxide and water.
Now, for the balanced equation for the combustion of liquid methanol in air
The balanced chemical equation is
CH₃OH(l) + O₂(g) → CO₂(g) + H₂O(g)
Hence, the balanced equation for the combustion of liquid methanol in air, assuming H2O(g) as a product is CH₃OH(l) + O₂(g) → CO₂(g) + H₂O(g)
Learn more here: https://brainly.com/question/2473060
Using the determined equivalence point from question 2 and the balanced reaction of acetic acid and sodium hydroxide, calculate the molarity of the acetic acid in your hot sauce packet.
Equivalance point is 3.0 mL NaOH, 0.6 g hot sauce, 0.1 M NaoH.
Answer:
Molarity of the packet is 0.5M
Explanation:
In the reaction of acetic acid with NaOH:
CH₃COOH + NaOH → CH₃COO⁻ + H₂O + Na⁺
1 mole of acetic acid reacts with 1 mole of NaOH.
When you are titrating the acid with NaOH, you reach equivalence point when moles of acid = moles of NaOH.
Moles of NaOH are:
3.0mL = 3.0x10⁻³L ₓ (0.1 mol / L) = 3.0x10⁻⁴ moles of NaOH = moles of CH₃COOH.
Now, you find the moles of acetic acid in the hot sauce packet. But molarity is the ratio between moles of the acid and liters of solution.
As you don't know the volume of your packet, you can assume its density as 1g/mL. Thus, volume of 0.6g of hot sauce is 0.6mL = 6x10⁻⁴L.
And molarity of the packet is:
3.0x10⁻⁴ moles acetic acid / 6x10⁻⁴L =
0.5MWhich of the following is an alkali metal?
A. Lithium (LI)
B. Boron (B)
c. Calcium (Ca)
D. Krypton (Kr)
Answer:
lithium is akali metal
Answer:
lithium is an alkali metal as it lies in group 1st in modern perodic table.
what is the best course of action if solid material remains in the flask after the heating step of recrystallization
Answer:
filter the hot mixture.
Explanation:
Solid is stayed undissolved since the arrangement is gotten super saturated. On the off chance that solid molecule is available recrysallization won't happen in this way we need expel the solid molecule by filtarion in hot condition itself . Subsequently, arrangement become totally homogenous and recrysallization item will shaped by moderate cooling
NH4NO2(s)→N2(g)+H2O(l) ---------------- Express your answer as a chemical equation. Identify all of the phases in your answer.
Answer:
The balanced equation is :
NH4NO2(solid) = N2(gas) + 2 H2O(liquid)
Explanation:
A balanced chemical equation is an equation that has an equal number of atoms and charges on both sides of the equation. The given equation in question is imbalanced as the number of atoms not equal.
In this reaction, solid ammonium nitrite breaks into nitrogen gas and water, reaction known as decomposition.
The correct and balanced equation as follows :
NH4NO2(s) = N2(g) + 2 H2O(l)
Determine the [OH⁻] concentration in a 0.344 M Ca(OH)₂ solution.
Answer:
[tex]0.688M[/tex]
Explanation:
Hello,
In this case, it is widely acknowledged that strong bases usually correspond to those formed with metals in groups IA and IIA which have relatively high activity and reactivity, therefore, when they are dissolved in water the following dissociation reaction occurs (for calcium hydroxide):
[tex]Ca(OH)_2\rightarrow Ca^{2+}+2OH^-[/tex]
In such a way, for the same volume, we can compute the concentration of hydroxyl ions by simple stoichiometry (1:2 molar ratio):
[tex]0.344\frac{molCa(OH)_2}{L}*\frac{2molOH^-}{1molCa(OH)_2} \\\\0.688\frac{mol OH^-}{L}[/tex]
Or simply:
[tex]0.688M[/tex]
Regards.
Type Calculations. Given the balanced equation: 2 Al + 3 H2SO4---> Al2(SO4)3 + 3 H2 Molar mass (g/mol): Al=26.98; H2SO4=98.08; Al2(SO4)3= 342.15; H2=2.02 A) How many mole of H2 gas can be produced when 33.8 g of Al are consumed? B) When 1.60 mol of H2SO4 are used in a reaction, how many grams of Al2(SO4)3 can be produced? C) For part B,if actual yield for Al2(SO4)3 is 100.0 g, what is percent yield?
Answer:
A. 1.88 mol H₂
B. 182 g Al₂(SO₄)₃
C. 54.8%
Explanation:
2 Al + 3 H₂SO₄ ⇒ Al₂(SO₄)₃ + 3 H₂
A. Convert grams of Al to moles. The molar mass is 26.98 g/mol.
(33.8 g)/(26.98 g/mol) = 1.253 mol Al
Use stoichiometry to convert moles of Al to moles of H₂. Looking at the equation, you can see that for every 2 mol of Al consumed, 3 moles of H₂ is produced. Use this relationship.
(1.253 mol Al) × (3 mol H₂)/(2 mol Al) = 1.879 mol H₂
You will produce 1.88 mol of H₂ gas.
B. Again, use stoichiometry. For every 3 moles of H₂SO₄ consumed, 1 mole of Al₂(SO₄)₃ is produced.
(1.60 mol H₂SO₄) × (1 mol Al₂(SO₄)₃/3 mol H₂SO₄) = 0.533 mol Al₂(SO₄)₃
Convert moles of Al₂(SO₄)₃ to grams. The molar mass is 342.15 g/mol.
(0.533 mol) × (342.15 g/mol) = 182.48 g Al₂(SO₄)₃
You will produce 182 g of Al₂(SO₄)₃.
C. Calculate percent yield by dividing the actual yield by the theoretical yield. Multiply by 100%.
(100.0/182.48) × 100% = 54.8%
The percent yield is 54.8%.
How many grams of CO are produced when 41.0 g of C reacts?
Answer:
95.7 g CO to the nearest tenth.
Explanation:
2C + O2 ---> 2CO
Using relative atomic masses:
24 g C produces 2*12 + 2*16 g CO.
So 41 g produces ( (2*12 + 2*16) * 41 ) / 24
= 95.7 g CO,
Five mol of calcium carbide are combined with 10 mol of water in a closed, rigid, high-pressure vessel of 1800 cm3 internal empty volume. Acetylene gas is produced by the reaction:
Answer:
CaC₂ + 2H₂O → C₂H₂ + Ca(OH)₂
Explanation:
In order to find out the reaction, we must know the reactants.
For this situation, we make acetylene gas from carbide calcium CaC₂ and H₂O (water); therefore the reactants are:
- CaC₂ and H₂O
Acetylene is one of the products made → C₂H₂
So the reaction can be formed as this: CaC₂ + H₂O → C₂H₂
We missed the calcium, and this reaction also makes, Calcium Hydroxide, so the complete equation must be:
CaC₂ + H₂O → C₂H₂ + Ca(OH)₂
This is unbalanced, because we have 1 O in left side and 2 in right side so we add 2 in water so now, we get the complete reaction:
1 mol of calcium carbide reacts to 2 mol of water in order to produce 1 mol of acetylene and 1 mol of calcium hydroxide.
Which products are formed when aluminum is added to a silver chlorine solution?
Answer:
Alcl3 and Cl2
Explanation:
the product above will be formed
Answer:
silver (Ag) and aluminum chloride (AlCl₃)
Explanation:
The reaction between aluminum and silver chloride is a single replacement reaction. A single replacement reaction is when one element switches places with another.
Al + 3AgCl ➔︎ 3Ag + AlCl₃
In the reaction, the cations (positively charged ions) switch places. Aluminum (Al) switches places with Silver (Ag). So, the products of the reaction are silver and aluminum chloride.
Hope this helps.
Using GRIGNARDS REAGENT convert methane to ethanol
Answer:
J
Explanation: