How many grams of NaCl are produced when sodium reacts with 119 grams of chlorine gas? Written in correct form please

Answers

Answer 1

When sodium reacts with 119 grams of chlorine gas, 234 grams of NaCl are produced.

The balanced chemical equation for this reaction is 2Na + Cl2 → 2NaCl. From this equation, we can see that for every 2 moles of Na, 1 mole of Cl2 is required to produce 2 moles of NaCl.

To find the number of moles of Cl2 present in 119 grams, we first need to calculate its molecular weight, which is 70.90 g/mol. Dividing 119 grams by this value gives us 1.67 moles of Cl2. From the stoichiometry of the balanced equation, we know that 1 mole of Cl2 produces 2 moles of NaCl.

Therefore, 1.67 moles of Cl2 will produce 3.33 moles of NaCl. Finally, multiplying the number of moles by the molecular weight of NaCl (58.44 g/mol) gives us the answer: 234 grams of NaCl.

Therefore, when sodium reacts with 119 grams of chlorine gas, 234 grams of NaCl are produced.

Learn more about mole here.

https://brainly.com/questions/32707761

#SPJ11


Related Questions

how effective was the steam distillation? what data do you have to support this?

Answers

Steam distillation is a highly effective method for extracting essential oils and other volatile compounds from plant materials. The effectiveness of steam distillation is supported by a large body of scientific research, which has demonstrated the efficiency of this process in extracting high-quality essential oils from a wide range of plant materials.

One key factor that contributes to the effectiveness of steam distillation is the use of high-pressure steam, which helps to release the essential oils from the plant material.

In addition, the use of water as a solvent helps to protect the delicate chemical compounds found in essential oils, preserving their quality and aroma.

Numerous studies have demonstrated the effectiveness of steam distillation in extracting essential oils from plants, including lavender, peppermint, and eucalyptus.

These studies have shown that steam distillation is capable of extracting a high yield of essential oils with excellent purity and quality, making it an ideal method for the production of essential oils and other natural plant extracts.

Read more about Steam distillation at https://brainly.com/question/29400171

#SPJ11

click in the answer box to activate the palette. give the formula of the conjugate base of h2co3.

Answers

The formula for the conjugate base of H2CO3 is HCO3-, which is a weak base that acts as a buffer in the blood to help maintain a stable pH.

To activate the palette, simply click in the answer box. The conjugate base of H2CO3 can be found by removing one hydrogen ion (H+) from each of the two acidic protons in H2CO3. This results in the formation of the bicarbonate ion, HCO3-.

The formula for the conjugate base of H2CO3, or bicarbonate ion, is HCO3-. This ion is formed when one H+ ion is removed from each of the two acidic protons in H2CO3. Bicarbonate is a weak base and acts as a buffer in the blood, helping to maintain a stable pH. It is an important component of the carbon dioxide-bicarbonate buffer system, which plays a crucial role in regulating the pH of the blood. When the blood becomes too acidic, bicarbonate acts as a base and accepts excess H+ ions, thereby raising the pH. Conversely, when the blood becomes too basic, carbonic acid (H2CO3) is formed and releases H+ ions, thereby lowering the pH.

Know more about palette here:

https://brainly.com/question/12884871

#SPJ11

Fatty acid degradation proceeds through repeated cycles of Boxidation with each cycle containing four reactions. Arrange the four enzymes that catalyze these reactions in order from first to last. 3-hydroxyacyl-COA dehydrogenase Acyl-CoA dehydrogenase B-ketoacyl-CoA thiolase Enoyl-CoA hydratase

Answers

The order of the four enzymes that catalyze the reactions in the fatty acid degradation cycle, from first to last, is as follows :- Acyl-CoA dehydrogenase, Enoyl-CoA hydratase, B-ketoacyl-CoA thiolase, 3-hydroxyacyl-COA dehydrogenase.

The enzymes are arranged in the order in which they act on the fatty acid molecule during each cycle of the degradation.

During each cycle of the fatty acid degradation, the acyl-CoA molecule is oxidized by acyl-CoA dehydrogenase to produce a trans-Δ2-enoyl-CoA. The enoyl-CoA molecule is then hydrated by enoyl-CoA hydratase to produce a β-hydroxyacyl-CoA.

This molecule is then oxidized by 3-hydroxyacyl-COA dehydrogenase to produce a β-ketoacyl-CoA. Finally, this molecule is cleaved by B-ketoacyl-CoA thiolase to produce acetyl-CoA and a new, shorter acyl-CoA molecule, which can enter another cycle of the fatty acid degradation.

To know more about enzymes refer here :-

https://brainly.com/question/17292676#

#SPJ11

Plate with squiggly lines on it with -ampR at the topa. LB agar without ampicillin, +ampR cellsb. LB agar without ampicillin, −ampR cellsc. LB agar with ampicillin, +ampR cellsd. LB agar with ampicillin, −ampR cells

Answers

The plate with squiggly lines on it with -ampR at the top is likely a LB agar plate containing ampicillin resistance genes, or +ampR, which will only allow for the growth of cells that have the ampicillin resistance gene present.


a. LB agar without ampicillin, +ampR cells: This would allow for the growth of cells that have the ampicillin resistance gene present, but would not select for them as they would not be required to survive in the absence of ampicillin.

b. LB agar without ampicillin, −ampR cells: This would allow for the growth of cells that do not have the ampicillin resistance gene present.

c. LB agar with ampicillin, +ampR cells: This would select for cells that have the ampicillin resistance gene present, as only those cells would be able to survive in the presence of ampicillin.

d. LB agar with ampicillin, −ampR cells: This would not allow for the growth of any cells, as the absence of the ampicillin resistance gene would result in cell death in the presence of ampicillin.

The presence or absence of ampicillin in the LB agar will determine whether or not cells that have the ampicillin resistance gene present will be able to grow. If ampicillin is present, only cells with the ampicillin resistance gene will survive. If ampicillin is absent, all cells will be able to grow regardless of whether or not they have the ampicillin resistance gene present.

To learn more about ampicillin visit:

brainly.com/question/14546363

#SPJ11

What is the concentration of H+ in solution given the [OH] = 1.32 x 10^-4? A) 1.0 x 10^14 M B) 7.58 x 10^-11 M C) 1.32 x 10^-11 M D) not enough information E) none of the above

Answers

Option B) 7.58 x 10⁻¹¹ M is the concentration of H+ in solution given the [OH] = 1.32 x  10⁻⁴  will be 1.32 x 10⁻¹¹ M.

We can use the fact that the product of the concentration of hydrogen ions (H⁺) and hydroxide ions (OH⁻) in a solution is equal to 1 x 10⁻¹⁴ M² at 25°C. This is known as the ion product constant of water (Kw).

Mathematically, we can write:

Kw = [H⁺][OH⁻] = 1 x 10⁻¹⁴ M²

We are given the concentration of hydroxide ions as [OH⁻] = 1.32 x 10⁻⁴ M. We can use this information and the Kw equation to calculate the concentration of hydrogen ions:

[H⁺] = Kw / [OH⁻]

[H⁺] = (1 x 10⁻¹⁴ M²) / (1.32 x 10⁻⁴ M)

[H⁺] = 7.58 x 10⁻¹¹ M

Therefore, the concentration of H⁺ in solution is 7.58 x 10⁻¹¹ M, which is option B.

learn more about hydrogen here:

https://brainly.com/question/20309096

#SPJ11

A statistics professor finds that when she schedules an office hour for student help, an average of 1.9 students arrive. Find the probability that in a randomly selected office hour, the number of student arrivals is 7.

Answers

To find the probability that in a randomly selected office hour the number of student arrivals is 7, we can use the Poisson distribution formula.

The Poisson distribution is used to model the probability of a certain number of events occurring within a fixed interval of time or space, given the average rate of occurrence.

In this case, the average number of student arrivals is 1.9.

The probability of exactly k events occurring in a Poisson distribution is given by the formula:

P(X=k) = (e^(-λ) * λ^k) / k!

Where λ is the average rate of occurrence.

Using this formula, we can calculate the probability of exactly 7 student arrivals in the given office hour:

P(X=7) = (e^(-1.9) * 1.9^7) / 7!

Calculating this expression will give us the desired probability.

Note: The value of e in the formula represents the base of the natural logarithm and is approximately equal to 2.71828.

 To  learn  more  about Poisson click here:brainly.com/question/31019106

#SPJ11

The pressure of the first container is at 60 kPa. What is the pressure of the container with the 3N volume

Answers

P2 = (P1V1) / V2, where P2 = (60 kPa * (P2 / 20) N) / 3 NP2 = 12 kPa. As a result, the second container has a pressure of 12 kPa.

Assuming that the two containers have the same temperature, we can use Boyle's Law to calculate the pressure of the second container. Boyle's Law states that the pressure and volume of a gas are inversely proportional to each other, given that the temperature and amount of gas are constant. That is:P₁V₁ = P₂V₂where:P₁ = pressure of the first container (60 kPa)V₁ = volume of the first container (unknown)V₂ = volume of the second container (3 N)P₂ = pressure of the second container (unknown)

Rearranging the equation, we have:P₂ = (P₁V₁) / V₂We know that P₁ = 60 kPa, and we need to find V₁. Since the pressure and volume of the gas are inversely proportional to each other, we can use the following relationship:P₁V₁ = P₂V₂Therefore, V₁ = (P₂V₂) / P₁Substituting the given values, we have:V₁ = (P₂ * 3 N) / 60 kPaSimplifying,V₁ = (P₂ / 20) NWe can now substitute this expression for V₁ in the first equation:P₂ = (P₁V₁) / V₂P₂ = (60 kPa * (P₂ / 20) N) / 3 NP₂ = 12 kPa Therefore, the pressure of the second container is 12 kPa.

Learn more about pressure here:

https://brainly.com/question/30673967

#SPJ11

Consider the reaction: Y ? products
The rate law was experimentally determined to be rate = k[Y]2 because
the graph of 1/[Y]2 vs. time was linear.
the graph of ln [Y] vs. time was linear.
the graph of 1/[Y] vs. time was linear.
the graph of [Y]2 vs. time was linear.
the graph of [Y] vs. time was linear.

Answers

The correct answer is the graph of 1/[Y]2 vs. time was linear.

The correct answer is the graph of 1/[Y]2 vs. time was linear.
To understand why, we need to know that the rate law is an equation that describes how the rate of a reaction depends on the concentrations of the reactants. In this case, the rate law is rate = k[Y]2, where [Y] is the concentration of the reactant Y and k is a rate constant. The power of [Y] in the rate law is called the order of the reaction with respect to Y.
To determine the rate law experimentally, we need to measure the rate of the reaction at different concentrations of Y and compare the results. One way to do this is by plotting a graph of the inverse of [Y]2 (1/[Y]2) vs. time. If the reaction follows the rate law, this graph should be linear with a slope of k. Therefore, if we observe a linear graph of 1/[Y]2 vs. time, we can conclude that the rate law for this reaction is rate = k[Y]2. The other graphs listed in the question (ln [Y] vs. time, 1/[Y] vs. time, [Y]2 vs. time, and [Y] vs. time) would not give us a linear relationship that could determine the rate law.

To know more about rate law visit: https://brainly.com/question/30379408

#SPJ11

An inert electrode must be used when one or more species involved in the redox reaction are:Select the correct answer below:good conductors of electricitypoor conductors of electricityeasily oxidizedeasily reduced

Answers

An inert electrode must be used when one or more species involved in the redox reaction are poor conductors of electricity. Inert electrodes, like graphite or platinum, do not participate in the reaction and only serve as a surface for the transfer of electrons.

An inert electrode must be used when one or more species involved in the redox reaction are easily oxidized or easily reduced. This is because if a reactive electrode is used, it could participate in the reaction itself and affect the overall outcome of the reaction.

Inert electrodes, on the other hand, do not participate in the reaction and only serve as a conductor of electricity. Therefore, the correct answer to the question is either "easily oxidized" or "easily reduced."

To know more about electrode visit :-

https://brainly.com/question/17060277

#SPJ11

Answer:

poor conductors of electricity

Explanation:

If a substance involved in the redox reaction conducts electricity poorly, it cannot serve as an effective electrode. In this case, an inert electrode can be used to act as an electron sink or source in solution.

addition of br2 to the cyclopentene produces the trans-1,2-dibromocyclopentane. (True or False)

Answers

True. The addition of Br2 to cyclopentene follows an electrophilic addition mechanism where the double bond of cyclopentene acts as the nucleophile attacking one of the Br2 molecules.

This results in the formation of a cyclic intermediate with a bridging bromine atom. The intermediate then breaks down to form the trans-1,2-dibromocyclopentane product. The "trans" in the name refers to the relative positions of the two bromine atoms on the cyclopentane ring. This reaction is stereospecific and yields only the trans isomer. The addition of Br2 to cyclopentene is an important reaction in organic chemistry and is commonly used for the synthesis of other compounds. In conclusion, the statement is true and can be explained by the electrophilic addition mechanism that occurs during the reaction.

To know more about cyclopentene  visit:

https://brainly.com/question/18850208

#SPJ11

What nuclide is produced in thecore cf acollapsing giant star by eachoftre following reaction? Part 1 Scu-3" B - % 2-{870 Part 2 {zn- 18 = aiGa Part 3 Jisr -& P- %+8

Answers

During the collapse of a giant star, the iron core undergoes many nuclear reactions and eventually collapses to form a neutron star or a black hole.

Part 1: In the reaction Sc-30 + 7B-10 -> 37Cl-37 + 1n-1, one neutron is produced along with chlorine-37. However, during the collapse of a giant star, many nuclear reactions occur, and it is difficult to determine which specific reaction leads to the production of chlorine-37.

Part 2: In the reaction Zn-68 + 13Al-27 -> 81Ga-95 + 2n-1, two neutrons are produced along with gallium-81. Similarly to Part 1, it is difficult to determine which specific reaction leads to the production of gallium-81 during the collapse of a giant star.

Part 3: In the reaction Fe-56 + 1n-1 -> Mn-55 + 1H-1, a proton and manganese-55 are produced. However, during the collapse of a giant star, the iron core undergoes many nuclear reactions and eventually collapses to form a neutron star or a black hole, and it is difficult to determine which specific reaction leads to the production of manganese-55.

Click the below link, to learn more about nuclide:

https://brainly.com/question/32085983

#SPJ11

Calculate the pH for each of the following cases in the titration of 35.0 mL of 0.220 M LiOH(aq), with 0.220 M HCl(aq). (a) before addition of any HCl (b) after addition of 13.5 mL of HCl (c) after addition of 25.5 mL of HCl (d) after the addition of 35.0 mL of HCl (e) after the addition of 40.5 mL of HCl (f) after the addition of 50.0 mL of HCl

Answers

The pH after the addition of 50.0 mL of HCl is 0.89.

The reaction between LiOH and HCl is:

LiOH(aq) + HCl(aq) → LiCl(aq) + [tex]H_2O[/tex](l)

Before any HCl is added, the solution contains only LiOH. Therefore, the initial concentration of hydroxide ions [OH-] is:

[OH-] = 0.220 mol/L

(a) Before any HCl is added:

In this case, the solution is a strong base, and the pH can be calculated using the equation:

pH = 14 - pOH

pH = 14 - log([OH-]) = 14 - log(0.220) = 11.66

(b) After addition of 13.5 mL of HCl:

The moles of HCl added is:

moles of HCl = (0.220 mol/L)(0.0135 L) = 0.00297 mol

After the addition of HCl, the total volume of the solution is:

V = 35.0 mL + 13.5 mL = 48.5 mL = 0.0485 L

The moles of LiOH remaining is:

moles of LiOH = (0.220 mol/L)(0.0350 L) = 0.00770 mol

The moles of OH- remaining is:

moles of OH- = 0.00770 mol - 0.00297 mol = 0.00473 mol

The concentration of OH- ions is:

[OH-] = moles of OH-/V = 0.00473 mol/0.0485 L = 0.0975 mol/L

The pOH is:

pOH = -log[OH-] = -log(0.0975) = 1.01

The pH is:

pH = 14 - pOH = 14 - 1.01 = 12.99

(c) After addition of 25.5 mL of HCl:

The moles of HCl added is:

moles of HCl = (0.220 mol/L)(0.0255 L) = 0.00561 mol

After the addition of HCl, the total volume of the solution is:

V = 35.0 mL + 25.5 mL = 60.5 mL = 0.0605 L

The moles of LiOH remaining is:

moles of LiOH = (0.220 mol/L)(0.0350 L) = 0.00770 mol

The moles of OH- remaining is:

moles of OH- = 0.00770 mol - 0.00561 mol = 0.00209 mol

The concentration of OH- ions is:

[OH-] = moles of OH-/V = 0.00209 mol/0.0605 L = 0.0345 mol/L

The pOH is:

pOH = -log[OH-] = -log(0.0345) = 1.46

The pH is:

pH = 14 - pOH = 14 - 1.46 = 12.54

(d) After addition of 35.0 mL of HCl:

The moles of HCl added is:

moles of HCl = (0.220 mol/L)(0.0350 L) = 0.00770 mol

After the addition of HCl, the total volume of the solution is:

V = 35.0 mL + 35.0 mL = 70.0 mL = 0.0700 L

The moles of LiOH remaining is:

moles of LiOH

(f) after the addition of 50.0 mL of HCl:

Before adding any HCl, the solution contains only LiOH, so we can use the Kb of LiOH to calculate the pOH and then convert to pH:

Kb for LiOH = Kw/Ka = 1.0 × 10^-14/2.0 × 10^-11 = 5.0 × 10^-4

pOH = -log(5.0 × 10^-4) = 3.3

pH = 14 - pOH = 10.7

After adding 50.0 mL of HCl, a total of 35.0 + 50.0 = 85.0 mL of solution is present, and the concentration of HCl is:

(0.220 M/L) × (50.0 mL/85.0 mL) = 0.129 M

This is a strong acid, so we can assume complete dissociation and calculate the pH using the concentration of H+:

pH = -log[H+] = -log(0.129) = 0.89

For more question on pH click on

https://brainly.com/question/172153

#SPJ11

LiOH(aq) and HCl(aq) react in a 1:1 molar ratio, meaning that the number of moles of HCl added to the solution is equal to the number of moles of LiOH originally present.

(a) Before the addition of any HCl:

The initial concentration of LiOH is 0.220 M, so the initial concentration of hydroxide ions, [OH-], can be calculated using the following equation:

LiOH → Li+ + OH-

Thus, [OH-] = 0.220 M.

The pOH of the solution can be calculated using the following equation:

pOH = -log[OH-] = -log(0.220) = 0.657

The pH of the solution can be calculated using the following equation:

pH = 14 - pOH = 14 - 0.657 = 13.343

Therefore, the pH of the solution before the addition of any HCl is 13.343.

(b) After the addition of 13.5 mL of HCl:

The amount of HCl added can be calculated using the following equation:

n(HCl) = C(HCl) x V(HCl) = 0.220 M x 0.0135 L = 0.00297 mol

Since HCl and LiOH react in a 1:1 molar ratio, the amount of LiOH remaining in the solution can be calculated as follows:

n(LiOH) = n(LiOH initial) - n(HCl added) = 0.220 M x 0.0350 L - 0.00297 mol = 0.00523 mol

The new volume of the solution is 35.0 mL + 13.5 mL = 48.5 mL.

The new concentration of LiOH can be calculated as follows:

C(LiOH) = n(LiOH) / V(solution) = 0.00523 mol / 0.0485 L = 0.108 M

The new concentration of hydroxide ions can be calculated using the following equation:

LiOH + HCl → LiCl + H2O

The reaction consumes 0.00297 mol of hydroxide ions, so the new concentration of hydroxide ions is:

[OH-] = (0.220 M x 0.0350 L - 0.00297 mol) / 0.0485 L = 0.064 M

The pOH of the solution can be calculated using the following equation:

pOH = -log[OH-] = -log(0.064) = 1.194

The pH of the solution can be calculated using the following equation:

pH = 14 - pOH = 14 - 1.194 = 12.806

Therefore, the pH of the solution after the addition of 13.5 mL of HCl is 12.806.

(c) After the addition of 25.5 mL of HCl:

The amount of HCl added can be calculated using the same equation as before:

n(HCl) = C(HCl) x V(HCl) = 0.220 M x 0.0255 L = 0.00561 mol

The amount of LiOH remaining in the solution can be calculated as follows:

n(LiOH) = n(LiOH initial) - n(HCl added) = 0.220 M x 0.0350 L - 0.00561 mol = 0.00389 mol

The new volume of the solution is 35.0 mL + 25.5 mL = 60.5 mL.

Learn more about LiOH(aq) and HCl(aq) here:

https://brainly.com/question/7082537

#SPJ11

URGENT.
What series is this element (ruthenium) part of on the periodic table? (Ex: Noble Gases, Lanthanides, Metalloids, etc.)
AND PLS ANSWER THIS TOO
What are common molecules/compounds that this element (ruthenium) is a part of?

Answers

Ruthenium is a transition metal and it is located in period 5 and group 8 of the periodic table, along with iron (Fe) and osmium (Os).

Ruthenium is commonly found in many industrial and commercial applications, including in the production of hard disk drives, electrical contacts, and jewelry. Some common molecules and compounds that ruthenium is a part of include:

Ruthenium dioxide (RuO2) - a compound commonly used in the production of resistors and other electronic components.

Ruthenium tetroxide (RuO4) - a highly toxic and volatile compound that is used as an oxidizing agent in organic chemistry.

Ruthenium red - a dye used in biological staining and electron microscopy.

Ammonium hexachlororuthenate (NH4)2[RuCl6] - a ruthenium compound used in electroplating and as a precursor for other ruthenium compounds.

Various ruthenium complexes - such as [Ru(bpy)3]2+, which is a commonly used photochemical catalyst.

These are just a few examples of the many molecules and compounds that ruthenium is a part of.

what is the ph of a solution that is 0.10 m hc2h3o2 and 0.10 m nac2h3o2 (the conjugate base)? ka of hc2h3o2 = 1.8 x 10-5

Answers

4.74 is the ph of a solution that is 0.10 m hc2h3o2 and 0.10 m nac2h3o2  (the conjugate base).

To determine the pH of this solution, we need to first calculate the concentration of the conjugate base, which is NaC2H3O2. Since the initial concentration of HC2H3O2 is 0.10 M and it reacts with NaOH in a 1:1 ratio, the concentration of the conjugate base is also 0.10 M.
Next, we can use the Ka value of HC2H3O2 to calculate the concentration of H+ ions in the solution:
Ka = [H+][C2H3O2-]/[HC2H3O2]
1.8 x 10^-5 = x^2 / (0.10 - x)
where x is the concentration of H+ ions
Solving for x, we get a concentration of 1.34 x 10^-3 M.
Now, we can use the pH formula to calculate the pH of the solution:
pH = -log[H+]
pH = -log(1.34 x 10^-3)
pH = 2.87
Therefore, the pH of the solution is 2.87.
The pH of a solution with 0.10 M HC2H3O2 and 0.10 M NaC2H3O2 can be determined using the Henderson-Hasselbalch equation. This equation relates the pH, pKa, and the ratio of the concentrations of the conjugate base (A-) and weak acid (HA).
Henderson-Hasselbalch equation: pH = pKa + log([A-]/[HA])
In this case, the weak acid (HA) is HC2H3O2 and its conjugate base (A-) is C2H3O2-. The Ka of HC2H3O2 is given as 1.8 x 10^-5. To find the pKa, use the formula:
pKa = -log(Ka) = -log(1.8 x 10^-5) ≈ 4.74
Since the solution is a buffer with equal concentrations of the weak acid and its conjugate base (0.10 M each), the ratio of [A-] to [HA] is 1.
Now, apply the Henderson-Hasselbalch equation:
pH = pKa + log([A-]/[HA]) = 4.74 + log(1) = 4.74
So, the pH of the solution is approximately 4.74.

To know more about conjugate base visit:

brainly.com/question/30225100

#SPJ11

in an aqueous solution of a certain acid the acid is 0.050 issociated and the ph is 4.48. calculate the acid dissociation constant ka of the acid. round your answer to 2 significant digits.

Answers

The acid dissociation constant Ka of the acid is 2.48 x 10⁻⁸ M.

The pH of a solution is related to the concentration of H+ ions by the equation:

pH = -log[H⁺]

We know that the pH of the solution is 4.48, so we can find the concentration of H+ ions:

[H+] = [tex]10^(^-^p^H^) = 10^(^-^4^.^4^8^) = 3.52 x 10^(^-^5^) M[/tex]

Since the acid is 0.050 dissociated, the concentration of the undissociated acid is:

[HA] = 0.050 M

The dissociation reaction of the acid can be written as:

HA(aq) ⇌ H+(aq) + A-(aq)

The acid dissociation constant Ka is defined as:

Ka = [H+(aq)][A-(aq)]/[HA(aq)]

At equilibrium, the concentration of H+ ions and A- ions is equal to each other, so we can write:

Ka = [H+(aq)]²/[HA(aq)] = (3.52 x 10⁻⁵)²/0.050 = 2.48 x 10⁻⁸ M

Learn more about acid dissociation: https://brainly.com/question/15012972

#SPJ11

use the standard potential values from the data tables to calculate the equilibrium constant for the reaction of solid tin with copper(ii) ion: sn(s) 2 cu2 ⇄ sn2 (aq) 2 cu (aq)

Answers

The equilibrium constant for the reaction of solid tin with copper is 6.5 × 10⁹ .

The reduction process is given as,

Sn + 2 Cu²⁺ ⇄ Sn²⁺ + 2 Cu⁺

Sn → Sn²⁺ + 2e                     E°(Sn/Sn²⁺) = 0.14 V

(Cu²⁺ + e⁻ → Cu⁺) × 2            E°(Cu/Cu⁺) = 0.15 V

-----------------------------------------------------------------------------------------

Sn + 2 Cu²⁺ → Sn²⁺ + 2 Cu⁺

Nernst equation

E cell = E° cell - 0.059/n log Q

At equilibrium,

E cell = 0 Q = Keq

∴ E° cell = 0.059/2 log Keq

(0.29 × 2) / 0.059 = log Keq

9.3 = log Keq

10^9.3 = Keq

By taking antilog,

Keq = 6.5 × 10⁹

Hence, the equilibrium constant for the reaction of solid tin with copper is  

6.5 × 10⁹ .

Learn more about Equilibrium constant from the link given below.

https://brainly.com/question/10038290

#SPJ4

What is the correct assignment of the names of the following aromatic amines? 1-pyrrolidine; Il = pyrimidine;

Answers

The correct name for the aromatic amine "Il = pyrimidine" is simply "pyrimidine."

Pyrimidine is an aromatic heterocyclic compound, which consists of a six-membered ring with two nitrogen atoms at positions 1 and 3.

Pyrimidine is a six-membered heterocyclic ring structure composed of four carbon atoms and two nitrogen atoms.

The nitrogen atoms are located at positions 1 and 3 within the ring. The aromatic nature of pyrimidine arises from the presence of a conjugated π electron system, which contributes to its stability and unique chemical properties.

Pyrimidine is an essential building block in nucleic acids, where it pairs with purines (adenine and guanine) to form the genetic code in DNA and RNA. It plays a critical role in storing and transmitting genetic information and is involved in various biological processes.

To summarize, pyrimidine is an aromatic heterocyclic compound with a six-membered ring containing two nitrogen atoms. It is not an aromatic amine but rather an important component of nucleic acids.

To learn more about compound, refer below:

https://brainly.com/question/13516179

#SPJ11

the conversion of 4-pentanoylbiphenyl to 4-pentanylbiphenyl with hydrazine and potassium hydroxide is an overall of carbon? a. oxidation b. not a redox c. reduction

Answers

The conversion of 4-pentanoylbiphenyl to 4-pentanylbiphenyl with hydrazine and potassium hydroxide is a reduction . Option c. is correct.

Because it involves the addition of hydrogen atoms to the carbon atoms in the molecule, resulting in a decrease in the oxidation state of the carbons. During the reaction, hydrazine acts as a reducing agent and reduces the ketone group (-[tex]CO^-[/tex]) to an alcohol group (-[tex]CH_2OH[/tex]). This reduction results in the conversion of the carbonyl carbon from sp2 hybridization to sp3 hybridization, resulting in the formation of a new C-H bond.

Therefore, the reaction involves a gain of electrons by the carbonyl carbon, and a reduction of the ketone functional group. There is no simultaneous oxidation of any other species in the reaction.

Therefore, the reaction is a reduction and not an oxidation or a non-redox reaction. Hence, option c. is correct.

To know more about Reduction refer here :

https://brainly.com/question/4222605

#SPJ11

the /\g of a certain reaction is - 78.84 kj/mol at 25oc. what is the keq for this reaction?

Answers

The Keq for the reaction can be calculated using the equation ΔG° = -RTlnKeq, where ΔG° is the standard free energy change, R is the gas constant, T is the temperature in Kelvin, and Keq is the equilibrium constant.

In this case, ΔG° is -78.84 kJ/mol, and assuming standard conditions of 25°C (298 K) and 1 atm pressure, we can plug in the values and solve for Keq -78.84 kJ/mol = -8.314 J/K/mol * 298 K * ln Keq ,-78.84 kJ/mol = -24,736 J/mol * ln(Keq ln(Keq) = 78.84 kJ/mol / 24,736 J/mol ,ln(Keq) = -3.186 ,Keq = e^-3.186 ,Keq = 0.041 Therefore, the explanation is that the Keq for this reaction is 0.041.

Convert the given ΔG from kJ/mol to J/mol: -78.84 kJ/mol * 1000 J/kJ = -78840 J/mol, Convert the temperature from Celsius to Kelvin: 25°C + 273.15 = 298.15 K  Use the gas constant, R, in J/(mol·K): R = 8.314 J/(mol·K) ,Rearrange the equation to solve for Keq: ln(Keq) = -ΔG/RT, Substitute the values into the equation: ln Keq = -78840 J/mol / (8.314 J/(mol·K) * 298.15 K, Calculate the value of ln(Keq): ln(Keq) ≈ 31.92 Find the Keq by taking the exponential of the ln(Keq) value: Keq = e^(31.92) ≈ 4.16 x 10^13.
To know more about equilibrium  visit :

https://brainly.com/question/30694482

#SPJ11

Which pieces of equipment are used in the distillation setup utilized in the procedure (check all that apply). Select one or more: Thermometer adapter Round-bottomed flask Distillation head Reflux condenser

Answers

The pieces of equipment used in the distillation setup utilized in the procedure include: a thermometer adapter, a round-bottomed flask, a distillation head, and a reflux condenser.


All these components play essential roles in the distillation process. The round-bottomed flask holds the liquid mixture, the distillation head separates vapor components, the thermometer adapter monitors the temperature, and the reflux condenser cools and condenses the vapors back into liquid form.

Thermometer adapter: This adapter allows for a thermometer to be inserted into the distillation apparatus to monitor the temperature of the distillate. Round-bottomed flask: This flask is used to hold the liquid mixture that is being distilled. It has a rounded shape that allows for more efficient heating and mixing.

Distillation head: This is the main part of the distillation apparatus, which connects the round-bottomed flask to the condenser. It is designed to ensure that the vapor produced during the distillation process is condensed and collected.

Reflux condenser: This is a type of condenser that is used in distillation to condense the vapor back into liquid form. It works by circulating a coolant through a coiled tube, which is surrounded by the vapor.

In summary, the distillation setup typically includes a thermometer adapter, a round-bottomed flask, a distillation head, and a reflux condenser. These pieces of equipment work together to separate a liquid mixture into its individual components through the process of distillation.

To know more about distillation refer here :

https://brainly.com/question/24553469

#SPJ11

Finally, what mass of Na2HPO4 is required? Again, assume a 1. 00 L volume buffer solution.



Target pH = 7. 37


Acid/Base pair: NaH2PO4/Na2HPO4


pKa = 7. 21


[Na2HPO4] > [NaH2PO4]


[NaH2PO4] = 0. 100 M


12. 0 g NaH2PO4 required


[base]/[acid] = 1. 45


[Na2HPO4] = 0. 145 M

Answers

The mass of Na2HPO4 required to prepare a buffer solution with a target pH of 7.37, we need to consider the Henderson-Hasselbalch equation and the acid/base pair involved in the buffer system.

The Henderson-Hasselbalch equation is given by:

pH = pKa + log([base]/[acid])

Given:

Target pH = 7.37

pKa = 7.21

[base]/[acid] = 1.45

To achieve the target pH, we need to calculate the concentration of Na2HPO4 ([base]) and NaH2PO4 ([acid]) in the buffer solution.

Using the Henderson-Hasselbalch equation, we can rearrange it to solve for [base]/[acid]:

[base]/[acid] = 10^(pH - pKa)

Substituting the given values:

[base]/[acid] = 10^(7.37 - 7.21)

[base]/[acid] = 1.45

We are given [NaH2PO4] = 0.100 M, which represents [acid]. Therefore, we can calculate [base] as:

[base] = 1.45 × [acid]

[base] = 1.45 × 0.100 M

[base] = 0.145 M

Now, we need to calculate the mass of Na2HPO4 required to obtain a concentration of 0.145 M.

Molar mass of Na2HPO4 = 22.99 g/mol + 22.99 g/mol + 79.97 g/mol + 16.00 g/mol + 16.00 g/mol = 157.94 g/mol

Mass = moles × molar mass

Mass = 0.145 mol × 157.94 g/mol

Mass = 22.89 g

Therefore, approximately 22.89 grams of Na2HPO4 is required to prepare the buffer solution with a 1.00 L volume and a target pH of 7.37.

Learn more about Henderson-Hasselbalch equation here

https://brainly.com/question/31495136

#SPJ11

calculate the amount of heat required to heat 725 g of water from 22.1oc to 100.0oc. (swater = 4.184jg-1oc-1) A. 236.3 kJB. 15.3 kJC. 0.51 kJD. -64.1 kJ

Answers

The amount of heat required to heat 725 g of water from 22.1oC to 100.0oC is approximately 236.3 kJ.


To calculate the amount of heat required to heat 725 g of water from 22.1oC to 100.0oC, we can use the formula:
Q = m × c × ΔT
where Q is the amount of heat, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature.

Substituting the given values, we get:
Q = 725 g × 4.184 J/g.oC × (100.0oC - 22.1oC)
Q = 725 g × 4.184 J/g.oC × 77.9oC
Q = 236337.08 J or 236.3 kJ (rounded to one decimal place)

Therefore, the amount of heat required to heat 725 g of water from 22.1oC to 100.0oC is approximately 236.3 kJ. This is a significant amount of heat and highlights the importance of understanding the properties of water when studying thermodynamics and heat transfer.

To know more about heat capacity of water visit:

https://brainly.com/question/24130199

#SPJ11

what is the molar solubility of lead sulfate in 1.0 × 10–3 m na2so4? solubility product constant pbso4 ksp = 1.8 × 10–8 (a) 1.8 × 10–2 (c) 1.8 × 10–5 (b) 1.3 × 10–4 (d) 5.0 × 10–6

Answers

The molar solubility of lead sulfate in 1.0 × 10⁻³ m Na2So4 is (c) 1.8 × 10⁻⁵

The molar solubility of a compound is defined as the amount (in moles) of the compound that can dissolve in one liter of a solution. To determine the molar solubility of PbSO₄, we need to calculate the concentration of Pb2+ ions in the presence of 1.0 × 10⁻³ M Na₂SO₄.

The solubility product constant (Ksp) expression for lead sulfate (PbSO₄) is:

PbSO₄ (s) ↔ Pb₂+ (aq) + SO₄⁻²(aq)

The Ksp expression can be written as:

Ksp = [Pb₂][SO4⁻²]

In the presence of 1.0 × 10–3 M Na₂SO₄, the concentration of SO₄⁻² is already given. Therefore, we need to calculate the concentration of Pb₂+ ions in order to determine the molar solubility of PbSO₄.

Using the Ksp expression, we can write:

Ksp = [Pb₂+][SO₄²⁻]

1.8 × 10^-8 = [Pb₂+][SO₄²⁻]

[Pb₂+] = 1.8 × 10^-8 / [SO₄²⁻]

[Pb₂+] = 1.8 × 10^-8 / 0.001

[Pb₂+] = 1.8 × 10^-5 M

Therefore, the molar solubility of PbSO4 in 1.0 × 10⁻³ M Na₂SO₄ solution is 1.8 × 10⁻⁵ M.

Therefore, the correct answer is (c) 1.8 × 10⁻⁵.

To learn more about molar solubility here

https://brainly.com/question/31588030

#SPJ4

write the net ionic equation for the acid‑base reaction. include physical states. hclo4(aq) koh(aq)⟶h2o(l) kclo4(aq)

Answers

The net ionic equation for the acid-base reaction between perchloric acid (HClO₄) and potassium hydroxide (KOH) is: H⁺(aq) + OH⁻(aq) ⟶ H₂O(l)

The HClO₄ dissociates in water to form H⁺ ions and ClO₄⁻ ions, while KOH dissociates to form K⁺ ions and OH⁻ ions. In the reaction, the H⁺ ion from the acid reacts with the OH⁻ ion from the base to form water.

While the K⁺ ion and ClO₄⁻ ion remain in solution and are spectator ions. Therefore, they are not included in the net ionic equation.

It's worth noting that the perchloric acid (HClO₄) and potassium hydroxide (KOH) are both strong acids and bases, respectively, meaning that they completely dissociate in water.

This makes the reaction a neutralization reaction, which involves the combination of an acid and a base to form water and a salt. In this case, the salt formed is KClO₄.

To know more about perchloric acid, refer here:

https://brainly.com/question/30780596#

#SPJ11

Calcium phosphate used in fertilizers can be


made in the reaction described by the fol-


lowing equation:


2H3PO4(aq) + 3Ca(OH)(aq) —


Ca3(PO4)2(s) + 6H2O(aq)


What mass in grams of each product would


be formed if 7. 5 L of 5. 00 M phosphoric acid


reacted with an excess of calcium hydroxide?

Answers

To determine the mass of each product formed in the reaction between 7.5 L of 5.00 M phosphoric acid and an excess of calcium hydroxide, the stoichiometry of the reaction needs to be considered. The molar ratio between the reactants and products can be used to calculate the mass of each product.

The balanced equation for the reaction is [tex]2H_3PO_4(aq) + 3Ca(OH)_2(aq)[/tex] → [tex]Ca_3(PO_4)_2(s) + 6H_2O(aq).[/tex]

First, we need to calculate the number of moles of phosphoric acid used. To do this, we multiply the volume (7.5 L) by the molarity (5.00 M) to obtain the moles of H3PO4: 7.5 L × 5.00 mol/L = 37.5 mol.

Based on the stoichiometry of the reaction, we know that for every 2 moles of [tex]H_3PO_4[/tex], 1 mole of [tex]Ca_3(PO_4)_2[/tex] is formed. Therefore, the moles of [tex]Ca_3(PO_4)_2[/tex] formed can be calculated as 37.5 mol.

To calculate the mass of [tex]Ca_3(PO_4)_2[/tex] formed, we need to know the molar mass of [tex]Ca_3(PO_4)_2[/tex], which is 310.18 g/mol. Therefore, the mass of [tex]Ca_3(PO_4)_2[/tex] formed is 18.75 mol × 310.18 g/mol = 5,801.25 g.

Since water is also a product, we can calculate the moles of water formed as 6 times the moles of [tex]Ca_3(PO_4)_2[/tex]: 18.75 mol [tex]Ca_3(PO_4)_2[/tex] × 6 mol H2O / 1 mol [tex]Ca_3(PO_4)_2[/tex] = 112.5 mol [tex]H_2O[/tex].

The molar mass of water is 18.015 g/mol, so the mass of water formed is 112.5 mol × 18.015 g/mol = 2,023.12 g.

In summary, when 7.5 L of 5.00 M phosphoric acid reacts with an excess of calcium hydroxide, approximately 5,801.25 grams of calcium phosphate [tex]Ca_3(PO_4)_2[/tex] and 2,023.12 grams of water would be formed.

Learn more about molar ratio here:

https://brainly.com/question/30930200

#SPJ11

Each marble bag sold by dante’s marble company contains 5 yellow marbles for every 8 orange marbles. If a bad has 35 yellow marbles, how many marbles does it contain?

Answers

The bag contains 56 marbles. (35 yellow marbles can be expressed in the ratio as 5 yellow marbles for every 8 orange marbles.)

If a bag contains 35 yellow marbles, we can determine the total number of marbles in the bag using the given ratio. According to the ratio provided, for every 5 yellow marbles, there are 8 orange marbles. We can set up a proportion to find the total number of marbles in the bag.

Let x be the total number of marbles in the bag. The proportion can be written as: 5 yellow marbles / 8 orange marbles = 35 yellow marbles / x

Cross-multiplying, we get: 5x = 35 * 8

5x = 280

Dividing both sides by 5, we find: x = 56

Therefore, the bag contains 56 marbles.

According to the given ratio of 5 yellow marbles for every 8 orange marbles, we can set up a proportion to find the total number of marbles in the bag. By cross-multiplying, we find that 5 times the total number of marbles is equal to 35 times 8. Simplifying the equation, we get 5x = 280. Dividing both sides of the equation by 5, we find that the total number of marbles in the bag, represented by x, is equal to 56. Therefore, the bag contains 56 marbles in total. The given information of having 35 yellow marbles helps us determine the overall quantity of marbles in the bag using the provided ratio.

LEARN MORE ABOUT marbles here: brainly.com/question/32534055

#SPJ11

A typical airbag in a car is 139 liters. How many grams of sodium azide needs to be loaded into an airbag to fully inflate it at standard temperature and pressure?

Answers

Approximately 0.268 grams of sodium azide needs to be loaded into the airbag to fully inflate it at standard temperature and pressure.

To calculate the amount of sodium azide required to inflate an airbag, we first need to understand the chemical reaction that takes place. The sodium azide reacts with the potassium nitrate inside the airbag to produce nitrogen gas, which inflates the bag. The reaction is as follows:

[tex]2NaN_3 + 2KNO_3 \rightarrow3N_2 + 2Na_2O + K_2O[/tex]

From the balanced chemical equation, we can see that 2 moles of sodium azide (NaN3) react to produce 3 moles of nitrogen gas (N2).

The volume of the airbag is given as 139 liters, which is equivalent to 0.139 cubic meters. At standard temperature and pressure (STP), the volume of one mole of gas is 22.4 liters. Therefore, the number of moles of nitrogen gas required to fill the airbag is:

n = V/STP = 0.139/22.4 = 0.00620 moles

To produce 3 moles of nitrogen gas, we need 2 moles of sodium azide. Therefore, the number of moles of sodium azide required is:

n(NaAzide) = (2/3) x n(N2) = (2/3) x 0.00620 = 0.00413 moles

The molar mass of sodium azide is 65 grams/mole. Therefore, the mass of sodium azide required to inflate the airbag is:

Mass = n(NaAzide) x Molar mass = 0.00413 x 65 = 0.268 grams

For more such questions on sodium azide

https://brainly.com/question/28379904

#SPJ11

To fully inflate an airbag, about 50 grams of sodium azide is required. This chemical is stored in the airbag and when the sensor detects a crash, it is ignited, producing nitrogen gas which inflates the bag.

Sodium azide is a highly toxic and explosive substance, and must be handled with great care during the manufacturing and installation of airbags. Once the airbag is deployed, the nitrogen gas produced by the reaction of sodium azide with a metal oxide is harmless and rapidly dissipates into the atmosphere.It is important to note that tampering with an airbag or attempting to remove sodium azide from an airbag is extremely dangerous and should never be attempted. Only trained professionals should handle airbag installation and removal.

Learn more about sodium here:

brainly.com/question/28379904

#SPJ11

How many grams of ammonia are consumed in the reaction of 103.0 g of lead(ii) oxide?

Answers

Approximately 15.7 grams of ammonia are consumed in the reaction of 103.0 g of lead(II) oxide.

To answer this question, we need to first write the balanced chemical equation for the reaction of lead(II) oxide with ammonia:

PbO + 2NH3 → Pb(NH3)2O

From this equation, we can see that 1 mole of lead(II) oxide reacts with 2 moles of ammonia. We can use the molar mass of lead(II) oxide to convert the given mass of 103.0 g into moles:

103.0 g PbO × (1 mole PbO/223.2 g PbO) = 0.462 moles PbO

Since 1 mole of PbO reacts with 2 moles of NH3, we can use stoichiometry to calculate the amount of NH3 consumed in the reaction:

0.462 moles PbO × (2 moles NH3/1 mole PbO) = 0.924 moles NH3

Finally, we can convert moles of NH3 to grams using its molar mass:

0.924 moles NH3 × (17.03 g NH3/1 mole NH3) = 15.62 g NH3

Therefore, 15.62 grams of ammonia are consumed in the reaction of 103.0 grams of lead(II) oxide.
To determine how many grams of ammonia are consumed in the reaction of 103.0 g of lead(II) oxide, we need to use stoichiometry. First, we need a balanced chemical equation for the reaction:

PbO (lead(II) oxide) + 2 NH3 (ammonia) → Pb(NH2)2 (lead(II) amide) + H2O (water)

Now, follow these steps:

1. Calculate the molar mass of lead(II) oxide (PbO): 207.2 g/mol (Pb) + 16.0 g/mol (O) = 223.2 g/mol.
2. Determine the moles of PbO: 103.0 g / 223.2 g/mol ≈ 0.461 mol PbO.
3. Use the stoichiometry from the balanced equation to find the moles of NH3: 0.461 mol PbO × (2 mol NH3 / 1 mol PbO) = 0.922 mol NH3.
4. Calculate the grams of NH3: 0.922 mol NH3 × 17.0 g/mol (NH3) ≈ 15.7 g.

To know more about chemical equation visit:-

https://brainly.com/question/30087623

#SPJ11

calculate the enthalpy change for the following reaction given: dc-h= 414 kj/mol, dcl-cl=243 kj/mol, dc-cl=339 kj/mol, dh-cl=431 kj/mol. ch4 cl2 → ch3cl hcl

Answers

To calculate the enthalpy change for the given reaction: CH4 + Cl2 → CH3Cl + HCl, we will use the bond enthalpies provided (DC-H, DCl-Cl, DC-Cl, DH-Cl). We'll follow these steps:



1. Determine the bonds broken in the reactants.


2. Determine the bonds formed in the products.


3. Calculate the total enthalpy change for the reaction.

Step 1: Bonds broken in reactants:


- 1 DC-H bond in CH4 (414 kJ/mol)


- 1 DCl-Cl bond in Cl2 (243 kJ/mol)

Step 2: Bonds formed in products:


- 1 DC-Cl bond in CH3Cl (339 kJ/mol)


- 1 DH-Cl bond in HCl (431 kJ/mol)


Step 3: Calculate the total enthalpy change for the reaction:
Enthalpy change = (Σ bond enthalpies of bonds broken) - (Σ bond enthalpies of bonds formed)


Enthalpy change = (414 kJ/mol + 243 kJ/mol) - (339 kJ/mol + 431 kJ/mol)


Enthalpy change = (657 kJ/mol) - (770 kJ/mol)


Enthalpy change = -113 kJ/mol


The enthalpy change for the given reaction CH4 + Cl2 → CH3Cl + HCl is -113 kJ/mol.

To know more about CH4 + Cl2 → CH3Cl + HCl refer here

https://brainly.com/question/24141694#

#SPJ11

given this reaction: 2nh3(g)<--->n2(g) 3h2(g) where delta g rxn= 16.4kj/mol; delta h rxn=91.8 kj/mol. the standard molar enthalpy of formation in KJmol −1 of NH3​ (g) is

Answers

The standard molar enthalpy of formation of NH3(g) is 45.9 kJ/mol.

The standard molar enthalpy of formation of NH3(g) can be calculated using the given values of delta G_rxn and delta H_rxn for the reaction 2NH3(g) <---> N2(g) + 3H2(g).

Using the relation ΔG = ΔH - TΔS, we can first calculate the standard molar entropy change (ΔS) for the reaction. Given that ΔG_rxn = 16.4 kJ/mol and ΔH_rxn = 91.8 kJ/mol, we can rearrange the equation to ΔS = (ΔH - ΔG)/T. Assuming standard conditions (T = 298.15 K), we can calculate ΔS as:

ΔS = (91.8 kJ/mol - 16.4 kJ/mol) / 298.15 K = 0.253 kJ/mol*K

Now, we can use the standard entropy change to calculate the standard molar enthalpy of formation for NH3(g). For the given reaction, the change in the number of moles of gas is:

Δn_gas = 3 - 2 = 1

The standard molar enthalpy of formation of NH3(g) can be expressed as:

ΔH_formation(NH3) = ΔH_rxn / 2 - Δn_gas * R * T * ΔS

Using the given values and the gas constant R = 8.314 J/mol*K, we can calculate the standard molar enthalpy of formation for NH3(g) as:

ΔH_formation(NH3) = (91.8 kJ/mol) / 2 - 1 * (8.314 J/mol*K) * 298.15 K * (0.253 kJ/mol*K) = 45.9 kJ/mol

Therefore, the standard molar enthalpy of formation of NH3(g) is 45.9 kJ/mol.

Know more about Standard molar enthalpy of formation here:

https://brainly.com/question/10583725

#SPJ11

Other Questions
3. let a = {(r, s) | r and s are regular expressions and l(r) l(s)}. show that a is decidable. definiion of relativer contribution that an individuals makes to the gene pool Scenes by_____________added to the attraction to the West felt by many Americans.a. Lincoln Steffensb. Caravaggioc. Albert Bierstadtd. Francis Bellamy I NEED HELP URGENTLY!! 25points Find a Maclaurin series for f(x).(Use(2n)!2nn!(2n1)for 1 3 5 (2n 3).)f(x) =x1 + t2dt0f(x) = x +x36+[infinity]n = 2 consider the reaction: 6() 2() 23(). if 12.3 g of li is reacted with 33.6 g of n2, how many moles of li3n can be theoretically p Calculate the angular separation of two Sodium lines given as 580.0nm and 590.0 nm in first order spectrum. Take the number of ruled lines per unit length on the diffraction grating as 300 per mm?(A) 0.0180(B) 180(C) 1.80(D) 0.180 determine the number of ground connections for a wire bonded packaging structure In a survey conducted among some people of a community, 650 people like meat, 550 people don't like meat, 480 don't like fish and 250 like meat but not fish. (i) How many people were surveyed? (ii) How many people like fish but not meat? (iii) How many people are vegetarians? Determine the torque about the origin. Counterclockwise is positive.(include units with answer)y (4.8,4.4)m(2.7,2.3)m Instructions: Find the missing probability.P(B)=1/2P(A|B)=11/25P(AandB)= On October 31, the stockholders' equity section of Crane Company's balance sheet consists of common stock $552,000 and retained 402,000. Crane is considering the following two courses of action:(1) Declaring a 5% stock dividend on the 92,000 $ 6 par value shares outstanding(2) Effecting a 2-for-1 stock split that will reduce par value to $3 per share. A fair 10-sided die is rolled.What is the probability that the number is even or greater than 5?Give your answer as a fraction in its simplest form. Abigails treachery toward the other characters in the play serves to 50 POINTS!!!!Joe and Hope were both asked to factor the following polynomial completely. Is one of them correct? Both of them? Neither of them? Explain what each of them did that was correct and/or incorrect. EXPLAIN FOR BOTH JOE AS WELL AS HOPE! Given a parallel runtime of 20s on 12 threads and a serial runtime of 144s, what is the efficiency in percent Calculate the angular velocity of Jupiter and the distance a satellite needs to be from Jupiter to attain a geostationary orbit around Jupiter; Jupiter's period around its own axis is 9 hours, 55 minutes, and 29. 69 seconds. Jupiter's mass is 1. 898 10^27 kg linux helpYou're the IT administrator for a small corporate network. You've set up an internal web server to do some testing. You would like to obscure the server some by changing the default ports.In this lab, your task is to:a.Use ss -lt and netstat to determine which ports the web server is running on.b.Modify the ports.conf file to change port 80 to 81 and port 8080 to 8081.c.Restart the web server to implement the port change.d.Use netstat and ss -lt to verify that the server is listening on the new ports. A statistics professor finds that when she schedules an office hour for student help, an average of 1.9 students arrive. Find the probability that in a randomly selected office hour, the number of student arrivals is 7. Need help asap due today