Answer: 64 fluid ounces
Step-by-step explanation:
1 pint=16 fl oz
16*4=64
If events A and B are
independent, what must be true?
Answer:
B. P(A|B) = P(A).
Step-by-step explanation:
Question
If a and b are independent events then it must be true that P(A|B)=P(A). TRUE OR FALSE.
Answer
The correct answer is:True.Explanation:P(A|B) is read as “the probability of A given B.” If A and B are independent, this means that B has no effect on A. This means the probability of A given B would be the same as the probability of A, since B has no effect.This means that P(A|B) = P(A).
Answer:
B. P(A|B) = P(A)
Step-by-step explanation:
I got it right on edge 2023 :)
a vegetable garden and he's around the path of seemed like a square that together are 10 ft wide. The path is 2 feet wide. Find the total area of the vegetable garden and path
Answer:
Garden: 36 square feet
Path: 64 square feet
Step-by-step explanation:
Let's first find the total area. The total area will be 100 square feet since the side length is 10. Since the path is 2 feet wide and on all sides, that means that the inside square will have a side length of 6. That means that the vegetable garden is 36 square feet. The path will be 100 - (the garden), and the garden is 36 square feet, which means the outer path will be 64.
Try this 33-33+33×33÷0
Answer:
the answer is
Step-by-step explanation:
1089 first divide then multiply both numbers after that substract the numbers
Answer:
the answer is error
hope it helps
Find the SURFACE AREA of the composite figure below
ASAP
Answer:
248.26 cm²
Step-by-step explanation:
Surface area of the composite figure = (surface area of cuboid + surface area of hemisphere) - 2(base area of hemisphere)
Surface area of cuboid = [tex] 2(lw + lh + hw) [/tex]
Where,
l = 10 cm
w = 5 cm
h = 4 cm
Plug in the values into the formula:
[tex] SA = 2(10*5 + 10*4 + 4*5) [/tex]
[tex] SA = 2(50 + 40 + 20) [/tex]
[tex] SA = 2(110) = 220 cm^2 [/tex]
Surface area of hemisphere = 3πr²
Where,
π = 3.14
r = 3 cm
SA of hemisphere = 3*3.14*3² = 3*3.14*9 = 84.78 cm²
Base area of hemisphere = πr²
BA = 3.14*3² = 3.14*9 = 28.26 cm²
Surface area of the composite shape = (220 + 84.78) - 2(28.26)
= 304.78 - 56.52
SA = 248.26 cm²
A diamond ring was reduced from $999.99 to S789.99. Find the percent reduction in the price. Round the answer to the nearest tenth of a percent, if
necessary.
The reduction in price is?
Answer:
21%
Step-by-step explanation:
Percentage reduction is (999.99-789.99)/(999.99)=21%
In a lottery game, a player picks 6 numbers from 1 to 50. If 5 of the 6 numbers match those drawn, the player wins second prize. What is the probability of winning this prize
Answer:
1/254,251,200 Or 0.000000003933118
Step-by-step explanation:
1/50x1/49x1/48x1/47x1/46=1/254,251,200
You got 8 correct out of 9 points.
A recipe calls for 2 tablespoons of sugar for every 7 tablespoons of flour. If you plan on tripling the recipe what is the ratio of
sugar to flour?
-0)
A)
2 to 7
B)
2 to 21
5 to 10
DY
5 to 7
Answer:
It is still 2 to 7
Step-by-step explanation:
It is still 2 to 7 because if you triple the recipe, it will become 6 to 21 which still simplifies to 2 to 7.
Take your time! :) Not important, but I would like to know, I'm writing flashcards so I can remember when I start back in school. Can you explain how to get the LCM of two numbers,GCF of two numbers, and what's the difference?
Answer:
The LCM of two numbers is the least common multiple. You want to find the least possible number that is divisible by the two numbers. So, you can list the factors of the two numbers. If there are factors that are repeated, put the repeated factors to the side. With the remaining factors, multiply the factors by each other and the repeated factors.
For example, let's try to find the least common multiple between 10 and 15.
Factors of 10: 2 * 5
Factors of 15: 3 * 5
The repeated factor is 5.
2 and 3 are left over. 2 * 3 = 6. 6 * 5 = 30. So, that is the least common multiple.
The GCF of two numbers is the greatest common factor. You want to find the greatest factor that is included in both numbers. So, again, you can list the factors of the two numbers and find the greatest factor that is repeated between the two numbers.
For example, let's try to find the greatest common factor between 30 and 45.
Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30
Factors of 45: 1, 3, 5, 9, 15, 45
Between the two numbers, shared factors are 1, 3, 5, and 15. So, the greatest common factor is 15.
Hope this helps!
Round 1, 165.492 to the nearest hundredth.
Answer:
1, 165.500
Step-by-step explanation:
1, 165.492 rounded to the nearest hundredth is 1, 165.500 because the hundredth space in the decimal is 5 or above, so the whole decimal gets rounded to the nearest hundred, which in this case, would be .500.
165.492 is the correct answer
These figures are similar. The area of one is given. Find the area of the other. PLZ HELP Plz ps the answer is not 12
==================================================
Explanation:
Dividing the side lengths, the scale factor is 6/3 = 2. This means the larger figure has a side length twice as long compared to its smaller counterpart.
How can we use this to figure out how the areas are connected? By simply squaring the scale factor to get 2^2 = 2*2 = 4, then we divide the larger area over 4 to get 24/4 = 6.
The longer side is 2 times longer
The larger area is 4 times larger
--------------------
Let's say we had a 3 by 3 square. It's area would be 9.
Also, let's say we had a 6 by 6 square. It's area is 36.
Notice the ratio of areas is 36/9 = 4, so the larger square is 4 times larger than the smaller. This 4 matches with what we got earlier.
----------------------
Another example:
square A is 7 by 7 with area 49
square B is 21 by 21 with area 441
ratio of areas is 441/49 = 9, which is exactly equal to 3^2, and the 3 comes from the ratio of the sides 21/7 = 3.
------------------------
So in short, you find the linear scale factor by dividing the sides. Then you square the result to get the area scale factor, which you use to find the smaller area.
linear scale factor = (new side)/(old side)
area scale factor = (linear scale factor)^2
smaller area = (larger area)/(area scale factor)
if f(n) = 6-2n, find f(-1)
Answer:
8
Step-by-step explanation:
f(n)= 6-2n
f(-1) = 6- 2(-1)
= 6+2
=8
A computer store sells new computers for $500 and refurbished computers for
$200. In March, the store sold 20 computers for $6,400, meaning they sold ?
refurbished computers.
Answer:
no of new computers sold : 8
no. of refurbished computer sold : 12
Step-by-step explanation:
Let the no. of new computers sold be x
let the no. of refurbished computers sold be y
Given
In March, the store sold 20 computers
x + y = 20
y = 20-x ----- equation 2
selling price of new computer = $500
selling price of x new computer = 500*x = 500x
selling price of refurbished computer = $200
selling price of y refurbished computer = 200*y = 200y
Total selling price of x new computer and y refurbished computers = 500x+200y
given that
total prioce of computer is $6400
thus
500x+200y = 6400
using y = 20-x from equation 2
500x+200(20-x) = 6400
=> 500x+ 4000 - 200x = 6400
=> 300x = 6400 - 4000 = 2400
=> x = 2400/300 = 8
Thus,
no of new computers sold = 8
no. of refurbished computer sold = 20 -8 = 12
The multiplicative inverse of – 1 in the set {-1,1}is
Answer: The multiplicative inverse of – 1 in the set {-1,1} is -1.
Step-by-step explanation:
In algebra, the multiplicative inverse of a number(x) is a number (say y) such that
[tex]x\times y=1[/tex] [product of a number and its inverse =1]
if x= -1, then
[tex]-1\times y=1\Rightarrow\ y=-1[/tex]
That means , the multiplicative inverse of -1 is -1 itself.
Hence, the multiplicative inverse of – 1 in the set {-1,1} is -1.
Marnie solved the proportion 150/170=x/510 to find the value of X
Answer:
x = 450
510/170 = 3
x/150 = 3
x = 450
Answer:
X=450 is the answer.
Step-by-step explanation:
The length of a rectangle is five times the width if the area of the rectangle is 180 in.² then find the length and the width
Let breadth be x
Length=5x
ATQ
[tex]\\ \sf \longmapsto Area=Length\times breadth[/tex]
[tex]\\ \sf \longmapsto 5x(x)=180[/tex]
[tex]\\ \sf \longmapsto 5x^2=180[/tex]
[tex]\\ \sf \longmapsto x^2=\dfrac{180}{5}[/tex]
[tex]\\ \sf \longmapsto x^2=36[/tex]
[tex]\\ \sf \longmapsto x=\sqrt{36}[/tex]
[tex]\\ \sf \longmapsto x=6in[/tex]
Width=6inLength=6×5=30inIf a cube has an edge of 2 feet. The edge is increasing at the rate of 6 feet per minute. How would i express the volume of the cube as a function of m, the number of minutes elapsed. V(m)= ??
Answer:
v(m) = 8 + 48m+ 180m² +216m³
Step-by-step explanation:
Let's first of all represent the edge of the the cube as a function of minutes.
Initially the egde= 2feet
As times elapsed , it increases at the rate of 6 feet per min, that is, for every minute ,there is a 6 feet increase.
Let the the egde be x
X = 2 + 6(m)
Where m represent the minutes elapsed.
So we Al know that the volume of an edge = edge³
but egde = x
V(m) = x³
but x= 2+6(m)
V(m) = (2+6m)³
v(m) = 8 + 48m+ 180m² +216m³
The volume of cube as function of m is, [tex]V(m)=72m[/tex]
Let us consider that edge of cube is a feet.
Since, The edge is increasing at the rate of 6 feet per minute.
[tex]\frac{da}{dt}=6feet/min.[/tex]
Volume of cube , V = [tex]a^{3}[/tex]
[tex]\frac{dV}{dt} =3a^{2} \frac{da}{dt}[/tex]
Substituting the value of da/dt in above equation.
We get, [tex]\frac{dV}{dt}=3a^{2}*(6) =18a^{2} \\\\dV=18a^{2}dt[/tex]
Integrating on both side.
[tex]V=18a^{2}t[/tex]
Since, number of minutes elapsed is m.
Substitute , t = m and a = 2 feet in above equation.
We get, [tex]V=18(2)^{2}*m=72m[/tex]
Thus, the volume of cube as function of m is, [tex]V(m)=72m[/tex]
Learn more:
https://brainly.com/question/14002029
A car dealer recommends that transmissions be serviced at 30,000 miles. To see whether her customers are adhering to this recommendation, the dealer selects a random sample of 40 customers and finds that the average mileage of the automobiles serviced is 30,456. The standard deviation of the population is 1684 miles. By finding the P-value, determine whether the owners are having their transmissions serviced at 30,000 miles. Use α = 0.10. Are the owners having their transmissions serviced at 30,000 miles?
Answer:
No, the owners are not having their transmissions serviced at 30,000 miles.
Step-by-step explanation:
We are given that a car dealer recommends that transmissions be serviced at 30,000 miles.
The car dealer selects a random sample of 40 customers and finds that the average mileage of the automobiles serviced is 30,456. The standard deviation of the population is 1684 miles.
Let [tex]\mu[/tex] = true average mileage of the automobiles serviced.
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 30,000 miles {means that the owners are having their transmissions serviced at 30,000 miles}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu\neq[/tex] 30,000 miles {means that the owners are having their transmissions serviced at different than 30,000 miles}
The test statistics that will be used here is One-sample z-test statistics because we know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\bar X[/tex] = sample average mileage serviced = 30,456 miles
[tex]\sigma[/tex] = population standard deviation = 1684 miles
n = sample of customers = 40
So, the test statistics = [tex]\frac{30,456-30,000}{\frac{1684}{\sqrt{40} } }[/tex]
= 1.71
The value of z-statistics is 1.71.
Also, the P-value of the test statistics is given by;
P-value = P(Z > 1.71) = 1 - P(Z [tex]\leq[/tex] 1.71)
= 1 - 0.9564 = 0.0436
For the two-tailed test, the P-value is calculated as = 2 [tex]\times[/tex] 0.0436 = 0.0872.
Since the P-value of our test statistics is less than the level of significance as 0.0872 < 0.10, so we have sufficient evidence to reject our null hypothesis as the test statistics will fall in the rejection region.
Therefore, we conclude that the owners are having their transmissions serviced at different than 30,000 miles.
Which polynomial represents the sum below?
Answer:
The sum is represented by the polynomial:
[tex]5\,x^9+2 \,x^7+13\,x+4[/tex]
Step-by-step explanation:
Recall that polynomials are added by combining like terms. The only like terms in this addition are: 5 x and 8 x which added render: 13 x. therefore, the addition of these polynomials renders;
[tex]5\,x^9+2 \,x^7+13\,x+4[/tex]
Which of the following correlation values represents a perfect linear relationship between two quantitative
variables? Select all that apply.
A. 0
B. 9
c. -1
D. 1
E. .5
Answer:
C. -1
D. 1
Step-by-step explanation:
A perfect linear relationship is indicated by a correlation with a magnitude of 1. The sign of the correlation coefficient is the sign of the slope of the line describing the relationship. It may be positive or negative.
The appropriate choices are ...
C. -1
D. 1
Answer:
c=-1
d=1
Step-by-step explanation:
n a genetics experiment on peas, one sample of offspring contained 372 green peas and 35 yellow peas. Based on those results, estimate the probability of getting an offspring pea that is green. Is the result reasonably close to the value of 3 4 that was expected?
Complete Question
In a genetics experiment on peas, one sample of offspring contained 372 green peas and 35 yellow peas. Based on those results, estimate the probability of getting an offspring pea that is green. Is the result reasonably close to the value of 3/4 that was expected?
Answer:
The probability is [tex]P(g) = 0.9140[/tex]
No it is not close to the probability expected
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 372 + 35= 407[/tex]
The number of green peas is [tex]n_g = 372[/tex]
The number of yellow peas is [tex]n_y = 35[/tex]
The probability of getting an offspring pea that is green is mathematically represented as
[tex]P(g) = \frac{n_g}{n}[/tex]
substituting values
[tex]P(g) = \frac{372}{ 407}[/tex]
[tex]P(g) = 0.9140[/tex]
The expected probability is [tex]\frac{3}{4} = 0.75[/tex]
But what we got is [tex]P(g) = 0.9140[/tex]
So we can say that the value obtained is not equal to the expected value
Stefan rode 32.95 miles.
Ben rode 25 4/5 miles. How many more miles did stefan ride than ben?
Answer:
7.15 miles
Step-by-step explanation:
4/5 of a mile is equivalent to .8 miles.
32.95
-25.8
7.15
Answer:
Step-by-step explanation:
39.95 - 25.80 = 7.15 miles
PLEASE HELP!!!! It’s urgent
Answer:
(-1,4)
Step-by-step explanation:
The interval in which the function is decreasing is (-1, 4)
Answer:
The domain of a function is the set of all possible inputs for the function.
Using the table provided, the set of all possible inputs is the interval [-6 ; 4].
The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain. In plain English, the definition means: The range is the resulting y-values we get after substituting all the possible x-values.
Using the table provided, the range is estimated on the interval [-10;20]
The y-intercept is the value on the Y-axis where the function crosses the Y-axis.
Using the table provided, the function crosses the Y-axis for f(0)=18 so for the value y = 18 in the table.
The x-intercept is the value on the X-axis where the function crosses the X-axis.
It happens twice, for f(-6)=0 and f(3)=0.
We estimate the Maximum to be 20, and the Minimum -10.
The function is positive over the interval [-6, 3], and negative over (3;4]
The function is decreasing approximately at f(-1)=20 so at the estimated interval (-1;4]
How does the multiplicity of a zero affect the graph of the polynomial function?
Select answers from the drop-down menus to correctly complete the statements
The zeros of a ninth degree polynomial function are 1 (multiplicity of 3), 2, 4, and 6 (multiplicity of 4).
The graph of the function will cross through the x-axis at only
The graph
will only touch (be tangent to) the x-us at
the x-axis
At the zero of 2, the graph of the function will choose...
Answer:
Step-by-step explanation:
Let the equation of a polynomial is,
[tex]y=(x-a)^2(x-b)^1(x-c)^3[/tex]
Zeroes of this polynomial are x = a, b and c.
For the root x = a, multiplicity of the root 'a' is 2 [given as the power of (x - a)]
Similarly, multiplicity of the roots b and c are 1 and 3.
Effect of multiplicity on the graph,
If the multiplicity of a root is even then the graph will touch the x-axis and if it is odd, graph will cross the x-axis.
Therefore, graph will cross x -axis at x = b and c while it will touch the x-axis for x = a.
In this question,
The given polynomial is,
[tex]y=(x-1)^3(x-2)^1(x-4)^1(x-6)^4[/tex]
Degree of the polynomial = 3 + 1 + 1 + 4 = 9
The graph of the function will cross through the x-axis at x = 1, 2, 4 only, The graph will touch to the x-axis at 6 only.
At the zero of 2 , the graph of the function will CROSS the x-axis.
Use the number line below, where RS = 6y + 2, ST = 3y + 7, and RT = 14y - 11.
a. What is the value of y?
b. Find RS, ST, and RT.
Answer:
a) y = 4
b) RS = 26, ST = 19, RT = 45
Step-by-step explanation:
From the line given, the following vector equation is true, RS + ST = RT since R, S and T lies in the same straight line.
Given RS = 6y + 2, ST = 3y + 7, and RT = 14y - 11
On substituting this values into the equation above we will have;
6y+2+(3y+7) = 14y-11
6y+2+3y+7 = 14y-11
Collect the like terms
6y+3y-14y = -11-7-2
9y-14y = -20
-5y = -20
y = 20/5
y = 4
Since RS = 6y + 2
RS = 6(4)+2
RS = 24+2
RS = 26
ST = 3y + 7
ST = 3(4)+7
ST = 12+7
ST = 19
Also, RT = 14y - 11
RT = 14(4)-11
RT = 56-11
RT = 45
Which equation is represented by the graph below?
Answer:
Hello,
Answer C
Step-by-step explanation:
Since ln(1)=0
if x=1 then y=4 ==> y=ln(x)+4
y=ln(x) is translated up for 4 units.
Jaime went to the mall with $42. If he bought a T-shirt and had $18 left, how much did the T-shirt cost Jaime in dollars?
Answer:
$24
Step-by-step explanation:
You simply do $42-$18
=24
Answer:
$24
Step-by-step explanation:
At the start, Jaime had $42. In order to find out how much the T-shirt he purchased costs, we must subtract 18 from 42.
42 - 18 = 24
Jaime spent $24 on the T-shirt.
Which is an infinite arithmetic sequence? a{10, 30, 90, 270, …} b{100, 200, 300, 400} c{150, 300, 450, 600, …} d{1, 2, 4, 8}
Answer:
C
Step-by-step explanation:
An arithmetic sequence has a common difference d between consecutive terms.
Sequence a
30 - 10 = 20
90 - 30 = 60
270 - 90 = 180
This sequence is not arithmetic
Sequence b
200 - 100 = 100
300 - 200 = 100
400 - 300 = 100
This sequence is arithmetic but is finite, that is last term is 400
Sequence c
300 - 150 = 150
450 - 300 = 150
600 - 450 = 150
This sequence is arithmetic and infinite, indicated by ........ within set
Sequence d
2 - 1 = 1
4 - 2 = 2
8 - 4 = 4
This sequence is not arithmetic
Thus the infinite arithmetic sequence is sequence c
pls help me
How many solutions exist for the system below?
y = -2x + 3
y = -2.3x
Answer:
0
Step-by-step explanation:
for y= -2*(3^x), as x is greater, the slope is steeper, and since the two graphs don't intercept in the picture we can see, they won't ever intercept because the slop of y=-2x+3 stays the same. as x becomes greater the distance between the two graphs is larger
are:
4. Suppose that the distance of fly balls hit to the outfield (in baseball) is normally
distributed. We randomly sample 27 fly balls. Their recorded distances in feet
234, 310, 285, 249, 210, 311, 265, 290, 308,
254, 295, 287, 231, 302, 325, 308, 221, 237,
312, 277, 259, 223, 340, 204, 214, 303, 309
Let X be the distance of a fly ball.
Use Excel to calculate the following:
a. (1 pt) mean of the sample, x =
b. (1 pt) standard deviation of the sample, s =
C. (2 pts) Calculate the t-score at a 96% confidence level:
d. (2 pts) Calculate the Error Bound (EBM), using the formula, EBM =
(t)(s//n)
e. (1 pt) At 96% confidence level, provide the confidence interval (CI) for the
mean distance in feet of a fly ball.
hantor 92
D
Step-by-step explanation:
a. The mean can be found using the AVERAGE() function.
x = 272.7
b. The standard deviation can be found with the STDEV() function.
s = 39.9
c. The t-score can be found with the T.INV.2T() function. The confidence level is 0.04, and the degrees of freedom is 26.
t = 2.162
d. Find the lower and upper ends of the confidence interval.
Lower = 272.7 − 2.162 × 39.9 = 186.5
Upper = 272.7 + 2.162 × 39.9 = 358.9