Two charges of magnitude 14 μC will be 4.00 m apart if the force of attraction between them is 0.80 N. This is the required answer. TCoulomb's Law describes the electrostatic interaction between charged particles.
This law states that the force of attraction or repulsion between two charged particles is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. The formula for Coulomb's law is:F = kQ1Q2/d²where F is the force between two charges, Q1 and Q2 are the magnitudes of the charges, d is the distance between the two charges, and k is the Coulomb's constant.
Electric charges are the fundamental properties of matter. There are two types of electric charges: positive and negative. Like charges repel each other, and opposite charges attract each other. Electric charges can be transferred from one object to another, which is the basis of many electrical phenomena such as lightning and electric circuits. The unit of electric charge is the coulomb (C).
To know more about repel visit:
https://brainly.com/question/15744700
#SPJ11
A small plastic sphere with a charge of 3nC is near another small plastic sphere with a charge of 5nC. If they repel each other with a 5.6×10 −5
N force, what is the distance between them?
The distance between two small plastic spheres with charges of 3nC and 5nC, respectively, can be determined using Coulomb's Law. The distance between the two spheres is approximately 0.143 meters.
Given that they repel each other with a force of 5.6×10^−5 N, the distance between them is calculated to be approximately 0.143 meters. Coulomb's Law states that the force of attraction or repulsion between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
Mathematically, it can be represented as:
F = k * (q1 * q2) / r^2
Where F is the force between the charges, q1 and q2 are the magnitudes of the charges, r is the distance between them, and k is the electrostatic constant (k = 9 × 10^9 N m^2/C^2).
In this case, we are given the force between the spheres (F = 5.6×10^−5 N), the charge of the first sphere (q1 = 3nC = 3 × 10^−9 C), and the charge of the second sphere (q2 = 5nC = 5 × 10^−9 C). We can rearrange the formula to solve for the distance (r):
r = √((k * q1 * q2) / F)
Substituting the given values into the equation, we have:
r = √((9 × 10^9 N m^2/C^2) * (3 × 10^−9 C) * (5 × 10^−9 C) / (5.6×10^−5 N))
Simplifying the expression, we find:
r ≈ 0.143 meters
Therefore, the distance between the two spheres is approximately 0.143 meters.
Learn more about coulombs law click here: brainly.com/question/506926
#SPJ11
9. Explain how the diffraction would appear if a wave with a wavelength of 2 meters encountered an opening with a width of 12 cm. (10 points)
When a wave with a wavelength of 2 meters encounters an opening with a width of 12 cm, diffraction occurs. Diffraction is the bending and spreading of waves around obstacles or through openings.
Diffraction is a phenomenon that occurs when waves encounter obstacles or openings that are comparable in size to their wavelength. In this case, the wavelength of the wave is 2 meters, while the opening has a width of 12 cm. Since the wavelength is much larger than the width of the opening, significant diffraction will occur.
As the wave passes through the opening, it spreads out in a process known as wavefront bending. The wavefronts of the incoming wave will be curved as they interact with the edges of the opening. The amount of bending depends on the size of the opening relative to the wavelength. In this scenario, where the opening is smaller than the wavelength, the diffraction will be noticeable.
The diffraction pattern that will be observed will exhibit a spreading of the wave beyond the geometric shadow of the opening. The diffracted wave will form a pattern of alternating light and dark regions known as a diffraction pattern or interference pattern.
The specific pattern will depend on the precise conditions of the setup, such as the distance between the wave source, the opening, and the screen where the diffraction pattern is observed.
Overall, when a wave with a wavelength of 2 meters encounters an opening with a width of 12 cm, diffraction will occur, causing the wave to bend and spread out. This phenomenon leads to the formation of a diffraction pattern, characterized by alternating light and dark regions, beyond the geometric shadow of the opening.
To learn more about wavelength.
Click here:brainly.com/question/16051869
#SPJ11
The distance to the North Star, Polaris, is approximately 6.44x10⁻¹⁸ m. (a) If Polaris were to burn out today, how many years from now would we see it disappear?
The distance to the North Star, Polaris, is approximately 6.44x10⁻¹⁸ m. If Polaris were to burn out today, we will see it disappear after 431 years from now.
The distance to Polaris is given as 6.44x10⁻¹⁸m. Light travels at a speed of 3x10⁸m/s. Therefore, the time taken for light to reach us from Polaris will be:
Distance= speed x time
So, time = distance / speed
= 6.44x10⁻¹⁸ / 3x10⁸
= 2.147x10⁻²⁶ s
Since 1 year = 365 days = 24 hours/day = 3600 seconds/hour,The number of seconds in a year = 365 x 24 x 3600 = 3.1536 x 10⁷ seconds/year.
Therefore, the number of years it will take for light from Polaris to reach us will be therefore, if Polaris were to burn out today, it would take approximately 6.8 x 10⁻²⁴ years for its light to stop reaching us. However, the actual number of years we would see it disappear is given by the time it would take for the light to reach us plus the time it would take for Polaris to burn out. Polaris is estimated to have a remaining lifespan of about 50,000 years. Therefore, the total time it would take for Polaris to burn out and for its light to stop reaching us is approximately:50,000 + 6.8x10⁻²⁴ = 50,000 years (to the nearest thousand).Therefore, we would see Polaris disappear after about 50,000 years from now.
To know more about disappear visit :
https://brainly.com/question/29607868
#SPJ11
Why is it use or found in our every lives or certain in the industries?and identify and explain at least two uses
Integral calculus is a branch of mathematics that deals with the properties and applications of integrals. It is used extensively in many fields of science, engineering, economics, and finance, and has become an essential tool for solving complex problems and making accurate predictions.
One reason why integral calculus is so prevalent in our lives is its ability to solve optimization problems. Optimization is the process of finding the best solution among a set of alternatives, and it is important in many areas of life, such as engineering, economics, and management. Integral calculus provides a powerful framework for optimizing functions, both numerically and analytically, by finding the minimum or maximum value of a function subject to certain constraints.
Another use of integral calculus is in the calculation of areas, volumes, and other physical quantities. Many real-world problems involve computing the area under a curve, the volume of a shape, or the length of a curve, and these computations can be done using integral calculus. For example, in engineering, integral calculus is used to calculate the strength of materials, the flow rate of fluids, and the heat transfer in thermal systems.
In finance, integral calculus is used to model and analyze financial markets, including stock prices, bond prices, and interest rates. The Black-Scholes formula, which is used to price options, is based on integral calculus and has become a standard tool in financial modeling.
Overall, integral calculus has numerous applications in various fields, and its importance cannot be overstated. Whether we are designing new technologies, predicting natural phenomena, or making investment decisions, integral calculus plays a crucial role in helping us understand and solve complex problems.
---
Learn more about integration:
brainly.com/question/27026907
#SPJ11
Give two definitions of the half-life and find its relation with
decay constant or disintegration constant λ (in time-1 unit).
Definition 1: The half-life of a radioactive substance is the time it takes for half of the radioactive nuclei in a sample to undergo radioactive decay.
Definition 2: The half-life is the time it takes for the activity (rate of decay) of a radioactive substance to decrease by half.
The relation between half-life and decay constant (λ) is given by:
t(1/2) = ln(2) / λ
In radioactive decay, the decay constant (λ) represents the probability of decay per unit time. It is a measure of how quickly the radioactive substance decays.
The half-life (t(1/2)) represents the time it takes for half of the radioactive nuclei to decay. It is a characteristic property of the radioactive substance.
The relationship between half-life and decay constant is derived from the exponential decay equation:
N(t) = N(0) * e^(-λt)
where N(t) is the number of radioactive nuclei remaining at time t, N(0) is the initial number of radioactive nuclei, e is the base of the natural logarithm, λ is the decay constant, and t is the time.
To find the relation between half-life and decay constant, we can set N(t) equal to N(0)/2 (since it represents half of the initial number of nuclei) and solve for t:
N(0)/2 = N(0) * e^(-λt)
Dividing both sides by N(0) and taking the natural logarithm of both sides:
1/2 = e^(-λt)
Taking the natural logarithm of both sides again:
ln(1/2) = -λt
Using the property of logarithms (ln(a^b) = b * ln(a)):
ln(1/2) = ln(e^(-λt))
ln(1/2) = -λt * ln(e)
Since ln(e) = 1:
ln(1/2) = -λt
Solving for t:
t = ln(2) / λ
This equation shows the relation between the half-life (t(1/2)) and the decay constant (λ). The half-life is inversely proportional to the decay constant.
The half-life of a radioactive substance is the time it takes for half of the radioactive nuclei to decay. It can be defined as the time it takes for the activity to decrease by half. The relationship between half-life and decay constant is given by t(1/2) = ln(2) / λ, where t(1/2) is the half-life and λ is the decay constant. The half-life is inversely proportional to the decay constant.
To know more about radioactive substance visit
https://brainly.com/question/1160651
#SPJ11
You are evaluating the performance of a large electromagnet. The magnetic field of the electromagnet is zero at t = 0 and increases as the current through the windings of the electromagnet is increased. You determine the magnetic field as a function of time by measuring the time dependence of the current induced in a small coil that you insert between the poles of the electromagnet, with the plane of the coil parallel to the pole faces as for the loop in (Figure 1). The coil has 4 turns, a radius of 0.600 cm, and a resistance of 0.250 12. You measure the current i in the coil as a function of time t. Your results are shown in (Figure 2). Throughout your measurements, the current induced in the coil remains in the same direction. Figure 1 of 2 > S N i (mA) 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 I(S) Part A - Calculate the magnetic field at the location of the coil for t = 2.00 S. Express your answer to three significant figures and include the appropriate units. НА ? B = Value Units Submit Previous Answers Request Answer X Incorrect; Try Again; 29 attempts remaining v Part B Calculate the magnetic field at the location of the coil for t = 5.00 S. Express your answer to three significant figures and include the appropriate units. 0 НА ? B Value Units Submit Request Answer Calculate the magnetic field at the location of the coil for t = 6.00 s. Express your answer to three significant figures and include the appropriate units. HA ? B = Value Units Submit Previous Answers Request Answer * Incorrect; Try Again; 29 attempts remaining
By analyzing the given current values and applying the relevant formulas, we can determine the magnetic field at t = 2.00 s, t = 5.00 s, and t = 6.00 s, expressed in three significant figures with appropriate units.
To calculate the magnetic field at the location of the coil, we can use Faraday's law of electromagnetic induction, which states that the induced electromotive force (emf) in a closed loop is equal to the rate of change of magnetic flux through the loop.
At t = 2.00 s:
Using the given current value of i = 2.50 mA (or 0.00250 A) from Figure 2, we can calculate the induced emf in the coil. The emf is given by the formula:
emf = -N * (dΦ/dt)
where N is the number of turns in the coil.
From the graph in Figure 2, we can estimate the rate of change of current (di/dt) at t = 2.00 s by finding the slope of the curve. Let's assume the slope is approximately constant.
Now, we can substitute the values into the formula:
0.00250 A = -4 * (dΦ/dt)
To find dΦ/dt, we can rearrange the equation:
(dΦ/dt) = -0.00250 A / 4
Finally, we can calculate the magnetic field (B) using the formula:
B = (dΦ/dt) / A
where A is the area of the coil.
Substituting the values:
B = (-0.00250 A / 4) / (π * (0.00600 m)^2)
At t = 5.00 s:
Using the given current value of i = 0.50 mA (or 0.00050 A) from Figure 2, we follow the same steps as above to calculate the magnetic field at t = 5.00 s.
At t = 6.00 s:
Using the given current value of i = 0.00 mA (or 0.00000 A) from Figure 2, we follow the same steps as above to calculate the magnetic field at t = 6.00 s.
To learn more about electromagnet-
brainly.com/question/31960385
#SPJ11
2. The rate of heat flow (conduction) between two points on a cylinder heated at one end is given by dT dQ de=AA dr dt dx where λ = a constant, A = the cylinder's cross-sectional area, Q = heat flow, T = temperature, t = time, and x = distance from the heated end. Because the equation involves two derivatives, we will simplify this equation by letting dT dx 100(Lx) (20- t) (100- xt) where L is the length of the rod. Combine the two equations and compute the heat flow for t = 0 to 25 s. The initial condition is Q(0) = 0 and the parameters are λ = 0.5 cal cm/s, A = 12 cm2, L = 20 cm, and x = 2.5 cm. Use 2nd order of Runge-Kutta to solve the problem.
The paragraph describes a heat conduction problem involving a cylinder, provides equations and parameters, and suggests using the second-order Runge-Kutta method for solving and computing the heat flow over time.
What does the paragraph describe regarding a heat conduction problem and the solution approach?The paragraph describes a heat conduction problem involving a cylinder heated at one end. The rate of heat flow between two points on the cylinder is given by a differential equation. To simplify the equation, a specific form for the temperature gradient is provided.
The simplified equation is then combined with the original equation to compute the heat flow over a time interval from t = 0 to t = 25 seconds.
The initial condition is given as Q(0) = 0, meaning no heat flow at the start. The parameters involved in the problem are the thermal conductivity constant (λ), cross-sectional area (A), length of the rod (L), and the distance from the heated end (x).
To solve the problem, the second-order Runge-Kutta method is used. This numerical method allows for the approximate solution of differential equations by iteratively computing intermediate values based on the given equations and initial conditions.
By applying the Runge-Kutta method, the heat flow can be calculated at various time points within the specified time interval.
In summary, the paragraph introduces a heat conduction problem, provides the necessary equations and parameters, and suggests the use of the second-order Runge-Kutta method to solve the problem and compute the heat flow over time.
Learn more about heat conduction
brainly.com/question/13253422
#SPJ11
When the temperature of a copper coin is raised by 150 C°, its diameter increases by 0.26%. To two significant figures, give the percent increase in (a) the area of a face, (b) the thickness, (c) the volume, and (d) the mass of the coin. (e) Calculate the coefficient of linear
expansion of the coin.
(a) The percent increase in the area of a face is approximately 0.52%.
(b) The percent increase in the thickness is approximately 0.26%.
(c) The percent increase in the volume is approximately 0.78%.
(d) The percent increase in the mass of the coin cannot be determined without additional information.
(e) The coefficient of linear expansion of the coin is approximately 1.73 x 10^-5 C^-1.
When the temperature of a copper coin is raised by 150 °C, its diameter increases by 0.26%. The area of a face is proportional to the square of the diameter, so the percent increase in area can be calculated by multiplying the percent increase in diameter by 2. In this case, the percent increase in the area of a face is approximately 0.52%.
The thickness of the coin is not affected by the change in temperature, so the percent increase in thickness remains the same as the percent increase in diameter, which is 0.26%.
The volume of the coin is determined by multiplying the area of a face by the thickness. Since both the area and thickness have changed, the percent increase in the volume can be calculated by adding the percent increase in the area and the percent increase in the thickness. In this case, the percent increase in the volume is approximately 0.78%.
The percent increase in mass cannot be determined without additional information because it depends on factors such as the density of copper and the uniformity of the coin's composition.
The coefficient of linear expansion of a material measures how much its length changes per degree Celsius of temperature change. In this case, the coefficient of linear expansion of the copper coin can be calculated using the percent increase in diameter and the temperature change. The coefficient of linear expansion is approximately 1.73 x 10^-5 C^-1.
To learn more about Linear expansion, click here:
brainly.com/question/32547144
#SPJ11
What is the phase constant for SMH with a(t) given in the figure if the position function x(t) as = 8 m/s2? (note that the answer should be from 0 to 2TT) a (m/s) als -as Number i Units
The value of the phase constant, φ is 0
Graph of x(t)Using the graph, we can see that the equation for the position function x(t) = A sin (ωt + φ) is as follows;
x(t) = A sin (ωt + φ) ....... (1)
where; A = amplitude
ω = angular frequency = 2π/T
T = time period of oscillation = 2π/ω
φ = phase constant
x(t) = displacement from the mean position at time t
From the graph, we can see that the amplitude, A is 4 m. Using the given information in the question, we can find the angular frequencyω = 2π/T, but T = time period of oscillation. We can get the time period of oscillation, T from the graph. From the graph, we can see that one complete cycle is completed in 2 seconds. Therefore,
T = 2 seconds
ω = 2π/T
= 2π/2
= π rad/s
Again, from the graph, we can see that at time t = 0 seconds, the displacement, x(t) is 0. This means that φ = 0. Putting all this into equation (1), we have;
x(t) = 4 sin (πt + 0)
The phase constant, φ = 0.
The value of the phase constant, φ is 0 and this means that the equation for the position function is; x(t) = 4 sin (πt)
Learn more About phase constant from the given link
https://brainly.com/question/31497779
#SPJ11
A 113.1 g of Platinum is taken out from a freezer at -40.3 °C and placed outside until its temperature reached 28.1, How much thermal energy absorbed given that the specific heat of Platinum is 134 J/(kg. °C). Q=
The amount of thermal energy absorbed given that the specific heat of Platinum is 134 J/kg°C is 1,036.63 J.
How to calculate energy?The amount of heat energy absorbed or released by a metal can be calculated using the following formula;
Q = mc∆T
Where;
Q = quantity of heat absorbed or releasedm = mass of substancec = specific heat capacity∆T = change of temperatureAccording to this question, 113.1 g of platinum is taken out from a freezer at -40.3 °C and placed outside until its temperature reached 28.1°C. The heat energy absorbed can be calculated as follows;
Q = 0.1131 × 134 × (28.1 - (- 40.3)
Q = 1,036.63 J
Learn more about energy at: https://brainly.com/question/29210982
#SPJ4
A 100-W lamp and a 25-W lamp are each plugged into identical electric outlets. The electrical current through the 100-W lamp is:
A. 2 times greater than that through the 25-W lamp
B. 4 times smaller than that through the 25-W lamp.
C. 4 times greater than that through the 25-W lamp.
d. the same as that through the 25-W lamp.
The electrical current through the 100-W lamp is 4 times greater than that through the 25-W lamp. Option C is correct.
The power of a lamp is given by the formula:
Power = Voltage × Current
Since both lamps are plugged into identical electric outlets, the voltage across both lamps is the same. Let's denote the voltage as V.
For the 100-W lamp:
Power_1 = V × Current_1
For the 25-W lamp:
Power_2 = V × Current_2
Dividing the two equations, we get:
Power1 / Power_2 = (V × Current1) / (V * Current2)
Simplifying, we find:
Power1 / Power2 = Current1 / Current2
Since we know that Power_1 is 100 W and Power_2 is 25 W, we can substitute these values:
100 W / 25 W = Current_1 / Current_2
4 = Current_1 / Current_2
Therefore, the current through the 100-W lamp (Current_1) is 4 times greater than the current through the 25-W lamp (Current_2).
Hence Option C is correct.
Learn more about current -
brainly.com/question/1100341
#SPJ11
A magnifying glass has a focal length of 5.10 cm. (a) To obtain maximum magnification, how far from an object (in cm) should the magnifying glass be held so that the image is clear for someone with a normal eye? (Assume the near point of the eye is at -25.0 cm.) cm from the lens (b) What is the maximum angular magnification?
(a) The formula for magnification by a lens is given by m = (1+25/f) where f is the focal length of the lens and 25 is the distance of the near point from the eye.
Maximum magnification is obtained when the final image is at the near point.
Hence, we get: m = (1+25/f) = -25/di
Where di is the distance of the image from the lens.
The formula for the distance of image from a lens is given by:1/f = 1/do + 1/di
Here, do is the distance of the object from the lens.
Substituting do = di-f in the above formula, we get:1/f = di/(di-f) + 1/di
Solving this for di, we get:
di = 1/[(1/f) + (1/25)] + f
Putting the given values, we get:
di = 3.06 cm from the lens
(b) The maximum angular magnification is given by:
M = -di/feff
where feff is the effective focal length of the combination of the lens and the eye.
The effective focal length is given by:
1/feff = 1/f - 1/25
Putting the given values, we get:
feff = 4.71 cm
M = -di/feff
Putting the value of di, we get:
M = -0.65
Know more about magnification:
https://brainly.com/question/28350378
#SPJ4
Switch Si is closed. Switch S2 has been in position a for a long time. It is now switched to position b. R Derive an expression for the current i in the inductance as a function of time. Show all your work and box your answer. 200 When the switch S, is thrown to position b, the battery is no longer part of the circuit and the current decreases.
The current in the inductance does not change over time and remains constant.
To derive an expression for the current (i) in the inductance as a function of time, we can use the concept of inductance and the behavior of an inductor in response to a change in current.
When the switch S2 is in position a, the battery is part of the circuit, and the current in the inductor is established and steady. Let's call this initial current i₀.
When the switch S2 is switched to position b, the battery is no longer part of the circuit. This change in the circuit configuration causes the current in the inductor to decrease. The rate at which the current decreases is determined by the inductance (L) of the inductor.
According to Faraday's law of electromagnetic induction, the voltage across an inductor is given by:
V = L * di/dt
Where V is the voltage across the inductor, L is the inductance, and di/dt is the rate of change of current with respect to time.
In this case, since the battery is disconnected, the voltage across the inductor is zero (V = 0). Therefore, we have:
0 = L * di/dt
Rearranging the equation, we can solve for di/dt:
di/dt = 0 / L
The rate of change of current with respect to time (di/dt) is zero, indicating that the current in the inductor does not change instantaneously when the switch is moved to position b. The current will continue to flow in the inductor at the same initial value (i₀) until any other external influences come into play.
Therefore, the expression for the current (i) in the inductance as a function of time can be written as:
i(t) = i₀
The current remains constant (i₀) until any other factors or external influences affect it.
Hence, the current in the inductance does not change over time and remains constant.
Visit here to learn more about current brainly.com/question/3434785
#SPJ11
A battleship that is 5.60 × 10^7 kg and is originally at rest fires a 1,100-kg artillery shell horzontaly
with a velocity of 568 m/s.
If the shell is fired straight aft (toward the rear of the ship), there will be negligible friction opposing
the ship's recoil. Calculate the recoil velocity of the
When a battleship fires an artillery shell horizontally, with negligible friction opposing the recoil, the recoil velocity of the battleship can be calculated using the principle of conservation of momentum.
The total momentum before the firing is zero since the battleship is originally at rest. After firing, the total momentum remains zero, but now it is shared between the battleship and the artillery shell. By setting up an equation based on momentum conservation, we can solve for the recoil velocity of the battleship.
According to the principle of conservation of momentum, the total momentum before an event is equal to the total momentum after the event. In this case, before the artillery shell is fired, the battleship is at rest, so its momentum is zero. After the shell is fired, the total momentum is still zero, but now it includes the momentum of the artillery shell.
We can set up an equation to represent this conservation of momentum:
(Initial momentum of battleship) + (Initial momentum of shell) = (Final momentum of battleship) + (Final momentum of shell)
Since the battleship is initially at rest, its initial momentum is zero.
The final momentum of the shell is given by the product of its mass (1,100 kg) and velocity (568 m/s).
Let's denote the recoil velocity of the battleship as v.
The equation becomes:
0 + (1,100 kg * 568 m/s) = (5.60 × 10^7 kg * v) + 0
Simplifying the equation and solving for v, we can find the recoil velocity of the battleship.
Learn more about Recoil velocity from the given link:
https://brainly.com/question/11897472
#SPJ11
A string with a linear density of 7.11×10−4 kg/m and a length of 1.14 m is stretched across the open end of a closed tube that is 1.39 m long. The diameter of the tube is very small. You increase the tension in the string from zero after you pluck the string to set it vibrating. The sound from the string's vibration resonates inside the tube, going through four separate loud points. What is the tension in the string when you reach the fourth loud point? Assume the speed of sound in air is 343 m/s.
The tension in the string when you reach the fourth loud point is 27.56 N.
The standing waves are created inside the tube due to the resonance of sound waves at particular frequencies. If a string vibrates in resonance with the natural frequency of the air column inside the tube, the energy is transmitted to the air column, and the sound waves start resonating with the string. The string vibrates more and, thus, produces more sound.
The fundamental frequency (f) is determined by the length of the tube, L, and the speed of sound in air, v as given by:
f = (v/2L)
Here, L is 1.39 m and v is 343 m/s. Therefore, the fundamental frequency (f) is:
f = (343/2 × 1.39) Hz = 123.3 Hz
Similarly, the first harmonic frequency can be calculated by multiplying the fundamental frequency by two. The second harmonic frequency is three times the fundamental frequency. Likewise, the third harmonic frequency is four times the fundamental frequency. The frequencies of the four loud points can be calculated as:
f1 = 2f = 246.6 Hz
f2 = 3f = 369.9 Hz
f3 = 4f = 493.2 Hz
f4 = 5f = 616.5 Hz
For a string of length 1.14 m with a linear density of 7.11×10⁻⁴ kg/m and vibrating at a frequency of 616.5 Hz, the tension can be calculated as:
Tension (T) = (π²mLf²) / 4L²
where m is the linear density, f is the frequency, and L is the length of the string.
T = (π² × 7.11 × 10⁻⁴ × 1.14 × 616.5²) / 4 × 1.14²
T = 27.56 N
Therefore, when the fourth loud point is reached, the tension in the string is 27.56 N.
Learn more about standing waves here: https://brainly.com/question/30528641
#SPJ11
4. The speed of sound in air is measured at 335 m/s. The frequency of a sound emitted by a source moving toward you is found to be 458 Hz. If the frequency of this sound at the source is actually 375 Hz, then the speed of the source is _____ m/s.
6. A column of air, closed at one end, is 0.355 m long. If the speed of sound is 343 m/s, the lowest resonant frequency of the pipe is _____ Hz.
7. When a 494 Hz tuning fork (A) is held over the tube, the shortest length (L) for which resonance occurs is 17.0 cm. Without changing the length of the tube, tuning fork A is replaced by tuning fork B. While tuning fork B is vibrating over the end of the tube, the tube is lengthened until the next point of greatest resonance is produced. If the frequency of tuning fork B is 587 Hz, the length of the tube for which resonance is heard is _____ cm.
4. The speed of the source is 401.5 m/s. The formula used here is the Doppler's effect formula for the apparent frequency (f), source frequency (fs), observer frequency (fo), speed of sound in air (v) and speed of the source (vs).
It is given that fs = 375 Hz, fo = 458 Hz, v = 335 m/s, and the speed of the source is to be calculated.
When the source moves towards the observer, the observer frequency increases and is given by the formula.
fo = fs(v + vs) / (v - vo)
where vo = 0 (as observer is at rest)
On substituting the given values, we get:
458 Hz = 375 Hz(335 m/s + vs) / (335 m/s)
Solving for vs, we get, vs = 401.5 m/s.6.
The lowest resonant frequency of the pipe is 965.5 Hz
The formula used here is v = fλ where v is the speed of sound, f is the frequency, and λ is the wavelength of the sound.
The pipe is closed at one end and is open at the other end. Thus, the pipe has one end open and one end closed and its fundamental frequency is given by the formula:
f1 = v / (4L)
where L is the length of the pipe.
As the pipe is closed at one end and is open at the other end, the second harmonic or the first overtone is given by the formula:
f2 = 3v / (4L)
Now, as per the given data, L = 0.355 m and v = 343 m/s.
So, the lowest resonant frequency or the fundamental frequency of the pipe is:
f1 = v / (4L)= 343 / (4 * 0.355)= 965.5 Hz.7.
The length of the tube for which resonance is heard is 15.8 cm
According to the problem,
The frequency of tuning fork A is 494 Hz.
The shortest length of the tube (L) for which resonance occurs is 17.0 cm.
The frequency of tuning fork B is 587 Hz.
Resonance occurs when the length of the tube is lengthened. Let the length of the tube be l cm for tuning fork B. Then, the third harmonic or the second overtone is produced when resonance occurs. The frequency of the third harmonic is given by:f3 = 3v / (4l) where v is the speed of sound.
The wavelength (λ) of the sound in the tube is given by λ = 4l / 3.
The length of the tube can be calculated as:
L = (nλ) / 2
where n is a positive integer. Therefore, for the third harmonic, n = 3.λ = 4l / 3 ⇒ l = 3λ / 4
Substituting the given values in the above formula for f3, we get:
587 Hz = 3(343 m/s) / (4l)
On solving, we get, l = 0.15 m or 15.8 cm (approx).
Therefore, the length of the tube for which resonance is heard is 15.8 cm.
Learn more about the Doppler's effect: https://brainly.com/question/28106478
#SPJ11
If an electron makes a transition from the n = 4 Bohr orbit
to the n = 3 orbit, determine the wavelength of the photon created
in the process. (in nm)
The wavelength of the photon created in the transition is approximately 131 nm
To determine the wavelength of the photon created when an electron transitions from the n = 4 to the n = 3 orbit in a hydrogen atom, we can use the Rydberg formula:
1/λ = R * (1/n₁² - 1/n₂²)
where λ is the wavelength of the photon, R is the Rydberg constant (approximately 1.097 × 10^7 m⁻¹), and n₁ and n₂ are the initial and final quantum numbers, respectively.
In this case, n₁ = 4 and n₂ = 3.
Substituting the values into the formula, we get:
1/λ = 1.097 × 10^7 m⁻¹ * (1/4² - 1/3²)
Simplifying the expression, we have:
1/λ = 1.097 × 10^7 m⁻¹ * (1/16 - 1/9)
1/λ = 1.097 × 10^7 m⁻¹ * (9/144 - 16/144)
1/λ = 1.097 × 10^7 m⁻¹ * (-7/144)
1/λ = -7.63194 × 10^4 m⁻¹
Taking the reciprocal of both sides, we find:
λ = -1.31 × 10⁻⁵ m
Converting this value to nanometers (nm), we get:
λ ≈ 131 nm
Therefore, the wavelength of the photon created in the transition is approximately 131 nm.
Learn more about wavelength from the given link
https://brainly.com/question/10728818
#SPJ11
1. In nonrelativistic physics, the center of MASS of an isolated system moves with constant velocity. (This is also a statement of conservation of linear momentum.) In relativistic physics, the center of ENERGY moves with constant velocity. Consider a system of two particles. Particle A of mass 9m has its position given by xa(t)=(4/5)ct, while particle B of mass Sm is at rest at the origin, before they collide at time t=0. The two particles stick together after the collision. II Use relativistic physics to solve the problem of the system of two colliding particles. a) What is the position of the center of energy of the system before the collision? b) What is the velocity of the center of energy of the system before the collision? c) What is the mass (rest mass) of the final composite particle? d) What is the velocity of the final composite particle? e) What is the position xc(t) of the final particle after the collision? f) Compare the energy and momentum of the system before and after the collision.
The position of the center of energy of the system before the collision is (4/5)ct, the velocity is (4/5)c, the mass of the final composite particle is 10m, the velocity of the final composite particle is (2/5)c.
a) To find the position of the center of energy of the system before the collision, we consider that particle A of mass 9m has its position given by xa(t) = (4/5)ct, and particle B of mass Sm is at rest at the origin. The center of energy is given by the weighted average of the positions of the particles, so the position of the center of energy before the collision is (9m * (4/5)ct + Sm * 0) / (9m + Sm) = (36/5)ct / (9m + Sm).
b) The velocity of the center of energy of the system before the collision is given by the derivative of the position with respect to time. Taking the derivative of the expression from part (a), we get the velocity as (36/5)c / (9m + Sm).
c) The mass of the final composite particle is the sum of the masses of particle A and particle B before the collision, which is 9m + Sm.
d) The velocity of the final composite particle can be found by applying the conservation of linear momentum. Since the two particles stick together after the collision, the total momentum before the collision is zero, and the total momentum after the collision is the mass of the final particle multiplied by its velocity. Therefore, the velocity of the final composite particle is 0.
e) After the collision, the final particle sticks together and moves with a constant velocity. Therefore, the position of the final particle after the collision can be expressed as xc(t) = (1/2)ct.
f) Both energy and momentum are conserved in this system. Before the collision, the total energy and momentum of the system are zero. After the collision, the final composite particle has a rest mass energy, and its momentum is zero. So, the energy and momentum are conserved before and after the collision.
To learn more about energy -
brainly.com/question/32118995
#SPJ11
Assignment Score: Question 2 of 7 > 0% Calculate the ratio R of the translational kinetic energy to the rotational kinetic energy of the bowling ball. Resources A bowling ball that has a radius of 11.0 cm and a mass of 7.00 kg rolls without slipping on a level lane at 4.00 rad/s
The ratio R of the translational kinetic energy to the rotational kinetic energy of the bowling ball is approximately 1.65.
In order to calculate the ratio R, we need to determine the translational kinetic energy and the rotational kinetic energy of the bowling ball.
The translational kinetic energy is given by the formula
[tex]K_{trans} = 0.5 \times m \times v^2,[/tex]
where m is the mass of the ball and v is its linear velocity.
The rotational kinetic energy is given by the formula
[tex]K_{rot = 0.5 \times I \times \omega^2,[/tex]
where I is the moment of inertia of the ball and ω is its angular velocity.
To find the translational velocity v, we can use the relationship between linear and angular velocity for an object rolling without slipping.
In this case, v = ω * r, where r is the radius of the ball.
Substituting the given values,
we find[tex]v = 4.00 rad/s \times 0.11 m = 0.44 m/s.[/tex]
The moment of inertia I for a solid sphere rotating about its diameter is given by
[tex]I = (2/5) \times m \times r^2.[/tex]
Substituting the given values,
we find [tex]I = (2/5) \times 7.00 kg \times (0.11 m)^2 = 0.17{ kg m}^2.[/tex]
Now we can calculate the translational kinetic energy and the rotational kinetic energy.
Plugging the values into the respective formulas,
we find [tex]K_{trans = 0.5 \times 7.00 kg \times (0.44 m/s)^2 = 0.679 J[/tex] and
[tex]K_{rot = 0.5 *\times 0.17 kg∙m^2 (4.00 rad/s)^2 =0.554 J.[/tex]
Finally, we can calculate the ratio R by dividing the translational kinetic energy by the rotational kinetic energy:
[tex]R = K_{trans / K_{rot} = 0.679 J / 0.554 J =1.22.[/tex]
Therefore, the ratio R of the translational kinetic energy to the rotational kinetic energy of the bowling ball is approximately 1.65.
To learn more about translational kinetic energy here brainly.com/question/32676513
#SPJ11
a Spatial coherence and Young's double slits (2) Consider a Young's interferometer where the first slit has a fixed width as, but the separation d between the pair of holes in the second screen is variable. Discuss what happens to the visibility of the fringes as a function of d.
The answer is the visibility of the fringes decreases as the separation d is increased.
When considering a Young's interferometer with a fixed width for the first slit and a variable separation d between the pair of holes in the second screen, the visibility of the fringes will change as a function of d.
The visibility of the fringes is determined by the degree of coherence between the two wavefronts that interfere at each point on the screen.
The degree of coherence between the two wavefronts is characterized by the spatial coherence, which is a measure of the extent to which the phase relationship between the two wavefronts is maintained over a distance.
If the separation d between the two holes in the second screen is increased, the spatial coherence between the two wavefronts will decrease, which will cause the visibility of the fringes to decrease as well.
This is because the fringes are formed by the interference of the two wavefronts, and if the coherence between the two wavefronts is lost, the interference pattern will become less distinct.
Therefore, as d is increased, the visibility of the fringes will decrease, and the fringes will eventually disappear altogether when the separation between the two holes is large enough. This occurs because the spatial coherence of the wavefronts is lost beyond this point.
The relationship between the visibility of the fringes and the separation d is given by the formula
V = (Imax - Imin)/(Imax + Imin), where Imax is the maximum intensity of the fringes and Imin is the minimum intensity of the fringes. This formula shows that the visibility of the fringes decreases as the separation d is increased.
Learn more about visibility of the fringes here https://brainly.com/question/31149122
#SPJ11
What is the mass of an exoplanet 0.18 times the volume of Earth if its density is approximately that of aluminum? Your answer should be significant to three digits.
The mass of the exoplanet, which is 0.18 times the volume of Earth and has a density approximately that of aluminum, is approximately [insert calculated value] significant to three digits.
To determine the mass of the exoplanet, we can use the equation:
Mass = Volume * Density
Given that the exoplanet has 0.18 times the volume of Earth and its density is approximately that of aluminum, we need to find the volume of Earth and the density of aluminum.
Volume of Earth:
The volume of Earth can be calculated using its radius (r). The average radius of Earth is approximately 6,371 kilometers or 6,371,000 meters.
Volume of Earth = (4/3) * π * [tex]r^3[/tex]
Plugging in the values:
Volume of Earth = (4/3) * π * (6,371,000 meters[tex])^3[/tex]
Density of Aluminum:
The density of aluminum is approximately 2.7 grams per cubic centimeter (g/cm³).
Now, let's calculate the mass of the exoplanet:
Mass of the exoplanet = 0.18 * Volume of Earth * Density of Aluminum
Converting the units:
Volume of Earth in cubic centimeters = Volume of Earth in cubic meters * (100 cm / 1 m[tex])^3[/tex]
Density of Aluminum in grams per cubic centimeter = Density of Aluminum in kilograms per cubic meter * (1000 g / 1 kg)
Plugging in the values and performing the calculations:
Mass of the exoplanet = 0.18 * (Volume of Earth in cubic meters * (100 cm / 1 m[tex])^3[/tex]) * (Density of Aluminum in kilograms per cubic meter * (1000 g / 1 kg))
Finally, rounding the answer to three significant digits, we obtain the mass of the exoplanet.
To know more about exoplanet refer to-
https://brainly.com/question/9991501
#SPJ11
The equation E= 2πε 0 z 3 1qd is approximation of the magnitude of the electric field of an electric dipole, at points along the dipole axis. Consider a point P on that axis at distance z=20.00d from the dipole center ( d is the separation distance between the particles of the dipole). Let E appr be the magnitude of the field at point P as approximated by the equations below. Let E act be the actual magnitude. What is the ratio E appr /E act ? Number Units
The given equation for the magnitude of the electric field of an electric dipole along the dipole axis is:
E = (2πε₀ * z^3 * p) / (q * d^3)
Where:
E is the magnitude of the electric field at point P along the dipole axis.
ε₀ is the vacuum permittivity (electric constant).
z is the distance from the dipole center to point P.
p is the electric dipole moment.
q is the magnitude of the charge on each particle of the dipole.
d is the separation distance between the particles of the dipole.
To find the ratio E_appr / E_act, we need to compare the approximate magnitude of the field E_appr at point P to the actual magnitude of the field E_act.
Since we only have the approximate equation, we'll assume that E_appr represents the approximate magnitude and E_act represents the actual magnitude. Therefore, the ratio E_appr / E_act can be expressed as:
(E_appr / E_act) = E_appr / E_act
Substituting the values into the approximate equation:
E_appr = (2πε₀ * z^3 * p) / (q * d^3)
To find the ratio, we need to know the values of ε₀, p, q, and d, which are not provided in the given information. Please provide the specific values for ε₀, p, q, and d so that we can calculate the ratio E_appr / E_act.
To know more about electric field click this link -
brainly.com/question/11482745
#SPJ11
N 13. An electric field of 702 exists between parallel plates that are 30.0 cm apart. The potential difference between the plates is V. (Record your three-digit answer in the numerical-response section below.) Your answer: D000
The potential difference between the parallel plates is 210 V.
Given that,
An electric field of 702 exists between parallel plates that are 30.0 cm apart.
The potential difference between the plates is V.
The electric field is given by the formula E = V/d,
where
E = Electric field in N/C
V = Potential difference in V
d = Distance between the plates in m
Putting the values in the above equation we get,702 = V/0.3V = 210 V
Therefore, the potential difference between the plates is 210 V.
Hence, the potential difference between the parallel plates is 210 V.
Learn more about Electric field
brainly.com/question/11482745
#SPJ11
5. Build a 2-input AND gate using CMOS.
To build a 2-input AND gate using CMOS (Complementary Metal-Oxide-Semiconductor) technology, we can use a combination of n-channel and p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
The AND gate takes two input signals and produces an output signal only when both inputs are high (logic 1). By properly configuring the MOSFETs, we can achieve this logic functionality.
In CMOS technology, the n-channel MOSFET acts as a switch when its gate voltage is high (logic 1), allowing current to flow from the supply to the output.
On the other hand, the p-channel MOSFET acts as a switch when its gate voltage is low (logic 0), allowing current to flow from the output to the ground. To implement the AND gate, we connect the drains of the two MOSFETs together, which serves as the output. The source of the n-channel MOSFET is connected to the supply voltage, while the source of the p-channel MOSFET is connected to the ground.
The gates of both MOSFETs are connected to the respective input signals. When both input signals are high, the n-channel MOSFET is on, and the p-channel MOSFET is off, allowing current to flow to the output. If any of the input signals is low, one of the MOSFETs will be off, preventing current flow to the output. This configuration implements the logic functionality of an AND gate using CMOS technology.
Learn more about AND gate here: brainly.com/question/33187456
#SPJ11
A parallel plate capacitor has plates 0.142 m2 in area and a separation of 14.2 mm. A battery charges the plates to a potential difference of 120 V and is then disconnected. A sheet of dielectric material 4 mm thick and with a dielectric constant of 6.1 is then placed symmetrically between the plates. With the sheet in position, what is the potential difference between the plates? Answer in Volts and two decimal
The potential difference between the plates with the dielectric in place is 384.22 V (rounded to two decimal places). The potential difference between the plates of a parallel plate capacitor before and after a dielectric material is placed between the plates can be calculated using the formula:V = Ed.
where V is the potential difference between the plates, E is the electric field between the plates, and d is the distance between the plates. The electric field E can be calculated using the formula:E = σ / ε0,where σ is the surface charge density of the plates, and ε0 is the permittivity of free space. The surface charge density σ can be calculated using the formula:σ = Q / A,where Q is the charge on the plates, and A is the area of the plates.The charge Q on the plates can be calculated using the formula:
Q = CV,where C is the capacitance of the capacitor, and V is the potential difference between the plates. The capacitance C can be calculated using the formula:
C = ε0 A / d,where ε0 is the permittivity of free space, A is the area of the plates, and d is the distance between the plates.
1. Calculate the charge Q on the plates before the dielectric is placed:
Q = CVQ = (ε0 A / d) VQ
= (8.85 × [tex]10^-12[/tex] F/m) (0.142 m²) (120 V) / (14.2 × [tex]10^-3[/tex] m)Q
= 1.2077 × [tex]10^-7[/tex]C
2. Calculate the surface charge density σ on the plates before the dielectric is placed:
σ = Q / Aσ = 1.2077 × [tex]10^-7[/tex] C / 0.142 m²
σ = 8.505 ×[tex]10^-7[/tex] C/m²
3. Calculate the electric field E between the plates before the dielectric is placed:
E = σ / ε0E
= 8.505 × [tex]10^-7[/tex]C/m² / 8.85 × [tex]10^-12[/tex]F/m
E = 96054.79 N/C
4. Calculate the potential difference V between the plates after the dielectric is placed:
V = EdV
= (96054.79 N/C) (4 × [tex]10^-3[/tex]m)V
= 384.22 V
Therefore, the potential difference between the plates with the dielectric in place is 384.22 V (rounded to two decimal places).
To know more about Potential difference visit-
brainly.com/question/23716417
#SPJ11
what must be the radius (in cm) of a disk of mass 9kg, so that it
has the same rotational inertia as a solid sphere of mass 5g and
radius 7m?
Give your answer to two decimal places
The radius (in cm) of a disk of mass 9kg, so that it has the same rotational inertia as a solid sphere of mass 5g and radius 7m should be 6.13 cm (approximately).
To determine the radius of a disk that has the same rotational inertia as a solid sphere, we need to equate their rotational inertias. The rotational inertia of a solid sphere is given by the formula:
I sphere = (2/5) * m * r_sphere^2
where m is the mass of the sphere and r_sphere is the radius of the sphere.
To find the radius of the disk, we rearrange the equation and solve for r_disk:
r_disk = sqrt((5/2) * I_sphere / m_disk)
where m_disk is the mass of the disk.
Substituting the given values into the equation, we have:
r_disk = sqrt((5/2) * (5g * 7m)^2 / 9kg) = 6.13 cm (approximately)
Therefore, the radius of the disk should be approximately 6.13 cm to have the same rotational inertia as the given solid sphere.
Learn more about rotational inertia here:
brainly.com/question/31369161
#SPJ11
The radius (in cm) of a disk of mass 9kg, so that it has the same rotational inertia as a solid sphere of mass 5g and radius 7m should be 6.13 cm (approximately).
To determine the radius of a disk that has the same rotational inertia as a solid sphere, we need to equate their rotational inertias. The rotational inertia of a solid sphere is given by the formula:
I sphere = (2/5) * m * r_sphere^2
where m is the mass of the sphere and r_sphere is the radius of the sphere. To find the radius of the disk, we rearrange the equation and solve for r_disk:
r_disk = sqrt((5/2) * I_sphere / m_disk)
where m_disk is the mass of the disk.
Substituting the given values into the equation, we have:
r_disk = sqrt((5/2) * (5g * 7m)^2 / 9kg) = 6.13 cm (approximately)
Therefore, the radius of the disk should be approximately 6.13 cm to have the same rotational inertia as the given solid sphere.
Learn more about rotational inertia here:
brainly.com/question/31369161
#SPJ11
As humans age beyond 30 years, what happens to their hearing? There is no expected change in hearing with age. They become less sensitive to high frequency sounds. They become less sensitive to low fr
As humans age beyond 30 years, they generally become less sensitive to high-frequency sounds, which can result in difficulties in hearing certain types of sounds and speech.
As humans age beyond 30 years, they generally become less sensitive to high-frequency sounds. This change in hearing is known as presbycusis, which is a natural age-related hearing loss. However, it's important to note that the degree and pattern of hearing loss can vary among individuals.
Presbycusis typically affects the higher frequencies first, making it harder for individuals to hear sounds in the higher pitch range. This can lead to difficulty understanding speech, especially in noisy environments. In contrast, the sensitivity to low-frequency sounds may remain relatively stable or even improve with age.
The exact causes of presbycusis are still not fully understood, but factors such as genetics, exposure to loud noises over time, and the natural aging process of the auditory system are believed to contribute to this phenomenon.
To know more about frequency click here: brainly.com/question/29739263
#SPJ11
A liquid of density 884.4 kilograms per cubic meter flows through at vertical tube. If the pressure in the tube is constant at all heights, what is the speed of the liquid at a height of 4.4m if the speed of the liquid at a height of 5.7m is 8.3m/s? Calculate your answer in Sl units. Enter your answer to 1 decimal place typing the numerical value only (including sign if applicable).
Answer:
The speed of the liquid at a height of 4.4 m is 150. m/s.
Explanation:
The equation for the speed of a liquid flowing through a vertical tube is:
v = sqrt(2gh)
where:
v is the speed of the liquid in meters per second
g is the acceleration due to gravity (9.81 m/s^2)
h is the height of the liquid in meters
We know that the density of the liquid is 884.4 kg/m^3, the speed of the liquid at a height of 5.7 m is 8.3 m/s, and the acceleration due to gravity is 9.81 m/s^2.
We can use this information to solve for the speed of the liquid at a height of 4.4 m.
v = sqrt(2 * 9.81 m/s^2 * 4.4 m) = 150.2 m/s
The speed of the liquid at a height of 4.4 m is 150. m/s.
Learn more about Fluid mechanics.
https://brainly.com/question/33261309
#SPJ11
Which graphs could represent CONSTANT ACCELERATION MOTION
In this, velocity of object changes at constant rate over time.Velocity-time graph,acceleration-time graph are used to represent it. In acceleration-time graph, a horizontal line represents constant acceleration motion.
In the position-time graph, a straight line with a non-zero slope represents constant acceleration motion. The slope of the line corresponds to the velocity of the object, and the line's curvature represents the constant change in velocity.
In the velocity-time graph, a horizontal line represents constant velocity. However, in constant acceleration motion, the velocity-time graph will be a straight line with a non-zero slope. The slope of the line represents the acceleration of the object, which remains constant throughout.
In the acceleration-time graph, a horizontal line represents constant acceleration. The value of the constant acceleration remains the same throughout the motion, resulting in a flat line on the graph. These three types of graphs are interrelated and provide information about an object's motion under constant acceleration. Together, they help visualize the relationship between position, velocity, and acceleration over time in a system with constant acceleration.
To learn more about constant acceleration motion click here : brainly.com/question/24686093
#SPJ11
A light ray traveling from air at an incident angle of 25° with the normal. The corresponding angle of refraction in glass was measured to be 16º. Find the refractive index (n) of glass. Use the value of n to find the speed of light in glass. (n for air = 1, Speed of light in air = 3x108 m/s = Equations Nair sin 01 = nglass sin O2, n = c/V
When a light ray travels from air at an incident angle of 25 degrees with the normal, and the corresponding angle of refraction in glass was measured to be 16 degrees. To find the refractive index (n) of glass, we need to use the formula:
Equation 1:
Nair sin 01 = n glass sin O2The given values are:
01 = 25 degreesO2
= 16 degrees Nair
= 1 We have to find n glass Substitute the given values in the above equation 1 and solve for n glass. n glass = [tex]Nair sin 01 / sin O2[/tex]
[tex]= 1 sin 25 / sin 16[/tex]
= 1.538 Therefore the refractive index of glass is 1.538.To find the speed of light in glass, we need to use the formula:
Equation 2:
[tex]n = c/V[/tex] where, n is the refractive index of the glass, c is the speed of light in air, and V is the speed of light in glass Substitute the given values in the above equation 2 and solve for V.[tex]1.538 = (3 x 108) / VV = (3 x 108) / 1.538[/tex]
Therefore, the speed of light in glass is[tex]1.953 x 108 m/s.[/tex]
To know more about incident visit:
https://brainly.com/question/14019899
#SPJ11