How does unpredictability and the law of
large numbers explain why researchers
believe that many variables are normally
distributed?

Answers

Answer 1

The law of large numbers and unpredictability play a role in researchers believing that many variables follow a normal distribution. Here's how they are connected:

Law of Large Numbers: The law of large numbers states that as the sample size increases, the average of the sample will converge to the true population mean. In other words, if we repeatedly sample from a population and calculate the average of each sample, the average of these sample means will become more accurate as the sample size increases.

Unpredictability: Many variables in nature and social sciences are influenced by a multitude of factors that interact in complex ways. These factors can lead to variability in the observed values of the variables. Additionally, random errors, measurement uncertainties, and other factors can introduce unpredictability into the data.

Normal Distribution: The normal distribution, also known as the Gaussian distribution or bell curve, is a mathematical model that describes the distribution of many natural phenomena. It is characterized by its symmetric bell-shaped curve. The normal distribution is often observed in situations where many independent and randomly varying factors contribute to the outcome. Examples include the heights of individuals, IQ scores, measurement errors, and many biological and physical phenomena.

Researchers believe that many variables are normally distributed because the combination of the law of large numbers and unpredictability suggests that the observed values of a variable will tend to cluster around the population mean. The variability introduced by various factors and random errors is often balanced out, resulting in a bell-shaped distribution. This belief is supported by empirical evidence in numerous fields where normal distributions are frequently encountered.

However, it's important to note that not all variables follow a normal distribution. Some variables may follow other distributions, such as skewed distributions or multimodal distributions. Statistical techniques and tests are employed to assess the distributional characteristics of data and determine the best-fitting distribution for a given variable.

Learn more about unpredictability Visit : brainly.com/question/30879825

#SPJ11


Related Questions

Suppose the proportion of all college students who have used marijuana in the past 6 months is p = 0. 40. In a class of 125 students that are representative of all college students, would it be unusual for the proportion who have used marijuana in the past 6 months to be less than 0. 34?

Answers

a) Yes, because the sample proportion is more than 2 standard deviations from the population proportion.

Is it unusual for the proportion of college students?

To determine if it is unusual, we will calculate the standard deviation of the sampling distribution using the formula: Standard deviation = sqrt((p * (1 - p)) / n),

Data:

p is the population proportion (0.40)

n is the sample size (200).

Standard deviation = sqrt((0.40 * (1 - 0.40)) / 200)

Standard deviation = sqrt(0.24 / 200)

Standard deviation 0.031

z = (sample proportion - population proportion) / standard deviation

z = (0.32 - 0.40) / 0.031

z = -2.58

Since the z-score is less than -2, it means that the sample proportion is more than 2 standard deviations below the population proportion.

Read more about normal dustribution

brainly.com/question/4079902

#SPJ4

Consider two events A and B such that Pr(A) = 1/3 and Pr(B) = 1/2. Determine the value of Pr(B ∩ Ac
) for each of the following conditions:
(a) A and B are disjoint;
(b) A ⊆ B;
(c) Pr(A ∩ B) = 1/8.

Answers

The value of Pr(B ∩ Ac) for the given conditions are:

(a) 1/2

(b) 1/6

(c) 3/8

What is the probability of the complement of A intersecting with B for the given conditions?

The probability of an event occurring can be calculated using the formula: P(A) = (number of favorable outcomes) / (total number of outcomes). In the given problem, we are given the probabilities of two events A and B and we need to calculate the probability of the complement of A intersecting with B for different conditions.

In the first condition, A and B are disjoint, which means they have no common outcomes. Therefore, the probability of the complement of A intersecting with B is the same as the probability of B, which is 1/2.

In the second condition, A is a subset of B, which means all the outcomes of A are also outcomes of B. Therefore, the complement of A intersecting with B is the same as the complement of A, which is 1 - 1/3 = 2/3. Therefore, the probability of the complement of A intersecting with B is (2/3)*(1/2) = 1/6.

In the third condition, the probability of A intersecting with B is given as 1/8. We know that P(A ∩ B) = P(A) + P(B) - P(A ∪ B). Using this formula, we can find the probability of A union B, which is 11/24. Now, the probability of the complement of A intersecting with B can be calculated as P(B) - P(A ∩ B) = 1/2 - 1/8 = 3/8.

Learn more about probability

brainly.com/question/11234923

#SPJ11

Expand the function 13+4x13+4x in a power series ∑=0[infinity]x∑n=0[infinity]anxn with center c=0.center c=0. Find x.anxn.
(Express numbers in exact form. Use symbolic notation and fractions where needed. For alternating series, include a factor of the form (−1)(−1)n in your answer.)
x=anxn=
Determine the interval of convergence.
(Give your answers as intervals in the form (∗,∗).(∗,∗). Use symbol [infinity][infinity] for infinity, ∪∪ for combining intervals, and appropriate type of parenthesis "(",")", "["or"]""(",")", "["or"]" depending on whether the interval is open or closed. Enter DNEDNE if interval is empty. Express numbers in exact form. Use symbolic notation and fractions where needed.)
x∈x∈

Answers

The expansion of the function is 13 - 52/169 x + 416/2197 x^2 - 3328/28561 x^3 + 26624/371293 x^4 - ... and the interval of convergence is (-17/4, -13/4).

To expand the function 13+4x13+4x in a power series ∑=0[infinity]x∑n=0[infinity]anxn with center c=0, we can use the formula:

∑n=0[infinity]an(x-c)^n

where c is the center of the power series, and an can be found using the formula:

an = f^(n)(c)/n!

where f^(n) denotes the nth derivative of the function.

In this case, we have:

f(x) = 13 + 4x / (13 + 4x)

Taking derivatives, we get:

f'(x) = -52 / (13 + 4x)^2

f''(x) = 416 / (13 + 4x)^3

f'''(x) = -3328 / (13 + 4x)^4

f''''(x) = 26624 / (13 + 4x)^5

...

Evaluating these derivatives at x=0, we get:

f(0) = 13

f'(0) = -52/169

f''(0) = 416/2197

f'''(0) = -3328/28561

f''''(0) = 26624/371293

...

Therefore, the power series expansion of f(x) about x=0 is:

13 - 52/169 x + 416/2197 x^2 - 3328/28561 x^3 + 26624/371293 x^4 - ...

To determine the interval of convergence, we can use the ratio test:

lim |an+1(x-c)^(n+1)/an(x-c)^n| = lim |(13 + 4x)/(17 + 4x)| < 1

x → 0

Solving for x, we get:

-17/4 < x < -13/4

Therefore, the interval of convergence is (-17/4, -13/4).

Know more about convergence here:

https://brainly.com/question/30275628

#SPJ11

La siguiente tabla presenta las frecuencias absolutas y relativas de las distintas caras de un dado cuando se simulan 300 lanzamientos en una página web:




Si ahora se simulan 600 lanzamientos en la misma página web, Marcos cree que la frecuencia relativa de la cara con el número 6 será 0,36, porque se simula el doble de los lanzamientos originales. Por otro lado, Camila cree que la frecuencia relativa de la cara número 6 se acercará más al valor 0,166, tal como el resto de las frecuencias relativas de la tabla.


¿Quién tiene la razón? Marca tu respuesta.


marcos


camila


Justifica tu respuesta a continuación

Answers

The given table below presents the absolute and relative frequencies of the different faces of a die when 300 throws are simulated on a website: Given ,The number of throws simulated originally, n = 300Frequency of the face with number 6, f = 50The relative frequency of the face with number 6, P = f/n = 50/300 = 0.

1667Now, Marcos says that the relative frequency of the face number 6 will be 0.36 because twice the original throws are simulated. However, this is incorrect. The relative frequency is not affected by the number of throws simulated. The probability of obtaining a face with the number 6 in each throw is still 1/6. So, the relative frequency of the face with number 6 should remain the same as before.

Therefore, Marcos is wrong.On the other hand, Camila says that the relative frequency of the face number 6 will be close to 0.166 as all other relative frequencies of the table. This is correct because the probability of obtaining any face is equally likely in each throw. Hence, the relative frequency of each face should also be almost equal to each other.Therefore, Camila is correct. Camila has the reason.Here, we don't know the absolute frequency or the number of times the face number 6 appears when 600 throws are simulated. But it is given that the relative frequency of the face number 6 should be close to 0.166 as before. Thus, the option that correctly answers the question is "Camila."

To know more about  frequency visit:

brainly.com/question/29739263

#SPJ11

See Step 3 in the Python script to address the following items:In general, how is a simple linear regression model used to predict the response variable using the predictor variable?What is the equation for your model?What are the results of the overall F-test? Summarize all important steps of this hypothesis test. This includes:Null Hypothesis (statistical notation and its description in words)Alternative Hypothesis (statistical notation and its description in words)Level of SignificanceReport the test statistic and the P-value in a formatted table as shown below:Table 1: Hypothesis Test for the Overall F-TestStatisticValueTest Statistic182.10P-value0.0000Conclusion of the hypothesis test and its interpretation based on the P-valueBased on the results of the overall F-test, can average points scored predict the total number of wins in the regular season?What is the predicted total number of wins in a regular season for a team that is averaging 75 points per game? Round your answer down to the nearest integer.What is the predicted number of wins in a regular season for a team that is averaging 90 points per game? Round your answer down to the nearest integer.

Answers

For a team averaging 75 points per game, the predicted total number of wins is approximately 34 (rounded down). the predicted total number of wins is approximately 42 (rounded down).

A simple linear regression model is used to predict the response variable (total number of wins) using the predictor variable (average points scored) by fitting a straight line to the data. The equation for the model is Y = a + bX, where Y is the response variable, X is the predictor variable, and a and b are coefficients.

The overall F-test checks the significance of the linear relationship between the variables. The null hypothesis (H0) states that there is no relationship between average points scored and total wins (b = 0), while the alternative hypothesis (H1) states that there is a relationship (b ≠ 0).

Using a level of significance (α) of 0.05, we can compare the test statistic and P-value to determine the conclusion:

Table 1: Hypothesis Test for the Overall F-Test
Statistic | Value
Test Statistic | 182.10
P-value | 0.0000

Since the P-value is less than α, we reject H0 and conclude that average points scored can predict total wins in the regular season. For a team averaging 90 points per game,

To learn more about : predicted

https://brainly.com/question/29061537

#SPJ11

Use the given information to find the indicated probability.P(A ∪ B) = .9, P(B) = .8, P(A ∩ B) = .7.Find P(A).P(A) = ?

Answers

Using the formula for the probability of the union of two events, we can find that P(A) is 0.6 given that P(A ∪ B) = 0.9, P(B) = 0.8, and P(A ∩ B) = 0.7.

We can use the formula for the probability of the union of two events to find P(A) so

P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

Substituting the given values, we have

0.9 = P(A) + 0.8 - 0.7

Simplifying and solving for P(A), we get:

P(A) = 0.8 - 0.9 + 0.7 = 0.6

Therefore, the probability of event A is 0.6.

To know more about Probability:

brainly.com/question/32117953

#SPJ4

consider the following hypotheses: h0: μ = 30 ha: μ ≠ 30 the population is normally distributed. a sample produces the following observations:

Answers

To test a hypothesis, we need to collect a sample, calculate a test statistic, and compare it to a critical value to determine whether to reject or fail to reject the null hypothesis. However, I can explain the general process for testing a hypothesis.

In this case, the null hypothesis (H0) states that the population mean (μ) is equal to 30, while the alternative hypothesis (HA) states that the population mean is not equal to 30. We assume that the population is normally distributed. To test these hypotheses, we would first collect a sample of observations from the population. The size of the sample would depend on various factors, such as the level of precision desired and the variability in the population. Once we have the sample, we would calculate the sample mean and sample standard deviation. We would then use this information to calculate a test statistic, such as a t-score or z-score, depending on the sample size and whether the population standard deviation is known. Finally, we would compare the test statistic to a critical value from a t-distribution or a standard normal distribution, depending on the test statistic used. If the test statistic falls in the rejection region, we would reject the null hypothesis and conclude that there is evidence to support the alternative hypothesis. If the test statistic falls in the non-rejection region, we would fail to reject the null hypothesis and conclude that there is not enough evidence to support the alternative hypothesis.

Learn more about statistic here:

https://brainly.com/question/31577270

#SPJ11

Consider the sample regression equation: y = 12 + 2x1 - 6x2 + 6x3 + 2x4 When X1 increases 2 units and x2 increases 1 unit, while x3 and X4 remain unchanged, what change would you expect in the predicted y? Decrease by 10 O Increase by 10 O Decrease by 2 O No change in the predicted y O Increase by 2

Answers

The change the you would expect in the predicted y is C. Decrease by 2

How to explain the information

It should be noted that to determine the change in the predicted y, we need to calculate the effect of the change in x1 and x2 on y, while holding x3 and x4 constant.

The coefficients of x1 and x2 are 2 and -6, respectively. Therefore, increasing x1 by 2 units will result in a change in y of 2(2) = 4 units, while increasing x2 by 1 unit will result in a change in y of -6(1) = -6 units. Since x3 and x4 remain unchanged, they have no effect on the change in y.

Therefore, the predicted y will decrease by 2 units when x1 increases 2 units and x2 increases 1 unit, while x3 and x4 remain unchanged.

Learn more about prediction on

https://brainly.com/question/25955478

#SPJ1

calculate ∬sf(x,y,z)ds for x2 y2=25,0≤z≤4;f(x,y,z)=e−z ∬sf(x,y,z)ds=

Answers

The surface integral is equal to 5(e^(-4) - e^(0)).

How to calculate the surface integral ∬sf(x,y,z)ds for [tex]x2[/tex][tex]y2[/tex]=25,0≤z≤4;f(x,y,z)=e−z?

I assume that the question is asking to evaluate the surface integral of the given function over the surface defined by the equation [tex]x^2+y^2[/tex]=25 and 0 ≤ z ≤ 4.

To evaluate this surface integral, we can use the formula:

∬sf(x,y,z)ds = ∫∫f(x,y,z) ∥n(x,y,z)∥ dA

where f(x,y,z) = e^(-z) is the given function and ∥n(x,y,z)∥ is the magnitude of the normal vector to the surface at point (x,y,z).

Since the surface is a cylinder with radius 5 and height 4, we can use cylindrical coordinates to integrate over the surface. The normal vector to the surface is given by n(x,y,z) = (x,y,0), so the magnitude of the normal vector is ∥n(x,y,z)∥ = [tex](x^2+y^2)^(1/2)[/tex]= 5.

Thus, the surface integral becomes:

∬sf(x,y,z)ds = ∫θ=0 to 2π ∫r=0 to 5 [tex]e^(-z)[/tex] ∥[tex]n(x,y,z)[/tex]∥ dr dθ dz

= ∫θ=0 to 2π ∫r=0 to[tex]5 e^(-z) (5) dr dθ[/tex] ∫z=0 to 4 dz

= 5π [[tex]e^(-z)[/tex]] from z=0 to 4

= 5π ([tex]e^(-4) - 1[/tex])

≈ 0.3124

Therefore, the value of the given surface integral is approximately 0.3124.

Learn more about integral

brainly.com/question/18125359

#SPJ11

find a power series for ()=6(2 1)2, ||<1 in the form ∑=1[infinity].

Answers

A power series for f(x) = 6(2x+1)^2, ||<1,  can be calculated by  using the binomial series formula: (1 + t)^n = ∑(k=0 to infinity) [(n choose k) * t^k]. The power series for f(x) is: f(x) = 6 + 12(x - (-1/2)) + 6(x - (-1/2))^2 + ∑(k=3 to infinity) [ck * (x - (-1/2))^k]


Where (n choose k) is the binomial coefficient, given by:
(n choose k) = n! / (k! * (n-k)!)
Applying this formula to our function, we get:
f(x) = 6(2x+1)^2 = 6 * (4x^2 + 4x + 1)
= 6 * [4(x^2 + x) + 1]
= 6 * [4(x^2 + x + 1/4) - 1/4 + 1]
= 6 * [4((x + 1/2)^2 - 1/16) + 3/4]
= 6 * [16(x + 1/2)^2 - 1]/4 + 9/2
= 24 * [(x + 1/2)^2] - 1/4 + 9/2
Now, let's focus on the first term, (x + 1/2)^2:
(x + 1/2)^2 = (1/2)^2 * (1 + 2x + x^2)
= 1/4 + x/2 + (1/2) * x^2
Substituting this back into our expression for f(x), we get:
f(x) = 24 * [(1/4 + x/2 + (1/2) * x^2)] - 1/4 + 9/2
= 6 + 12x + 6x^2 - 1/4 + 9/2
= 6 + 12x + 6x^2 + 17/4
= 6 + 12(x - (-1/2)) + 6(x - (-1/2))^2
This final expression is in the form of a power series, with:
c0 = 6
c1 = 12
c2 = 6
c3 = 0
c4 = 0
c5 = 0
and:
x0 = -1/2
So the power series for f(x) is:
f(x) = 6 + 12(x - (-1/2)) + 6(x - (-1/2))^2 + ∑(k=3 to infinity) [ck * (x - (-1/2))^k]
Note that since ||<1, this power series converges for all x in the interval (-1, 0) U (0, 1).

Read more about power series.

https://brainly.com/question/31776977

#SPJ11

Thirty-two 1-Liter specimens of water were drawn from the water supply for a city and the concentration of lead in the specimen was measured. The average level of lead was 7.3 µg/Liter, and the standard deviation for the sample was 3.1 µg/Liter. Using a significance level of 0.05, do we have evidence the mean concentration of lead in the city’s water supply is less than 10 µg/Liter? 14. The t critical value is _______________ (fill in the blank).

Answers

The t critical value is -1.697

To determine whether there is evidence that the mean concentration of lead in the city's water supply is less than 10 µg/Liter, we can conduct a one-sample t-test. The t critical value represents the cutoff point beyond which we reject the null hypothesis. In this case, we need to calculate the t critical value.

Given that the sample size is 32, the degrees of freedom (df) for a one-sample t-test is calculated as df = n - 1, where n is the sample size. In this case, df = 32 - 1 = 31.

The significance level, also known as alpha (α), is given as 0.05. Since we are conducting a one-tailed test (less than), we divide the significance level by 2 to get the one-tailed alpha value. Therefore, α/2 = 0.05/2 = 0.025.

To find the t critical value corresponding to a one-tailed alpha value of 0.025 and 31 degrees of freedom, we consult a t-distribution table or use statistical software. From the table, the t critical value is approximately -1.697.

Therefore, the t critical value is -1.697.

To know more about null hypothesis refer to

https://brainly.com/question/28920252

#SPJ11

Any random variable whose only possible values are 0 and 1 is called a

Answers

Answer:

Bernoulli Random Variable

A random variable that can only take on the values 0 and 1 is called a "Bernoulli random variable.

A random variable that can only take on the values 0 and 1 is called a "Bernoulli random variable". The term "Bernoulli" refers to the Swiss mathematician Jacob Bernoulli, who introduced this type of random variable in the early 18th century.

Bernoulli random variables are commonly used in probability theory and statistics to model binary outcomes, such as success/failure, heads/tails, or yes/no responses. A Bernoulli random variable is characterized by a single parameter p, which represents the probability of observing a value of 1 (success) versus 0 (failure). The probability mass function (PMF) of a Bernoulli random variable is given by P(X=1) = p and P(X=0) = 1-p.

Bernoulli random variables are a special case of the binomial distribution, which models the number of successes in a fixed number of independent trials.

for such more question on Bernoulli random variable.

https://brainly.com/question/31037593

#SPJ11

Last semester, I taught two sections of a same class; Section A with 20 students and Section B with 30. Before grading their final exams, I randomly mixed all the exams I together. I graded 12 exams at the first sitting. (i) Of those 12 exams, the probability that exactly 5 of these are from the Section B is (You do not need to simplify your answers.) . (ii) Of those 12 exams, the probability that they are not all from the same section is (You do not need to simplify your answers.)

Answers

1. The probability is approximately 0.1823.

2. The probability that the 12 exams are not all from the same section is 0.6756

How to calculate the probability

1. The probability that exactly 5 of the 12 exams are from Section B is:

P(X = 5) = (12 choose 5) * 0.6 × 0.6⁴ * (1 - 0.6)⁷

= 0.1823

2.  The probability that all 12 exams are from the same section is:

P(all from A) + P(all from B) = (20/50)¹² + (30/50)¹²

≈ 0.0132 + 0.3112

≈ 0.3244

Therefore, the probability that the 12 exams are not all from the same section is:

P(not all from same section) = 1 - P(all from same section)

≈ 1 - 0.3244

≈ 0.6756

Learn more about probability on

https://brainly.com/question/24756209

#SPJ1

10.35 Let X 1

,…,X n

be a random sample from a n(μ,σ 2
) population. (a) If μ is unknown and σ 2
is known, show that Z= n

( X
ˉ
−μ 0

)/σ is a Wald statistic for testing H 0

:μ=μ 0

. (b) If σ 2
is unknown and μ is known, find a Wald statistic for testing H 0

:σ=σ 0

.

Answers

a. Wald statistic for testing H0: μ = μ0.

b.  If σ 2 is unknown and μ is known the Wald statistic for testing H 0 is W = (S^2 - σ0^2) / (σ0^2 / n)

(a) We know that the sample mean x is an unbiased estimator of the population mean μ. Now, if we subtract μ from x and divide the result by the standard deviation of the sample mean, we obtain a standard normal random variable Z. That is,

Z = (x - μ) / (σ / sqrt(n))

Now, if we assume the null hypothesis H0: μ = μ0, we can substitute μ for μ0 and rearrange the terms to get

Z = (x - μ0) / (σ / sqrt(n))

This is a Wald statistic for testing H0: μ = μ0.

(b) If μ is known, we can use the sample variance S^2 as an estimator of σ^2. Then, we can define the Wald statistic as

W = (S^2 - σ0^2) / (σ0^2 / n)

Under the null hypothesis H0: σ = σ0, the sampling distribution of W approaches a standard normal distribution as n approaches infinity, by the central limit theorem. Therefore, we can use this Wald statistic to test the null hypothesis.

Learn more about wald test at https://brainly.com/question/13896791

#SPJ11

Angelina orders lipsticks from an online makeup website. Each lipstick costs $7. 50. A one-time shipping fee is $3. 25 is added to the cost of the order. The total cost of Angelina’s order before tax is $87. 75. How many lipsticks did she order? Label your variable. Write and solve and algebraic equation. Write your answer in a complete sentence based on the context of the problem. (Please someone smart answer!)

Answers

Angelina ordered 10 lipsticks from the online makeup website. The total cost of Angelina’s order before tax is $87. 75. We are asked to determine the total number of lipsticks she ordered.

Let's denote the number of lipsticks Angelina ordered as 'x'. Each lipstick costs $7.50, so the cost of 'x' lipsticks is 7.50x. Additionally, a one-time shipping fee of $3.25 is added to the total cost. Therefore, the total cost of Angelina's order before tax can be expressed as:

Total cost = Cost of lipsticks + Shipping fee

87.75 = 7.50x + 3.25

To find the value of 'x', we need to solve the equation. Rearranging the equation, we have:

7.50x = 87.75 - 3.25

7.50x = 84.50

x = 84.50 / 7.50

x = 11.27

Since the number of lipsticks cannot be a fraction, we can round down to the nearest whole number. Therefore, Angelina ordered 10 lipsticks from the online makeup website.

In conclusion, Angelina ordered 10 lipsticks based on the given information and the solution to the algebraic equation.

Learn more about fraction here:

https://brainly.com/question/10354322

#SPJ11

Two news websites open their memberships to the public.


Compare the websites by calculating and interpreting the average rates of change from Day 10 to Day 20. Which website will have more members after 50 days?

Answers

Two news websites have opened their memberships to the public, and their growth rates between Day 10 and Day 20 are compared to determine which website will have more members after 50 days.

To calculate the average rate of change for each website, we need to determine the difference in the number of members between Day 10 and Day 20 and divide it by the number of days in that period. Let's say Website A had 200 members on Day 10 and 500 members on Day 20, while Website B had 300 members on Day 10 and 600 members on Day 20.

For Website A, the rate of change is (500 - 200) / 10 = 30 members per day.

For Website B, the rate of change is (600 - 300) / 10 = 30 members per day.

Both websites have the same average rate of change, indicating that they are growing at the same pace during this period. To predict the number of members after 50 days, we can assume that the average rate of change will remain constant. Thus, after 50 days, Website A would have an estimated 200 + (30 * 50) = 1,700 members, and Website B would have an estimated 300 + (30 * 50) = 1,800 members.

Based on this calculation, Website B is projected to have more members after 50 days. However, it's important to note that this analysis assumes a constant growth rate, which might not necessarily hold true in the long run. Other factors such as website popularity, marketing efforts, and user retention can also influence the final number of members.

Learn more about average here:

https://brainly.com/question/24057012

#SPJ11

If sin(x) = 1/4 and x is in quadrant I, find the exact values of the expressions without solving for x. (a) sin(2x) (b) cos(2x) (c) tan(2x)

Answers

The exact values of the expressions without solving for x is

sin(2x) = √15/8

cos(2x) = 7/8

tan(2x) = 2√15.

Given that sin(x) = 1/4 and x is in quadrant I, we can use the given information to find the exact values of the expressions without explicitly solving for x.

(a) To find sin(2x), we can use the double-angle identity for sine:

sin(2x) = 2sin(x)cos(x)

Using the value of sin(x) = 1/4, we have:

sin(2x) = 2(1/4)cos(x)

Since x is in quadrant I, both sin(x) and cos(x) are positive. Therefore, cos(x) is equal to the positive square root of (1 - sin^2(x)).

cos(x) = √(1 - (1/4)^2) = √(1 - 1/16) = √(15/16) = √15/4

Substituting the values, we get:

sin(2x) = 2(1/4)(√15/4) = √15/8

Therefore, sin(2x) = √15/8.

(b) To find cos(2x), we can use the double-angle identity for cosine:

cos(2x) = cos^2(x) - sin^2(x)

Using the values of sin(x) = 1/4 and cos(x) = √15/4, we have:

cos(2x) = (√15/4)^2 - (1/4)^2 = 15/16 - 1/16 = 14/16 = 7/8

Therefore, cos(2x) = 7/8.

(c) To find tan(2x), we can use the identity:

tan(2x) = (2tan(x))/(1 - tan^2(x))

Using the value of sin(x) = 1/4 and cos(x) = √15/4, we have:

tan(x) = sin(x)/cos(x) = (1/4)/(√15/4) = 1/√15

Substituting the value of tan(x) into the formula for tan(2x), we get:

tan(2x) = (2(1/√15))/(1 - (1/√15)^2) = (2/√15)/(1 - 1/15) = (2/√15)/(14/15) = 30/√15

To simplify further, we rationalize the denominator:

tan(2x) = (30/√15) * (√15/√15) = (30√15)/15 = 2√15

Therefore, tan(2x) = 2√15.

To learn more about Quadrants

https://brainly.com/question/21792817

#SPJ11

Sketch and Label the triangle described:



2. ) Side Lengths: 37 ft. , 35 ft. , and 12 ft. , with the shortest side at the right



Angle Measures: 71 degrees, 19 degrees, and 90 degrees, with the right


angle at the top

Answers

Given that the triangle has side lengths of 37 ft., 35 ft., and 12 ft., with the shortest side at the right, and the angle measures of 71 degrees, 19 degrees, and 90 degrees,

with the right angle at the top, we can sketch and label the triangle as follows: Labeling the sides of the triangle: We can see that the side with length 12 ft. is the shortest side and is opposite the angle of measure 19 degrees, and the angle of measure 90 degrees is at the top and is opposite the longest side of length 37 ft.

Hence, the triangle is a right triangle. Labeling the angles of the triangle: It is important to notice that the side with length 35 ft. is adjacent to the angle of measure 71 degrees, which means that it is the leg of the right triangle. 

So, the sketch and the labeling of the triangle with the given information are shown above.

The answer cannot be in "250 words" as the solution is already explained and shown.

To know more about triangle Visit:

https://brainly.com/question/2773823

#SPJ11

For some value of Z, the value of the cumulative standardized normal distribution is 0.2090. What is the value of Z? Round to two decimal places. A -0.81 B. -0.31 C. 1.96 D. 0.31

Answers

The answer is (A) -0.81.

We need to find the value of Z such that the cumulative standardized normal distribution up to Z is 0.2090.

Using a standard normal distribution table or calculator, we can find that the value of Z that corresponds to a cumulative probability of 0.2090 is approximately -0.81.

Therefore, the answer is (A) -0.81.

To know more about probability refer here:

https://brainly.com/question/11234923

#SPJ11

Find the center of mass of a thin triangular plate bounded by the coordinate axes and the line x + y = 9 if δ(x,y) = x + y. A)→x=2,→y=2
B) →x=54,→y=54
C)→x=98,→y=98
D)→x=1,→y=1

Answers

The center of mass of a thin triangular plate bounded by the coordinate axes and the line x + y = 9 if δ(x,y) is:

x = 2, y = 2. The correct option is (A).

We can use the formulas for the center of mass of a two-dimensional object:

[tex]$$\bar{x}=\frac{\iint_R x\delta(x,y)dA}{\iint_R \delta(x,y)dA} \quad \text{and} \quad \bar{y}=\frac{\iint_R y\delta(x,y)dA}{\iint_R \delta(x,y)dA}$$[/tex]

where R is the region of the triangular plate,[tex]$\delta(x,y)$[/tex] is the density function, and [tex]$dA$[/tex] is the differential element of area.

Since the plate is bounded by the coordinate axes and the line x+y=9, we can write its region as:

[tex]$$R=\{(x,y) \mid 0 \leq x \leq 9, 0 \leq y \leq 9-x\}$$[/tex]

We can then evaluate the integrals:

[tex]$$\iint_R \delta(x,y)dA=\int_0^9\int_0^{9-x}(x+y)dxdy=\frac{243}{2}$$$$\iint_R x\delta(x,y)dA=\int_0^9\int_0^{9-x}x(x+y)dxdy=\frac{729}{4}$$$$\iint_R y\delta(x,y)dA=\int_0^9\int_0^{9-x}y(x+y)dxdy=\frac{729}{4}$[/tex]

Therefore, the center of mass is:

[tex]$$\bar{x}=\frac{\iint_R x\delta(x,y)dA}{\iint_R \delta(x,y)dA}=\frac{729/4}{243/2}=\frac{3}{2}$$$$\bar{y}=\frac{\iint_R y\delta(x,y)dA}{\iint_R \delta(x,y)dA}=\frac{729/4}{243/2}=\frac{3}{2}$$[/tex]

So the answer is (A) [tex]$\rightarrow x=2, y=2$\\[/tex]

To know more about center of mass refer here :

https://brainly.com/question/29130796#

#SPJ11

Part of a homeowner's insurance policy covers one miscellaneous loss per year, which is known to have a 10% chance of occurring. If there is a miscellaneous loss, the probability is c/x that the loss amount is $100x, for x = 1, 2, ...,5, where c is a constant. These are the only loss amounts possible. If the deductible for a miscellaneous loss is $200, determine the net premium for this part of the policy—that is, the amount that the insurance company must charge to break even.

Answers

The insurance company must charge $6c - $24 as the net premium to break even on this part of the policy.

Let X denote the loss amount for a miscellaneous loss. Then, the probability mass function of X is given by:

P(X = 100x) = (c/x)(0.1), for x = 1, 2, ..., 5.

The deductible for a miscellaneous loss is $200. This means that if a loss occurs, the homeowner pays the first $200, and the insurance company pays the rest. Therefore, the insurance company's payout for a loss amount of 100x is $100x - $200.

The net premium for this part of the policy is the expected payout for the insurance company, which is equal to the expected loss amount minus the deductible, multiplied by the probability of a loss:

Net premium = [E(X) - $200] * 0.1

To find E(X), we use the formula for the expected value of a discrete random variable:

E(X) = ∑ x P(X = x)

E(X) = ∑ (100x)(c/x)(0.1)

E(X) = 100 * ∑ c * (0.1)

E(X) = 50c

Therefore, the net premium is:

Net premium = [50c - $200] * 0.1

To break even, the insurance company must charge the homeowner the net premium plus a profit margin. If we assume that the profit margin is 20%, then the net premium can be calculated as:

Net premium + 0.2*Net premium = Break-even premium

(1 + 0.2) * Net premium = Break-even premium

1.2 * Net premium = Break-even premium

Substituting the expression for the net premium, we get:

1.2 * [50c - $200] * 0.1 = Break-even premium

6c - $24 = Break-even premium

Therefore, the insurance company must charge $6c - $24 as the net premium to break even on this part of the policy.

To know more about probability refer here:

https://brainly.com/question/30034780

#SPJ11

Let F = ∇f, where f(x, y) = sin(x − 7y). Find curves C1 and C2 that are not closed and satisfy the equation.
a) C1 F · dr = 0, 0 ≤ t ≤ 1
C1: r(t) = ?
b) C2 F · dr = 1 , 0 ≤ t ≤ 1
C2: r(t) = ?

Answers

a. One possible curve C1 is a line segment from (0,0) to (π/2,0), given by r(t) = <t, 0>, 0 ≤ t ≤ π/2. One possible curve C2 is the line segment from (0,0) to (0,-14π), given by r(t) = <0, -14πt>, 0 ≤ t ≤ 1.

a) We have F = ∇f = <∂f/∂x, ∂f/∂y>.

So, F(x, y) = <cos(x-7y), -7cos(x-7y)>.

To find a curve C1 such that F · dr = 0, we need to solve the line integral:

∫C1 F · dr = 0

Using Green's Theorem, we have:

∫C1 F · dr = ∬R (∂Q/∂x - ∂P/∂y) dA

where P = cos(x-7y) and Q = -7cos(x-7y).

Taking partial derivatives:

∂Q/∂x = -7sin(x-7y) and ∂P/∂y = 7sin(x-7y)

So,

∫C1 F · dr = ∬R (-7sin(x-7y) - 7sin(x-7y)) dA = 0

This means that the curve C1 can be any curve that starts and ends at the same point, since the integral of F · dr over a closed curve is always zero.

One possible curve C1 is a line segment from (0,0) to (π/2,0), given by:

r(t) = <t, 0>, 0 ≤ t ≤ π/2.

b) To find a curve C2 such that F · dr = 1, we need to solve the line integral:

∫C2 F · dr = 1

Using Green's Theorem as before, we have:

∫C2 F · dr = ∬R (-7sin(x-7y) - 7sin(x-7y)) dA = -14π

So,

∫C2 F · dr = -14π

This means that the curve C2 must have a line integral of -14π. One possible curve C2 is the line segment from (0,0) to (0,-14π), given by:

r(t) = <0, -14πt>, 0 ≤ t ≤ 1.

Learn more about line segment here

https://brainly.com/question/280216

#SPJ11

part A: Suppose y=f(x) and x=f^-1(y) are mutually inverse functions. if f(1)=4 and dy/dx = -3 at x=1, then dx/dy at y=4equals?a) -1/3 b) -1/4 c)1/3 d)3 e)4part B: Let y=f(x) and x=h(y) be mutually inverse functions.If f '(2)=5, then what is the value of dx/dy at y=2?a) -5 b)-1/5 c) 1/5 d) 5 e) cannot be determinedpart C) If f(x)=for x>0, then f '(x) =

Answers

Part A: dx/dy at y=4 equals 1/3. The correct option is (c) 1/3.

Part B: The value of dx/dy at y=2 is 1/5. the answer is (c) 1/5.

C. f'(x) = (1/2) * sqrt(x)^-1.

Part A:
We know that y=f(x) and x=f^-1(y) are mutually inverse functions, which means that f(f^-1(y))=y and f^-1(f(x))=x. Using implicit differentiation, we can find the derivative of x with respect to y as follows:

d/dy [f^-1(y)] = d/dx [f^-1(y)] * d/dy [x]
1 = (1/ (dx/dy)) * d/dy [x]
(dx/dy) = d/dy [x]

Now, we are given that f(1)=4 and dy/dx = -3 at x=1. Using the chain rule, we can find the derivative of y with respect to x as follows:

dy/dx = (dy/dt) * (dt/dx)
-3 = (dy/dt) * (1/ (dx/dt))
(dx/dt) = -1/3

We want to find dx/dy at y=4. Since y=f(x), we can find x by solving for x in terms of y:

y = f(x)
4 = f(x)
x = f^-1(4)

Using the inverse function property, we know that f(f^-1(y))=y, so we can substitute x=f^-1(4) into f(x) to get:

f(f^-1(4)) = 4
f(x) = 4

Now, we can find dy/dx at x=4 using the given derivative dy/dx = -3 at x=1 and differentiating implicitly:

dy/dx = (dy/dt) * (dt/dx)
dy/dx = (-3) * (dx/dt)

We know that dx/dt = -1/3 from earlier, so:

dy/dx = (-3) * (-1/3) = 1

Finally, we can find dx/dy at y=4 using the formula we derived earlier:

(dx/dy) = d/dy [x]
(dx/dy) = 1/ (d/dx [f^-1(y)])

We can find d/dx [f^-1(y)] using the fact that f(f^-1(y))=y:

f(f^-1(y)) = y
f(x) = y
x = f^-1(y)

So, d/dx [f^-1(y)] = 1/ (dy/dx). Plugging in dy/dx = 1 and y=4, we get:

(dx/dy) = 1/1 = 1

Therefore, the answer is (c) 1/3.

Part B:
Let y=f(x) and x=h(y) be mutually inverse functions. We know that f '(2)=5, which means that the derivative of f(x) with respect to x evaluated at x=2 is 5. Using the chain rule, we can find the derivative of x with respect to y as follows:

dx/dy = (dx/dt) * (dt/dy)

We know that x=h(y), so:

dx/dy = (dx/dt) * (dt/dy) = h'(y)

To find h'(2), we can use the fact that y=f(x) and x=h(y) are mutually inverse functions, so:

y = f(h(y))
2 = f(h(2))

Differentiating implicitly with respect to y, we get:

dy/dx * dx/dy = f'(h(2)) * h'(2)
dx/dy = h'(2) = (dy/dx) / f'(h(2))

We know that f'(h(2))=5 from the given information, and we can find dy/dx at x=h(2) using the fact that y=f(x) and x=h(y) are mutually inverse functions, so:

y = f(x)
2 = f(h(y))
2 = f(h(x))
dy/dx = 1 / (dx/dy)

Plugging in f'(h(2))=5, dy/dx=1/(dx/dy), and y=2, we get:

dx/dy = h'(2) = (dy/dx) / f'(h(2)) = (1/(dx/dy)) / 5 = (1/5)

Therefore, the answer is (c) 1/5.

Part C:
We are given that f(x)= for x>0. Differentiating with respect to x using the power rule, we get:

f'(x) = (1/2) * x^(-1/2)

Therefore, f'(x) = (1/2) * sqrt(x)^-1.

To know more about implicit differentiation, refer to the link below:

https://brainly.com/question/11887805#

#SPJ11

Andy wrote the following steps to solve the equation 252 = 125 +1. He thinks he correctly solved the problem. Did he? Identify the errors and show the correct solution

Answers

No, Andy did not find the solution to the problem 252 = 125 + 1 in the correct manner. The mistake was made when computing the total of the numbers on the right side of the equation, which was done incorrectly. Finding the answer that is 126, which is the sum of 125 and 1, is part of the correct solution.

Andy's calculation of the sum on the right side of the equation 252 = 125 + 1 had an inaccuracy, which led to an incorrect answer. It appears that he made a calculation error by putting the numbers together, as the result of which was 1 rather than the correct amount of 125. On the other hand, the accurate total is 126.

To get the right answer to the problem, all we need to do is add 125 and 1, which gives us a total of 126. Since this is the case, the answer to the equation 252 = 125 + 1 should be written as 252 = 126. Andy's computation was erroneous as a result of the inaccurate total that he produced, and the proper answer requires locating the accurate sum of the values that are on the right side of the equation.

Learn more about equation here:

https://brainly.com/question/10724260

#SPJ11

The axioms for a vector space V can be used to prove the elementary properties for a vector space. Because of Axiom 2. Axioms 2 and 4 imply, respectlyely, that 0-u u and -u+u = 0 for all u. Complete the proof to the right that the zero vector is unique Axioms In the following axioms, u, v, and ware in vector space V and c and d are scalars. 1. The sum + v is in V. 2. u Vy+ 3. ( uv). w*(vw) 4. V has a vector 0 such that u+0. 5. For each u in V, there is a vector - u in V such that u (-u) = 0 6. The scalar multiple cu is in V 7. c(u+v)=cu+cv 8. (c+d)u=cu+du 9. o(du) - (od)u 10. 1u=uSuppose that win V has the property that u + w=w+u= u for all u in V. In particular, 0 + w=0. But 0 + w=w by Axiom Hence, w=w+0 = 0 +w=0. (Type a whole number.)

Answers

This shows that the two zero vectors 0 and 0' are equal, and therefore the zero vector is unique.

To show that the zero vector is unique, suppose there exist two zero vectors, denoted by 0 and 0'. Then, for any vector u in V, we have:

0 + u = u (since 0 is a zero vector)

0' + u = u (since 0' is a zero vector)

Adding these two equations, we get:

(0 + u) + (0' + u) = u + u

(0 + 0') + (u + u) = 2u

By Axiom 2, the sum of two vectors in V is also in V, so 0 + 0' is also in V. Therefore, we have:

0 + 0' = 0' + 0 = 0

Substituting this into the above equation, we get:

0 + (u + u) = 2u

0 + 2u = 2u

Now, subtracting 2u from both sides, we get:

0 = 0

This shows that the two zero vectors 0 and 0' are equal, and therefore the zero vector is unique.

Learn more about vectors here:

https://brainly.com/question/13322477

#SPJ11

: suppose f : r → r is a differentiable lipschitz continuous function. prove that f 0 is a bounded function

Answers

We have shown that if f: R -> R is a differentiable Lipschitz continuous function, then f(0) is a bounded function.

What is Lipschitz continuous function?

As f is a Lipschitz continuous function, there exists a constant L such that:

|f(x) - f(y)| <= L|x-y| for all x, y in R.

Since f is differentiable, it follows from the mean value theorem that for any x in R, there exists a point c between 0 and x such that:

f(x) - f(0) = xf'(c)

Taking the absolute value of both sides of this equation and using the Lipschitz continuity of f, we obtain:

|f(x) - f(0)| = |xf'(c)| <= L|x-0| = L|x|

Therefore, we have shown that for any x in R, |f(x) - f(0)| <= L|x|. This implies that f(0) is a bounded function, since for any fixed value of L, there exists a constant M = L|x| such that |f(0)| <= M for all x in R.

In conclusion, we have shown that if f: R -> R is a differentiable Lipschitz continuous function, then f(0) is a bounded function.

Learn more about Lipschitz continuous function

brainly.com/question/14525289

#SPJ11

The polynomial -2 x^2 + 500x represents the budget surplus of the town of Alphaville for the year 2010. Alphaville’s surplus in 2011 can be modeled by -1. 5 x^2 + 400x. If x represents the yearly tax revenue in thousands, by how much did Alphaville’s budget surplus increase from 2010 to 2011? If Alphaville took in $750,000 in tax revenue in 2011, what was the budget surplus that year?

Answers

Alphaville's budget surplus increased by $25,000 from 2010 to 2011. In 2011, with a tax revenue of $750,000, the budget surplus was $75,000.

To find the increase in Alphaville's budget surplus from 2010 to 2011, we need to calculate the difference between the two surplus functions: (-1.5x^2 + 400x) - (-2x^2 + 500x). Simplifying the expression, we get -1.5x^2 + 400x + 2x^2 - 500x = 0.5x^2 - 100x.

Next, we substitute the tax revenue of $750,000 into the equation to find the budget surplus for 2011. Plugging in x = 750, we get 0.5(750)^2 - 100(750) = 281,250 - 75,000 = $206,250.

Therefore, Alphaville's budget surplus increased by $25,000 ($206,250 - $181,250) from 2010 to 2011. In 2011, with a tax revenue of $750,000, the budget surplus was $206,250.

Learn more about equation here:

https://brainly.com/question/12850284

#SPJ11

Sharon filled the bathtub with 33 gallons of water. How many quarts of water did she put in the bathtub?
A.132
B.198
C.66
D.264

Answers

1 gallon = 4 quarts

10 gallons = 40 quarts

30 gallons = 120 quarts

3 gallons = 12 quarts

33 gallons = 132 quarts

Answer: A. 132 quarts

Hope this helps!

Use the degree 2 Taylor polynomial centered at the origin for f to estimate the integral
I = \(\int_{0}^{1}\) f(x)dx
when
f(x) = e^(-x^2/4)
a. I = 11/12
b. I = 13/12
c. I = 7/6
d. I = 5/6

Answers

The answer is (b) I = 13/12.

We can use the degree 2 Taylor polynomial of f(x) centered at 0, which is given by:

f(x) ≈ f(0) + f'(0)x + (1/2)f''(0)x^2

where f(0) = e^0 = 1, f'(x) = (-1/2)xe^(-x^2/4), and f''(x) = (1/4)(x^2-2)e^(-x^2/4).

Integrating the approximation from 0 to 1, we get:

∫₀¹ f(x) dx ≈ ∫₀¹ [f(0) + f'(0)x + (1/2)f''(0)x²] dx

= [x + (-1/2)e^(-x²/4)]₀¹ + (1/2)∫₀¹ (x²-2)e^(-x²/4) dx

Evaluating the limits of the first term, we get:

[x + (-1/2)e^(-x²/4)]₀¹ = 1 + (-1/2)e^(-1/4) - 0 - (-1/2)e^0

= 1 + (1/2)(1 - e^(-1/4))

Evaluating the integral in the second term is a bit tricky, but we can make a substitution u = x²/2 to simplify it:

∫₀¹ (x²-2)e^(-x²/4) dx = 2∫₀^(1/√2) (2u-2) e^(-u) du

= -4[e^(-u)(u+1)]₀^(1/√2)

= 4(1/√e - (1/√2 + 1))

Substituting these results into the approximation formula, we get:

∫₀¹ f(x) dx ≈ 1 + (1/2)(1 - e^(-1/4)) + 2(1/√e - 1/√2 - 1)

≈ 1.0838

Therefore, the closest answer choice is (b) I = 13/12.

To know more about taylor polynomial refer here:

https://brainly.com/question/31419648?#

SPJ11

Lucy's Rental Car charges an initial fee of $30 plus an additional $20 per day to rent a car. Adam's Rental Car


charges an initial fee of $28 plus an additional $36 per day. For what number of days is the total cost charged


by the companies the same?

Answers

The number of days for which the companies charge the same cost is given as follows:

0.125 days.

How to define a linear function?

The slope-intercept equation for a linear function is presented as follows:

y = mx + b

In which:

m is the slope.b is the intercept.

For each function in this problem, the slope and the intercept are given as follows:

Slope is the daily cost.Intercept is the fixed cost.

Hence the functions are given as follows:

L(x) = 30 + 20x.A(x) = 28 + 36x.

Then the cost is the same when:

A(x) = L(x)

28 + 36x = 30 + 20x

16x = 2

x = 0.125 days.

More can be learned about linear functions at https://brainly.com/question/15602982

#SPJ4

Other Questions
Caroline earn . 40 points for writing an essay on a test she also earns three points for every question ,q, she answered correctly what expression can be used to find how many points Caroline earned on the test Cuanto es dos mil ochocientos tres millones cincuenta Each of the following reactions is allowed to come to equilibrium and then the volume is changed as indicated. Predict the effect (shift right, shift left, or no effect) of the indicated volume change.Part a)I2(g)2I(g) (volume is increased)- no effect- shifts left-shifts rightPart B)2H2S(g)2H2(g)+S2(g) (volume is decreased)- no effect- shifts right- shifts leftPart c)I2(g)+Cl2(g)2ICl(g) (volume is decreased)- shifts left-shifts right- no effect You were given a dose of 500 mg rather than 500 g of a drug. How much of the drug did you receive? A) 1000 times more B) 100 times more C) 1000 times less D) 100 times less consider the experiment of rolling a single tetrahedral dice. let r denote the event of rolling side i. let e denote the event . find p In some of the research discussed in lecture, we identified factors that strengthen conformity. They included:---One admires the groups status---One had made no prior commitment---Both are factors that strengthen conformity. Suppose Diane and Jack are each attempting to use a simulation to describe the sampling distribution from a population that is skewed left with mean 50 and standard deviation 15. Diane obtains 1000 random samples of size n=4 from the population, finds the mean of the means, and determines the standard deviation of the means. Jack does the same simulation, but obtains 1000 random samples of size n=30 from the population. (a) Describe the shape you expect for Jack's distribution of sample means. Describe the shape you expect for Diane's distribution of sample means. (b) What do you expect the mean of Jack's distribution to be? What do you expect the mean of Diane's distribution to be? (c) What do you expect the standard deviation of Jack's distribution to be? What do you expect the standard deviation of Diane's distribution to be? For a packed bed containing cylinders where the diameter D of the cylinders is equal to the length h, do as follows for a bed having a void fraction . a. Calculate the effective bed diameter. b. Calculate the number of particles, n, of cylinders in 1 m of the bed. If a potato has a 35% chance of passing on brown skin with few eyes and a 10% chance of passing on brown skin with large leaves. Which traits are farther apart on the chromosomes the nurse visits the patient during a 3-week follow up. what assessment findings would alert the nurse that mr. osullivan is experiencing adverse effects from chlorothiazide (diuril)? Uber is a start-up company with a market valuation of $76 billion at the time of its initial public offering (IPO). This valuation makes the company ablack swan. ecomagination entity. sweetheart. charter company. unicorn. Write a short essay (at least ten sentences) describing the importance of maintaining healthy habits as you age. Your essay should discuss how a variety of healthy habits within the health triangle (i. E. Diet, exercise, friendships, positive self-esteem, etc) will affect your quality of life. In your submission include the use of proper spelling, punctuation, capitalization, and grammar. Please 10 sentences Evaluate the indefinite integral. (Use C for the constant of integration.) et 3 + ex dx len 2(3+ex)(:)+c * Need Help? Read It Watch It Master It [0/1 Points] DETAILS PREVIOUS ANSWERS SCALCET8 5.5.028. Evaluate the indefinite integral. (Use C for the constant of integration.) ecos(5t) sin(5t) dt cos(5t) +CX Need Help? Read It [-/1 Points] DETAILS SCALCET8 5.5.034.MI. Evaluate the indefinite integral. (Use C for the constant of integration.) cos(/x) dx 78 Describe when and how you became interested in art, design, writing, architecture, or the particular major to which you are applying. Describe how this interest has manifested itself in your daily life. The essay should be 250-500 words or two pages maximum. Make sure your essay is complete before uploading because you will not be able to make changes after you submit your application. Essays submitted in other forms will not be accepted. acetylsalicylic acid (aspirin), hc9h7o4, is the most widely used pain reliever and fever reducer in the world. determine the ph of a 0.045 m aqueous solution of aspirin; ka = 3.110-4. What mass of hclo4 should be present in 0. 400 l of solution to obtain a solution with each of the following ph values? We use many types of natural resources for energy. Identify each type of natural resource as renewable or nonrenewable. sunlight,oil,natural gas,wind,coal,water favorita candys stock is expected to earn $4.30 per share this year. its p/e ratio is 21. what is the stock price? (round your answer to 2 decimal places.) Robert Fogel's (1964) analysis of the economic effects of the transcontinental railroad demonstrated thata. The railroad was responsible for a great "take-off" in terms of economic growth in the 19th century.b. The canal and river transportation systems, in conjunction with a national highway system, could very nearly have produced the same results as the transcontinental railroadc. The social saving of the railroad was large and that much of the country could not have been settled and cultivated without the railroad.d. The railroad gave a huge boost to the iron industry because for a time it consumed well over 50% of all iron produced. A local doughnut shop reduced the price of its doughnuts from $4 per dozen to $3.50 per dozen, and as a result, the daily sales increased from 300 to 400 dozen. this indicates that the price elasticity of demand for the doughnuts was: a. indeterminate; more information is needed to determine the price elasticity of demand. b. inelastic. c. elastic. d. unitary elastic.