Answer:
A
Explanation:
It is so because the low air pressure create vacuum and the air from high pressure area move toward the low air pressure.
Which one is not an ore of copper
1 Azurite
2 Malachite
3 Haematite
4 Chalcopyrite
Hydrogen peroxide with a concentration of 3.0 percent (3.0 g of H2O2 in 100 mL of solution) is sold in drugstores for use as an antiseptic. For a 10.0-mL 3.0 percent H2O2 solution, calculate (a) the oxygen gas produced (in liters) at STP when the compound undergoes complete decomposition and (b) the ratio of the volume of O2 collected to the initial volume of the H2O2 solution.
Answer:
a) 0.099 L
b) 9.9
Explanation:
Now, given the equation for the decomposition of H2O2;
2H2O2(l) ------> 2H2O(l) + O2(g)
Mass of H2O2;
percent w/v concentration = mass/volume * 100
volume = 10.0-mL
percent w/v concentration = 3.0 percent
mass of H2O2 = x
3 = x/ 10 * 100
30 = 100x
x = 30/100
x = 0.3 g of H2O2
Number of moles in 0.3 g of H2O2 = mass/ molar mass
Molar mass of H2O2 = 34.0147 g/mol
Number of moles in 0.3 g of H2O2 = 0.3g/34.0147 g/mol
= 0.0088 moles
From the reaction equation;
2 moles of H2O2 yields 1 mole of oxygen
0.0088 moles of H2O2 = 0.0088 * 1/2 = 0.0044 moles of oxygen
If 1 mole of oxygen occupies 22.4 L
0.0044 moles of oxygen occupies 0.0044 * 22.4/1
= 0.099 L
b) initial volume of the H2O2 solution = 10 * 10-3 L
Hence, ratio of the volume of O2 collected to the initial volume of the H2O2 solution = 0.099 L/10 * 10-3 L = 9.9
Which answer would represent 0.001 moles?
Answer:
Which answer would represent 0.001 moles?
Hydrochloric acid reacts with sodium hydroxide to form water and sodium chloride. Hydrochloric acid is an extremely acidic, clear, corrosive liquid. Sodium hydroxide is a very basic white solid.
What can be known about the reactants of this reaction?
They will be clear.
They will not have the properties of sodium hydroxide or hydrochloric acid.
They will be corrosive.
They will have the properties of sodium hydroxide or hydrochloric acid.
The answer is C.
You're welcome!
Set of degenerate orbital in germanium
Answer:
Which set of orbitals are degenerate?
Degenerate is used in quantum mechanics to mean 'of equal energy. ' It usually refers to electron energy levels or sublevels. For example, orbitals in the 2p sublevel are degenerate - in other words the 2px, 2py, and 2pz orbitals are equal in energy, as shown in the diagram.
Explanation:
Answer:
Electron orbitals having the same energy levels are called degenerate orbitals, For example, orbitals in the 2p sublevel are degenerate - in other words the 2px, 2py, and 2pz orbitals are equal in energy.