Answer:
When the two values are different
Step-by-step explanation:
Like in an inequality equation.
For example:
[tex]4+5x\geq 30[/tex]
The answer would be anything greate than or equal to 30, but you would need to find x. The number line would be very useful
Hope this helps
Container X contained 1200g of sand.Container Y contained 7.2kg of sand.After an equal amount if sand was removed from each container,Container Y had 7 times as much sand as container X.how much sand was removed from each container?
Why must angle A be 135°
Answer:
Because a is the measure of the interior angle of a regular octagon.
Step-by-step explanation:
Given figure is of a regular octagon.
Measure of one interior angle of regular octagon is given as:
[tex]a = \frac{(n - 2) \times 180 \degree}{n} \\ \\ = \frac{(8 - 2) \times 180 \degree}{8} \\ \\ = \frac{6 \times180 \degree }{8} \\ \\ = \frac{1080 \degree}{8} \\ \\ \huge \red{ \boxed{a= 135 \degree}}[/tex]
Calculate the width of a 70" TV if the TV has an aspect ratio of 16:9.
Answer:
The TV has a length of 61.01" and a height of 34.32"
Step-by-step explanation:
The size of a TV is given by the length of it's diagonal, in this case the diagonal of the TV is 70". The ratio of the screen is 16:9, which means that for every 16 units on the length of the tv there are 9 inches on its height. The diagonal of the screen forms a right angle with the length and the width, therefore we can apply Pythagora's theorem as shown below:
[tex]diagonal^2 = height^2 + length^2\\\\height^2 + length^2 = (70)^2\\\\height^2 + length^2 = 4900[/tex]
Since the ratio is 16:9, we have:
[tex]9*length = 16*height[/tex]
[tex]length = \frac{16}{9}*height[/tex]
Applying this on the first equation, we have:
[tex]height^2 + (\frac{16}{9}*height)^2 = 4900\\\\height^2 + \frac{256}{81}*height^2 = 4900\\\\\frac{337}{81}*height^2 = 4900\\\\height^2 = \frac{4900*81}{337}\\\\height^2 = \frac{396900}{337}\\\\height^2 = 1177.744\\\\height = \sqrt{1177.744}\\\\height = 34.32[/tex]
[tex]length = \frac{16}{9}*34.32\\\\length = 61.01[/tex]
The TV has a length of 61.01" and a height of 34.32"
A hiker climbs a 5-mile trail up a mountain in 2 hours. On the return trip downhill, she walks the same trail and returns to her starting point in 1 hour. What was her average rate of speed, in miles per hour, for the entire trip?
Answer:
3.33 miles per hour
Step-by-step explanation:
The total distance traveled by the hiker is 5 * 2 = 10 miles, and the total time travelled is 2 + 1 = 3 hours.
So, to find the average speed of the entire trip, we can use the formula:
distance = speed * time
With distance = 10 and time = 3, we have:
10 = speed * 3
speed = 10/3 = 3.33 miles per hour.
If ladders are difficult to use for high floors, what are some other options? What is the level of safety of each of your options? Explain using mathematical facts.
Answer:
Stairs, escalators, elevators, ramps...
Step-by-step explanation:
If ladders are difficult to use for high floors another very common options are stairs. you see them pretty much everywhere. Escalators and elevators are also used, elevators more often that escalators.
I don't know how to make it sound "mathy" but..
Ladders are super straight and so for high floors, the slope of the ladder will be too steep for anyone to climb without gravity interfering.
The level of safety with stairs is higher because instead of going straight up, The steps provide a flat surface for someone to stand on while climbing the stairs and there is a much more stable foundation. Stairs can have protection like a guard rail and even go in a spiral motion upwards because they are more stable and safe. It is still possible to fall if one is not careful because of pesky gravity.
Escalators are pretty much moving stairs and the level of safety is greater because of the strong foundation and flat surface to stand on. Of course falling can happen, lowering the safety, but this is not likely because of the slowly enough moving steps. There is a rail as well and as long as people are careful, there aren't usually any casualties.
Elevators take up way less space than stairs and escalators because they can go straight up and down. The level of safety is fairly high because an elevator is a pulley system and people don't involve all that much moving around. Just go in the mechanical box, the doors close for safety, click a button, and then go up or down.
I don't know how to incorporate mathematical facts into this question because this is literally logic not math in my opinion. Honestly, ladders aren't even used that much, I don't think, except for building and house work.
I hope this helps you with whatever you are doing!
<3
Simplify: (2x2 − 9x + 3) + (−7x2 + 4x − 2)
Answer:
-5x^2-5x=+1
Step-by-step explanation:
A student scored 83 and 91 on her first two quizzes. Write and solve a compound inequality to find the possible values for a third quiz score that would give her an average between 85 and 90, inclusive
Step-by-step explanation:
3*85 <= 83+91+x <= 3*90
255 <= 174+x <= 270
81 <= x <= 96
Answer:
81 ≤ x ≤ 96
Step-by-step explanation:
85 ≤ (x + 83 + 91)/3 ≤ 90
85 ≤ (174 + x)/3, (174 + x)/3 ≤ 90
81 ≤ x ≤ 96
James is working at a place that ships boxes. Each box is rectangular prism that measures 2 ft long, 3 ft wide, and 2 ft tall. He is loading a small trailer that has 396 cu ft of space. What is the maximum number of boxes he can fit inside the trailer?
Answer:
33
Step-by-step explanation:
2x3x2=12 396/12=33
Suppose f(x)=x^2 and g(x)=1/4x^2. Which statement best compares the
graph of g(x) with the graph of f(x)?
A. The graph of g(x) is the graph of f(x) vertically stretched by a
factor of 4.
B. The graph of g(x) is the graph of f(x) shifted 1/4 units right.
C. The graph of g(x) is the graph of f(x) horizontally stretched by a factor of 4.
D. The graph of g(x) is the graph of f(x) horizontally compressed by a
factor of 4.
Answer:
Step-by-step explanation:
Statement A is closest to being correct. To get the graph of g(x), we compress the graph of f(x) vertically due to multiplying f(x) by (1/4).
Answer:
C. The graph of g(x) is the graph of f(x) horizontally stretched by a factor of 4.
Step-by-step explanation:
a p e x
Please help……………………………………!!!!!!!!!
Answer:
4 k^4
Step-by-step explanation:
(64 k^12) ^ 1/3
We know (ab)^c = a^c * b^c
64 ^ 1/3 k^12^1/3
4 * k^12^1/3
We know a^b^c = a^(b*c)
4 k^(12*1/3)
4 k^4
Determine the ordered pair that satisfies the equation, 7x - 1y = 8.
Answer:
(1.142857143 , -8)
Step-by-step explanation:
Simplify the expression
3^0
Answer:
1
Step-by-step explanation:
3^0
Any number ( besides 0) raised to the zero power is 1
Answer:
[tex]1[/tex]
Step-by-step explanation:
Any number when its write as raise to the power zero = 1
So,
[tex] {3}^{0} = 1[/tex]
hope this helps
brainliest appreciated
good luck! have a nice day!
Which data set is least Likely to resemble a normal distribution?
Look at picture
Answer: B) The heights of girls who live on a certain street in the city of Buffalo
Every answer choice starts with "the heights of all 14-year-old girls who", so we can ignore that part. Choice A describes the largest population while choice B describes the smallest population. In other words, choice A is very general and broad, while choice B is very specific and narrow. The more specific you get and the smaller the population is, the less likely its going to be normally distributed.
A 4-inch by 2-inch piece of granite that is 5 feet long is cut lengthwise along its diagonal. Find the perimeter and area of the cross section formed by the cut.
Answer:
Perimeter of the cross section = (10+4√5)inches = 18.9in
Area of the cross section= = 10√5 in²
Step-by-step explanation:
Find attached the diagrams used in solving the question
Dimensions of granite = 4in by 2in
Length = 4in
Breadth = 2in
Height = 5in
When granite is cut lengthwise along it's diagonal, the cross section formed by the cut will be a rectangle.
Perimeter of the cross section = 2(height+breadth)
Breadth = diagonal of the cross section
The diagonal of a rectangle divides the rectangle into two right angled triangles.
We would apply Pythagoras theorem to find the length of the diagonal
Hypotenuse ² = opposite ²+adjacent ²
Hypotenuse = length of diagonal
Hypotenuse ² = 2² + 4²
Hypotenuse ² = 4+16 = 20
Hypotenuse = √20 = 2√5
Perimeter of the cross section = 2(height+breadth) =2(5+2√5)
Perimeter of the rectangle = 10+4√5 inches = 18.9in
Area of the cross section= diagonal × height
Area of the cross section= 2√5 × 5
Area of the cross section= = 10√5 in²
in a single throw of 2 dice find the probability of a sum greater than 9
Answer:
Step-by-step explanation:
So probability of getting a sum greater than 9 is= 6/36=1/6 Ans.
I think. Im sorry I searched this on qoura.
I just really need some points
A water balloon is thrown from the top of a house. The path of the balloon is modelled by the relation, h = -4.9t2 – 14.7t + 19.6,
where h is the balloon's height, in meters, above ground, and wheret is the time, in seconds.
a.
How tall is the house? (1 mark)
b. How long does it take for the balloon to hit the ground? (3 marks)
What is the maximum height that the balloon reaches? marks)
C.
Answer:
(a)19.6 meters
(b) 1 seconds
(c)30.625 meters
Step-by-step explanation:
The height of the balloon is modeled by the equation:
[tex]h = -4.9t^2- 14.7t + 19.6[/tex]
(a)Since the balloon is thrown from the top of the house, the height of the house is at t=0
When t=0
[tex]h(0) = -4.9(0)^2- 14.7(0) + 19.6\\h=19.6$ meters[/tex]
The height of the house is 19.6 meters.
(b)When the balloon hits the ground
Its height, h(t)=0
Therefore, we solve h(t)=0 for values of t.
[tex]h = -4.9t^2- 14.7t + 19.6=0[/tex]
[tex]-49t^2-147t+196=0\\-49(t^2+3t-4)=0\\t^2+4t-t-4=0\\t(t+4)-1(t+4)=0\\(t+4)(t-1)=0\\t+4=0$ or $t-1=0\\t=-4$ or t=1[/tex]
Therefore, the ball hits the ground after 1 seconds.
(c)To determine the maximum height, we take the derivative of the function and solve it for its critical point.
[tex]If$ h = -4.9t^2- 14.7t + 19.6\\h'(t)=-9.8t-14.7\\$Setting the derivative equal to zero$\\-9.8t-14.7=0\\-9.8t=14.7\\t=-1.5\\$Therefore, the maximum height, h(t) is:\\h(1.5) = -4.9(-1.5)^2- 14.7(-1.5) + 19.6\\=30.625$ meters[/tex]
knlkn/l,kjn.kj.njkbjkb,.bgj,hjbhb b. ,.
Answer:
hmmmmmmmmmmmmmmmmm
Step-by-step explanation:
egfrggggggdfgd
djdgg
gfhdst
Find the radius and center of the circle given by the equation below.
(x-6)2 + (y + 4)2 = 7
Ore 17 and center at (-4.6)
or= 7 and center at (6-4)
or=7 and center at (-6.4)
or= 7 and (
6-4)
Answer:
center (6,-4)
radius = √7 unit
Step-by-step explanation:
Mathematically, the equation of a circle can be written as follows;
(x-a)^2 + (y-b)^2 = r^2
Where (a,b) represents the center of the circle with r representing the radius of the circle.
Now looking at the values in the question, we can clearly see that a = 6, while b represents -4.
The radius of the circle is √7
So the circle center is (6,-4) while √7 is the circle center
Find the surface area of this triangular prism shown below
Answer:
Step-by-step explanation:
area of side triangles=2(1/2×6×4)=24 units²
area of 3 rectangles=6×7+2(5×7)==42+70=112 units²
or=(6+5+5)×7=16×7=112 units²
Total surface area=24+112=136 units²
Which circle C shows a chord that is not a diameter?
Circle C is shown. A line is drawn from one side of the circle to the other side and goes through point C.
Circle C is shown. A line is drawn on the outside of the circle and intersects the circle at one point.
Circle C is shown. A line is drawn from point C to a point on one side of the circle.
Circle C is shown. A line goes from one point on the circle to another point on the circle.
Answer:
The answer is option D
Step-by-step explanation:
Just got it right on edge :)
Answer:
d
Step-by-step explanation:
An arithmetic sequence has this recursive formula. a1=9 and 1-3 .
The required explicit formula for the sequence is [tex]a_n = 9+(n+1)(-3)[/tex]. Option B is correct.
Given, an arithmetic sequance is given in the form of [tex]\left \{ {{a_1=9} \atop {a_n =a_{n-1}-3} \right.[/tex] .
Explicit formula for the sequence is to be determined.
Arithmetic progression is the sequence of numbers that have common differences between adjacent values.
Example, 1, 2, 3, 4, 5, 6. this sequence as n = 6 number with a = 1 (1st term) and common differene d = 2- 1 = 1.
Given arithmetic sequance is in the form of [tex]\left \{ {{a_1=9} \atop {a_n =a_{n-1}-3} \right.[/tex]
From above expression
[tex]a_n-a_{n-1}= -3[/tex]
common difference (d) = -3
with d = -3 and [tex]a_1 = 9[/tex]
The equation for the nth term in an arithmetic sequence is given by
[tex]a_n =a +(n-1)d[/tex]
[tex]a_n = 9 +(n-1)(-3)[/tex]
The above expression is the explicit form of the arithmetic equation.
Thus, the required explicit formula for the sequence is [tex]a_n = 9+(n+1)(-3)[/tex]. Option B is correct.
Learn more about arithmetic progression here:
https://brainly.com/question/20334860
#SPJ5
Anybody know the answer?
Yes!
This does represent a function because all numbers in this table are real numbers.
Integers and whole numbers are apart of real numbers.
Therefore you do not have to state why this is not a function because it certainly is!
Log(4x-10)32=5 solution?
Answer:
x = 3
Step-by-step explanation:
log(4x - 10)32 is not properly formed; it's also ambiguous.
If you mean to say that (4x - 10) is the base, then you have to do the rather awkward typing shown below:
log 32 = 5
(4x - 10) (where (4x - 10) is assumed to
be the base)
log 32
(4x - 10)
Then (4x - 10) = (4x - 10)^5
or 32 = (4x - 10)^5, or
2^5 = (4x - 10)^5
which tellus us that 2 = 4x - 10, or 4x = 12, or x = 3
I need help or I’m going to fail math please help.
Answer:
The answers are in the pictures
Step-by-step explanation:
I can't type all of them 'cause it's much
Answer:
1. a. x= 18°
sum of interior angles is = 180°, so, to get x, = 2.5x + 4.5x + 3x = 180°
2.5x = 45
4.5x = 81
3x = 54
2. a. x = 75°
x - 10 = 65
x-35 = 40
x = 75
use the concept in number one.
3. a. x = 25
the two opposite interior angles add up to the exterior angle . so,
4x + 55 = x + 130
like terms together then simplify to get x as 25
so 4x = 100°
x + 130 = 155°
4. ∠2 = 180 - (38+34) = 108°
∠5 = 180 - (38+74) = 68°
∠6 = 74 + 38 = 112°
hope you understand now.
What is the standard equation of the circle on the graph?
A. (x+2)^2 + (y-3)^2 = 2
B. (x-2)^2 + (y+3)^2 = 2
C. (x-2)^2 + (y+3)^2 = 4
D. (x+2)^2 + (y-3)^2 = 4
Answer: D
Step-by-step explanation:
The equation would be (x+2)^2 + (y-3)^2 = 4 if I did it right. (Sorry if it’s wrong!)
Answer = D :)
Step-by-step explanation:
HELPPP PLEASEE l
The gasoline mileage for two cars can be compared by finding the distance each car traveled and the amount of gasoline used. The table shows the distance that car M traveled using x gallons of gasoline.
The graph shows the distance, y, that car P traveled using x gallons of gasoline
Answer:
Car M:
50.4/2 = 25.2
car M uses up 1 gallon every 25.2 miles
Car P:
Just from the graph, you can see that it uses up 1 gallon every 30 miles
The two graphs vary the /miles slightly but it is around their zones of 25.2 and 30. It varies slightly because the cars may be traveling at a fast speed or slower speed thus using up more or less fuel by the time they've reached the recorded distances on the graphs.
Express 29 out of 40 as a percentage
Answer:
72.5%
Step-by-step explanation:
To express a value as a %:
value/whole x 100 = 29 / 40 x 100
This gives you 72.5%
Hope this helps
Jason is scuba diving at a constant rate toward the ocean floor. The equation
y= -2.5x – 5 can be used to represent this situation, where y is the depth of Jason in meters
below sea level and x is the number of seconds Jason has been swimming.
Which statement best describes the depth of Jason, given this equation?
Jason started scuba diving 2.5 meters below sea level and is ascending at a rate of 2.5 meters per
second.
Jason started scuba diving 5 meters below sea level and is ascending at a rate of 2.5
meters per second.
Jason started scuba diving 2.5 meters below sea level and is descending at a rate of 2.5
meters per second.
Jason started scuba diving 5 meters below sea level and is descending at a rate of 2.5
meters per second.
Answer:
Jason started scuba diving 5 meters below sea level and is descending at a rate of 2.5 meters per second.
Step-by-step explanation:
Jason is scuba diving at a constant rate toward the ocean floor.
Equation: [tex]y= -2.5x- 5[/tex]
x = The number of seconds Jason has been swimming.
y=The depth of Jason in meters below sea level
General equation : y=mx+c
m = Slope = rate of change per unit
On comparing m = -2.5
Negative signs represents the descending .
So, rate of descending per second = 2.5 m/sec
-5 denotes the initial position below sea level
So, Option D is true
So, Jason started scuba diving 5 meters below sea level and is descending at a rate of 2.5 meters per second.
Which line has a slope of 0? A: x = 1 B: 3y + 6x = 0 C: y = x D: y = -5
Answer:
D) y=-5
Step-by-step explanation:
..............
Find the 7th term of the geometric progression which begins -6250, 1250, -250
Answer:
[tex]-\frac{2}{5}[/tex]
Step-by-step explanation:
The geometric progression given is:
-6250, 1250, -250...
The first term (a) is -6250, and the common ratio (r) can be gotten by dividing the second term by the first term:
r = 1250/-6250 = [tex]-\frac{1}{5}[/tex]
A geometric progression is generally given as:
[tex]a_n = ar^{n - 1}[/tex]
where [tex]a_n[/tex] = nth term
The 7th term of the progression above is therefore:
[tex]a_7 = -6250 * (-\frac{1}{5} )^6\\\\a_7 = -\frac{2}{5}[/tex]
The 7th term of the geometric progression is;
a_7 = -2/5
The formula for the nth term of a geometric progression is;
a_n = ar^(n - 1)
Where;
a is first term
r is common ratio
n is the position of the term in the series
We are given the series;
-6250, 1250, -250...
Thus;
First term; a = -6250
Common ratio; r = 1250/-6250
r = -1/5
Thus;
a_7 = -6250(-1/5)^(7 - 1)
a_7 = -2/5
Read more at; https://brainly.com/question/25724889