Variations in magnetic field strength, gradients, radiofrequency, and coil distance affect the quality of MRE images. Optimizing these parameters is crucial for obtaining high-quality images in MRE.
Magnetic Resonance-Electrical (MRE) is a medical imaging technique that combines magnetic resonance imaging (MRI) with electrical stimulation to measure the stiffness of body tissues. This information can provide insights into underlying disease conditions affecting the tissues and organs.
Magnetic Resonance Elastography (MRE) specifically measures the mechanical properties of soft tissues by analyzing the propagation speed of mechanical waves through the tissue. Several parameters, including magnetic field, gradients, radiofrequency, and coil distance, can impact the MRE technique in the following ways:
Effects of Magnetic Field on MRE: The strength of the magnetic field influences the quality of the MRE image. Higher magnetic field strength enhances the signal-to-noise ratio and contrast of the image. However, it decreases the resolution of the image.
Effects of Gradient on MRE: Gradient coils are utilized in MRE to create a magnetic field gradient for spatial encoding. The strength of the gradient coil determines the spatial resolution of the image. Stronger gradients yield higher spatial resolution but can introduce susceptibility artifacts.
Effects of Radio Frequency on MRE: Radiofrequency is employed to excite protons in tissues. The strength of the radiofrequency field affects the flip angle, which, in turn, impacts the signal intensity. Increasing the radiofrequency field strength enhances the flip angle and signal intensity, but it also increases susceptibility artifacts.
Effects of Coil Distance on MRE: The distance between the coil and the tissue is another parameter that affects image quality in MRE. Closer proximity of the coil results in higher signal intensity but can also increase susceptibility artifacts. Coil distance also influences the signal-to-noise ratio (SNR), with a closer coil providing a higher SNR image.
Learn more about Variations
https://brainly.com/question/17287798
#SPJ11
When using the flexure formula for a beam, the maximum normal stress occurs where ?
Group of answer choices
A. at a point on the cross-sectional area farthest away from the neutral axis
B. at a point on the cross-sectional area closest to the neutral axis
C. right on the neutral axis
D. halfway between the neutral axis and the edge of the beam
The maximum normal stress occurs at a point on the cross-sectional area farthest away from the neutral axis.
Option A is correct. When a beam is subjected to bending, the top fibers of the beam are compressed while the bottom fibers are stretched. The neutral axis is the location within the beam where there is no change in length during bending. As we move away from the neutral axis, the distance between the fibers increases, leading to higher strains and stresses. Therefore, the point on the cross-sectional area farthest away from the neutral axis experiences the maximum normal stress. This is important to consider when analyzing the structural integrity and strength of beams under bending loads.
To know more about neutral axis visit
brainly.com/question/31234307
#SPJ11
A cantilever beam 4 m long deflects by 16 mm at its free end due to a uniformly distributed load of 25 kN/m throughout its length. What force P (kN) should be applied at the mid-length of the beam for zero displacement at the free end?
The force P that should be applied at the mid-length of the cantilever beam is 8.33 kN.
To determine the force P required at the mid-length of the cantilever beam for zero displacement at the free end, we can use the principle of superposition.
Calculate the deflection at the free end due to the distributed load.
Given that the beam is 4 m long and deflects by 16 mm at the free end, we can use the formula for the deflection of a cantilever beam under a uniformly distributed load:
δ = (5 * w * L^4) / (384 * E * I)
where δ is the deflection at the free end, w is the distributed load, L is the length of the beam, E is the Young's modulus of the material, and I is the moment of inertia of the beam's cross-sectional shape.
Substituting the given values, we have:
0.016 m = (5 * 25 kN/m * 4^4) / (384 * E * I)
Calculate the deflection at the free end due to the applied force P.
Since we want zero displacement at the free end, the deflection caused by the force P at the mid-length of the beam should be equal to the deflection caused by the distributed load.
Using the same formula as in step 1, we can express this as:
δ = (5 * P * (L/2)^4) / (384 * E * I)
Equate the two deflection equations and solve for P.
Setting the two deflection equations equal to each other, we have:
(5 * 25 kN/m * 4^4) / (384 * E * I) = (5 * P * (4/2)^4) / (384 * E * I)
Simplifying, we find:
P = (25 kN/m * 4^4 * 2^4) / 4^4 = 8.33 kN
Learn more about cantilever beam
brainly.com/question/31769817
#SPJ11
Use Matlab to create the required Bode plots. 1) Design a lead compensator for the system below. The ramp error constant should be K) = 20 and the phase margin should be greater than or equal to 50°. Hand in your uncompensated Bode plot and your compensated Bode plot.
G(s) = 4/s(s+2)
solution
G(s) = 40.16 s+4.39/s+17.64
To make the Bode plots for the given system using MATLAB as well as the design a lead compensator, one can use the code given below
What is the MATLAB?MATLAB is a computer program made for scientists and engineers to study and design things that help make the world better. MATLAB's main component is its language, which is based on matrices and allows for easy expression of mathematical computations.
Therefore, the computer program tends to creates the G_uncompensated transfer function using the special numbers. After that, it creates a graph called the Bode plot using a tool called the bode function. It also gives the graph a name.
Read more about MATLAB here:
https://brainly.com/question/13974197
#SPJ4
The linear burning rate of a solid propellant restricted burning grain is 20 mm/s when the chamber pressure is 80 bar and 40 mm/s when the chamber pressure is 200 bar. determine (i) the chamber pressure that gives a linear burning rate of 30 mm/s (ii) the propellant consumption rate in kg/s if the density of the propellant is 2000 kg/m3, grain diameter is 200 mm and combustion pressure is 100 bar.
(i) To determine the chamber pressure that gives a linear burning rate of 30 mm/s, we can use the concept of proportionality between burning rate and chamber pressure. By setting up a proportion based on the given data, we can find the desired chamber pressure.
(ii) To calculate the propellant consumption rate, we need to consider the burning surface area of the grain, the linear burning rate, and the density of the propellant. By multiplying these values, we can determine the propellant consumption rate in kg/s.
Let's calculate these values:
(i) Using the given data, we can set up a proportion to find the chamber pressure (P) for a linear burning rate (R) of 30 mm/s:
(80 bar) / (20 mm/s) = (P) / (30 mm/s)
Cross-multiplying, we get:
P = (80 bar) * (30 mm/s) / (20 mm/s)
P = 120 bar
Therefore, the chamber pressure that gives a linear burning rate of 30 mm/s is 120 bar.
(ii) The burning surface area (A) of the grain can be calculated using the formula:
A = π * (diameter/2)^2
A = π * (200 mm / 2)^2
A = π * (100 mm)^2
A = 31415.93 mm^2
To calculate the propellant consumption rate (C), we can use the formula:
C = A * R * ρ
where R is the linear burning rate and ρ is the density of the propellant.
C = (31415.93 mm^2) * (30 mm/s) * (2000 kg/m^3)
C = 188,495,800 mm^3/s
C = 0.1885 kg/s
Therefore, the propellant consumption rate is 0.1885 kg/s if the density of the propellant is 2000 kg/m^3, the grain diameter is 200 mm, and the combustion pressure is 100 bar.
Learn more about pressure here : brainly.com/question/30902944
#SPJ11
A composite material for a car-repair kit consists of a random mixture of short
glass fibers in a polyester matrix. Estimate the maximum toughness Gc of the
composite. You may assume that the volume fraction of glass is 30%, the fiber
diameter is 15 μm, the fracture strength of the fibers is 1400 MN m^-2, and the
shear strength of the matrix is 30 MN m^-2.
Calculate the critical length 2xc of the fibers above. How would you
expect Gc to change if the fibers were substantially longer than 2xc?
The maximum toughness Gc of the composite material can be estimated by considering the volume fraction of glass, fiber diameter, fracture strength of the fibers, and shear strength of the matrix. To calculate the critical length 2xc of the fibers, we need to determine the aspect ratio of the fibers and its impact on the composite's toughness.
The aspect ratio of the fibers is determined by dividing the fiber length by its diameter.
In this case, the critical length 2xc is the maximum length at which the fibers can still contribute to the toughness of the composite.
When the fibers are longer than 2xc, they may start to behave as individual fibers rather than reinforcing elements within the matrix.
To estimate Gc, we need to consider the load-carrying capacity and the energy required for crack propagation.
Longer fibers can potentially enhance the load-carrying capacity and toughness of the composite as they can bridge and distribute the applied load more effectively.
However, if the fibers become too long, they may also introduce stress concentration points, leading to reduced toughness.
To assess the change in Gc when the fibers are substantially longer than 2xc, further analysis is required.
It is possible that Gc might increase initially due to improved load transfer, but beyond a certain length, Gc could decrease due to increased stress concentration and reduced interfacial bonding between the fibers and the matrix.
In summary, estimating Gc involves considering the volume fraction of glass, fiber properties, and matrix properties.
The critical length 2xc of the fibers determines the maximum length at which they can contribute to the composite's toughness.
Understanding the relationship between fiber length and Gc is crucial to optimize the composite's performance.
Learn more about composite material
brainly.com/question/32016262
#SPJ11
2. 4) The bent rod is supported at points A, B and C by smooth Journal bearings, and is subjected to force F. Il dimensions a = 1.9 m, b = 1.2 m, c- 1.0 m, and d = 3.8 m, and the force Fis (-21 + 91 - 3k) kN, determine the magnitude of support reaction force in kN at point B. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point C
Given information:a = 1.9 m, b = 1.2 m, c = 1.0 m, and d = 3.8 m,The force F is (-21 + 91 - 3k) kN. The following figure can be drawn: Here, the free-body diagram is shown for the bent rod as given in the question.
To find: The magnitude of support reaction force in kN at point B. Analysis: First of all, we can calculate the vertical and horizontal components of the given force as below:Fx = -3 kNFy
= 70 kN
By taking moment about point A, we can get the following equation:Ay × 1.9 - 70 × 3.8 - 3 × 1.2 × 1.9 - 21 × (1.9 + 1.2)
= 0.Ay × 1.9
= 254.1Ay
= 133.7 kN
The vertical component at B can be calculated as below:By + Cy = 133.7 + 70
= 203.7 kN...(i)
Taking moment about point C, we can get the following equation:Ay × 3.8 - 70 × 1.0 - 3 × 1.2 × 3.8 - 91 × (3.8 - 1.9) - 21 × (3.8 - 1.9 - 1.2)
= 0.Ay
= 104.50 kN
Thus, the magnitude of support reaction force in kN at point B is:By = 99.20 kN [upward]So, the answer is 99.20 kN (approx 99.20).
To know more about support reaction force, visit:
https://brainly.com/question/30697271
#SPJ11
Steam in a rigid tank is at a pressure of 400psia and a temperature of 600°F. As a result of heat transfer, the temperature decreases to 70°F. Determine the % of the total mass that is liquid in the final state, and the % of volume occupied by the liquid and vapor at the final state.
To determine the percentage of the total mass that is liquid in the final state and the percentage of volume occupied by the liquid and vapor at the final state, we need to use the steam tables to obtain the properties of steam at the given conditions.
First, we look up the properties of steam at the initial state of 400 psia and 600°F. From the steam tables, we find that at these conditions, steam is in a superheated state.
Next, we look up the properties of steam at the final state of 70°F. At this temperature, steam is in a compressed liquid state.
Using the steam tables, we find the specific volume (v) of steam at the initial and final states.
Now, to calculate the percentage of the total mass that is liquid in the final state, we can use the concept of quality (x), which is the mass fraction of the vapor phase.
The quality (x) can be calculated using the equation:
x = (v_final - v_f) / (v_g - v_f)
Where v_final is the specific volume of the final state, v_f is the specific volume of the saturated liquid at the final temperature, and v_g is the specific volume of the saturated vapor at the final temperature.
To calculate the percentage of volume occupied by the liquid and vapor at the final state, we can use the equation:
% Volume Liquid = x * 100
% Volume Vapor = (1 - x) * 100
Please note that the specific volume values and calculations depend on the specific properties of steam at the given conditions. It is recommended to refer to steam tables or use steam property software to obtain accurate values for the calculations.
To know more about steam tables, visit
https://brainly.com/question/31436066
#SPJ11
A reciprocating compressor draws in 500 cubic feet per minute of air whose density is 0.079lb/cu ft and discharges it with a density of 0.304lb/ cu ft. At suction, p1=15psia; at discharge , p 2 = 80 psia. The increase in the specific internal energy is 33.8 Btu and the heat transferred from the air by cooling is 13Btu/lb. Determine the work on the air in Btu/min and in hp. Neglect change in kinetic energy.
The work on the air is approximately 22.24 Btu/min and 0.037 hp.
To determine the work on the air in Btu/min and in horsepower (hp), we can use the following equations and steps:
1. Calculate the mass flow rate (m_dot) of air using the given volumetric flow rate (Q_dot) and air density (ρ):
m_dot = Q_dot * ρ
Here, Q_dot = 500 cubic feet per minute and ρ = 0.079 lb/cu ft.
Substituting these values, we get:
m_dot = 500 * 0.079 = 39.5 lb/min
2. Determine the change in specific internal energy (Δu) using the given increase in specific internal energy (Δu_in) and mass flow rate (m_dot):
Δu = Δu_in * m_dot
Here, Δu_in = 33.8 Btu and m_dot = 39.5 lb/min.
Substituting these values, we get:
Δu = 33.8 * 39.5 = 1334.3 Btu/min
3. Calculate the work done on the air (W_dot) using the change in specific internal energy (Δu) and mass flow rate (m_dot):
W_dot = Δu / 60
Since the given units are in Btu/min, we divide by 60 to convert it to Btu/s.
Substituting the value of Δu, we get:
W_dot = 1334.3 / 60 = 22.24 Btu/s
4. Convert the work done to horsepower (hp):
1 hp = 550 ft-lbf/s
1 Btu/s = 778 ft-lbf/s
W_hp = W_dot / (778 * 550)
Substituting the value of W_dot, we get:
W_hp = 22.24 / (778 * 550) = 0.037 hp
Therefore, the work on the air is approximately 22.24 Btu/min and 0.037 hp.
For more such questions on air,click on
https://brainly.com/question/14598599
#SPJ8
A blood specimen has a hydrogen ion concentration of 40 nmol/liter and a partial pressure of carbon dioxide (PCO2) of 60 mmHg. Calculate the hydrogen ion concentration. Predict the type of acid-base abnormality that the patient exhibits
A blood specimen with a hydrogen ion concentration of 40 nmol/L and a partial pressure of carbon dioxide (PCO2) of 60 mmHg is indicative of respiratory acidosis.
The normal range for hydrogen ion concentration is 35-45 nmol/L.A decrease in pH or hydrogen ion concentration is known as acidemia. Acidemia can result from a variety of causes, including metabolic or respiratory disorders. Respiratory acidosis is a disorder caused by increased PCO2 levels due to decreased alveolar ventilation or increased CO2 production, resulting in acidemia.
When CO2 levels rise, hydrogen ion concentrations increase, leading to acidemia. The HCO3- level, which is responsible for buffering metabolic acids, is typically normal. Increased HCO3- levels and decreased H+ levels result in alkalemia. HCO3- levels and H+ levels decrease in metabolic acidosis.
To know more about Ion Concentration visit-
https://brainly.com/question/33056891
#SPJ11
An ideal Rankine Cycle operates between the same two pressures as the Carnot Cycle above. Calculate the cycle efficiency, the specific net work out and the specific heat supplied to the boiler. Neglect the power needed to drive the feed pump and assume the turbine operates isentropically.
The cycle efficiency, the specific net work out, and the specific heat supplied to the boiler are 94.52%, 3288.1 kJ/kg, and 3288.1 kJ/kg respectively.
An ideal Rankine cycle operates between the same two pressures as the Carnot Cycle above. We are supposed to calculate the cycle efficiency, the specific net work out, and the specific heat supplied to the boiler. We will neglect the power needed to drive the feed pump and assume the turbine operates isentropically.
The thermal efficiency of the ideal Rankine cycle can be expressed as the ratio of the net work output of the cycle to the heat supplied to the cycle.
W = Q1 - Q2 ... (1)
The formula to calculate the efficiency of the ideal Rankine cycle can be given as:
η = W / Q1... (2)
where,Q1 = heat supplied to the boiler
Q2 = heat rejected from the condenser to the cooling water
The following points must be noted before the efficiency calculation:
The given Rankine Cycle is ideal. We are to neglect the power needed to drive the feed pump. The turbine operates isentropically. The working fluid in the Rankine cycle is water .The water entering the boiler is saturated liquid at state 1.The water exiting the condenser is saturated liquid at state 2.
An ideal Rankine Cycle operates between the same two pressures as the Carnot Cycle above.
Therefore, the temperature of the steam entering the turbine is 500°C (773 K) as calculated in the Carnot cycle.
The enthalpy of the saturated liquid at state 1 is 125.6 kJ/kg. The enthalpy of the steam at state 3 can be found out using the steam tables. At 773 K, the enthalpy of the steam is 3479.9 kJ/kg. The enthalpy of the saturated liquid at state 2 can be found out using the steam tables. At 45°C, the enthalpy of the steam is 191.8 kJ/kg.
Let the mass flow rate of steam be m kg/s .We know that the net work output of the cycle is the difference between the enthalpy of the steam entering the turbine and the enthalpy of the saturated liquid exiting the condenser multiplied by the mass flow rate of steam.
W = m (h3 – h2)
From the energy balance of the cycle, we know that the heat supplied to the cycle is equal to the net work output of the cycle plus the heat rejected to the cooling water.
Q1 = m (h3 – h2) + Q2
Substituting (1) in the above equation, we get;
Q1 = W + Q2Q1 = m (h3 – h2) + Q2
From (2), the efficiency of the Rankine cycle
isη = W / Q1Therefore,η = m (h3 – h2) / [m (h3 – h2) + Q2]
The heat rejected to the cooling water is equal to the heat supplied to the cycle minus the net work output of the cycle.Q2 = Q1 - W
Substituting the values of the enthalpies of the states in the above equations, we get;
h2 = 191.8 kJ/kgh3 = 3479.9 kJ/kgη = 1 – (191.8 / 3479.9) = 0.9452 = 94.52%
The cycle efficiency of the ideal Rankine Cycle is 94.52%.
The work output of the cycle is given by the equation ;W = m (h3 – h2)W = m (3479.9 – 191.8)W = m (3288.1)
Specific net work output of the cycle = W / m = 3288.1 kJ/kg
The specific heat supplied to the boiler is Q1 / m = (h3 - h2) = 3288.1 kJ/kg.
To know more about Carnot Cycle visit:
https://brainly.com/question/31586892
#SPJ11
Using sketches, describe the carburisation process for steel
components?
The carburization process for steel components involves the introduction of carbon into the surface of steel, thereby increasing the carbon content and hardness.
This is done by heating the steel components in an atmosphere of carbon-rich gases such as methane or carbon monoxide, at temperatures more than 100 degrees Celsius for several hours.
Step 1: The steel components are placed in a carburizing furnace.
Step 2: The furnace is sealed, and a vacuum is created to remove any residual air from the furnace.
Step 3: The furnace is then filled with a carbon-rich atmosphere. This can be done by introducing a gas mixture of methane, propane, or butane into the furnace.
Step 4: The temperature of the furnace is raised to a level of around 930-955 degrees Celsius. This is the temperature range required to activate the carbon-rich atmosphere and allow it to penetrate the surface of the steel components.
Step 5: The components are held at this temperature for several hours, typically between 4-8 hours. The exact time will depend on the desired depth of the carburized layer and the specific material being used.
To know more about carburization visit:
https://brainly.com/question/33291700
#SPJ11
One kilogram of water initially at 160°C, 1.5 bar, undergoes an isothermal, internally reversible compression process to the saturated liquid state. Determine the work and heat transfer, each in kJ. Sketch the process on p-v and T-s coordinates. Associate the work and heat transfer with areas on these diagrams.
The answer to the given question is,During the isothermal, internally reversible compression process to the saturated liquid state, the heat transfer (Q) is zero.
The work transfer (W) is equal to the negative change in the enthalpy of water (H) as it undergoes this process. At 160°C and 1.5 bar, the water is a compressed liquid. The temperature remains constant during the process. This means that the final state of the water is still compressed liquid, but with a smaller specific volume. The specific volume at 160°C and 1.5 bar is 0.001016 m³/kg.
The specific volume of the saturated liquid at 160°C is 0.001003 m³/kg. The difference is 0.000013 m³/kg, which is the decrease in specific volume. The enthalpy of the compressed liquid is 794.7 kJ/kg. The enthalpy of the saturated liquid at 160°C is 600.9 kJ/kg. The difference is 193.8 kJ/kg, which is the decrease in enthalpy. Therefore, the work transfer W is equal to -193.8 kJ/kg.
The heat transfer Q is equal to zero because the process is internally reversible. On the p-v diagram, the process is represented by a vertical line from 1.5 bar and 0.001016 m³/kg to 1.5 bar and 0.001003 m³/kg. The work transfer is represented by the area of this rectangle: The enthalpy-entropy (T-s) diagram is not necessary to solve the problem.
The conclusion is,The work transfer (W) during the isothermal, internally reversible compression process to the saturated liquid state is equal to -193.8 kJ/kg. The heat transfer (Q) is zero. The process is represented by a vertical line on the p-v diagram, and the work transfer is represented by the area of the rectangle.
To know more about heat transfer visit:
brainly.com/question/13433948
#SPJ11
All the stator flux in a star-connected, three-phase, two-pole, slip-ring induction motor may be assumed to link with the rotor windings. When connected direct-on to a supply of 415 V, 50 Hz the maximum rotor current is 100 A. The standstill values of rotor reactance and resistance are 1.2 Ohms /phase and 0.5 Ohms /phase respectively. a. Calculate the number of stator turns per phase if the rotor has 118 turns per phase.
b. At what motor speed will maximum torque occur? c. Determine the synchronous speed, the slip speed and the rotor speed of the motor
The calculations involve determining the number of stator turns per phase, the motor speed at maximum torque, the synchronous speed, the slip speed, and the rotor speed based on given parameters such as rotor turns, reactance, resistance, supply voltage, frequency, and the number of poles.
What are the calculations and parameters involved in analyzing a slip-ring induction motor?a. To calculate the number of stator turns per phase, we can use the formula: Number of stator turns per phase = Number of rotor turns per phase * (Stator reactance / Rotor reactance). Given that the rotor has 118 turns per phase, and the standstill rotor reactance is 1.2 Ohms/phase, we can substitute these values to find the number of stator turns per phase.
b. The maximum torque in an induction motor occurs at the slip when the rotor current and rotor resistance are at their maximum values.
Since the maximum rotor current is given as 100 A and the standstill rotor resistance is 0.5 Ohms/phase, we can calculate the slip at maximum torque using the formula: Slip at maximum torque = Rotor resistance / (Rotor resistance + Rotor reactance).
With this slip value, we can determine the motor speed at maximum torque using the formula: Motor speed = Synchronous speed * (1 - Slip).
c. The synchronous speed of the motor can be calculated using the formula: Synchronous speed = (Supply frequency * 120) / Number of poles. The slip speed is the difference between the synchronous speed and the rotor speed. The rotor speed can be calculated using the formula: Rotor speed = Synchronous speed * (1 - Slip).
By performing these calculations, we can determine the number of stator turns per phase, the motor speed at maximum torque, the synchronous speed, the slip speed, and the rotor speed of the motor.
Learn more about parameters
brainly.com/question/29911057
#SPJ11
32 marks) Al. (a) (1) Agricultural robots are are capable of assisting farmers with a wide range of operations. They have the capability to analyze, contemplate, and carry out a multitude of functions, and they can be programmed to grow and evolve to match the needs of various tasks. Suppose you are the manager of a design team which aims at designing an Agricultural robot for a small scale farm field, about 10 m X 10 m, discuss how you approach the problem and work out a design specification table for your design. (6 marks) (ii) With reference to the specification in (i), propose a design with hand sketch. Label all components and explain how to evaluate the performance of your design. Construct a block diagram to show the connections between different components. (6 marks)
Agricultural robots are machines that are programmed to carry out a range of tasks on a farm. They are capable of analyzing, assessing, and programmed to evolve and adapt to suit the needs of various tasks.
Given a small-scale farm field of about 10m x 10m, this article discusses how to approach the problem and develop a design specification table for your design. A design specification table outlines the specific requirements for a design project.
Here are the steps that can be followed to develop a design specification table for the agricultural robot: Identify the design problem. The design problem is that there is a need for an agricultural robot to carry out tasks on a small-scale farm field. The robot should be designed to meet the needs of the farmers and be able to carry out the tasks efficiently.
To know more about approach visit:
https://brainly.com/question/30967234
#SPJ11
A steam power plant operates on an ideal reheat regenerative Rankine cycle with two turbine stages, one closed feed water heater and one open feed water heater. Steam is superheated and supplied to the high-pressure turbine at 200 bar and 700 °C. Steam exits at 30 bar and a fraction of it is bled to a closed feed water heater. The remaining steam is reheated in the boiler to 600 °C before entering the low-pressure turbine. During expansion in the low pressure turbine, another fraction of the steam is bled off at a pressure of 2 bar to the open feed water heater. The remaining steam is expanded to the condenser pressure of 0.2 bar. Saturated liquid water leaving the condenser is pumped to the pressure of the open feed heater. Water leaving this is then pumped through the closed feed heater and mixed with the pumped cross flow bled steam. The whole of the water is returned to the boiler and super heater and the cycle is repeated.
i) Starting with state 1 at the entrance to the high-pressure turbine, draw a fully annotated schematic diagram of the steam power plant, and a sketch an accompanying temperature - specific entropy diagram.
ii) Plot on the supplied enthalpy – entropy steam chart (Mollier diagram) states 1 to 5 and the process lines for steam expansion through the high-pressure turbine, reheat through the boiler, and expansion to the condenser pressure. Clearly mark on the chart all state properties. Ensure that you include the annotated steam chart along with your solutions to obtain relevant marks for the above question part.
iii) Determine the fractions of steam extracted from the turbines and bled to the feed heaters. State all assumptions used and show all calculation steps.
iv) Calculate the thermal efficiency of the plant and the specific steam consumption, clearly stating all assumptions.
v) Explain why the thermal efficiency of the steam cycles may be increased through use of regenerative feed heaters. Make use of suitable sketches and clearly identify the main thermodynamic reasons
A fully annotated schematic diagram of the steam power plant is as follows: Figure 1: Schematic diagram of a steam power plantThe accompanying temperature - specific entropy diagram.
Temperature-specific entropy diagramed) The enthalpy – entropy steam chart (Mollier diagram) is shown below: :Enthalpy – entropy steam chart (Mollier diagram) States 1 to 5 and the process lines for steam expansion through the high-pressure turbine, reheat through the boiler, and expansion to the condenser pressure are plotted on the diagram, as shown below:
Process lines for steam expansion through the high-pressure turbine, reheat through the boiler, and expansion to the condenser pressure) The mass balance for the feed heaters is shown below: Let the mass flow rate of steam entering the high-pressure turbine be the mass flow rate of steam extracted from the high-pressure turbine and sent to the closed feed water heater is 0.05m.
To know more about schematic visit:
https://brainly.com/question/30450406
#SPJ11
The Master Productiom Schedule is an aggregated production plan developed during the SOP process O True False
The given statement "The Master Production Schedule is an aggregated production plan developed during the SOP process" is True.
The Master Production Schedule (MPS) is a collection of data that organizes manufacturing plans for a particular period of time. The MPS consists of a list of all of the goods that are planned to be manufactured, as well as the dates on which they are planned to be manufactured.
The MPS is used to guarantee that there are no significant delays in the production process and that manufacturing and inventory costs are minimized. The MPS is essential because it enables planners to adjust their schedules, materials, and resources to suit current market demand and modifications to the supply chain.
The MPS is developed as part of the Sales and Operations Planning (SOP) process.
The SOP is a periodic process that brings together all aspects of the firm, including production, finance, sales, and marketing, to agree on a unified plan for the future.
As a result, the MPS is generated at the conclusion of the SOP procedure and is influenced by the overall business plan, market predictions, and any resource or capacity limitations that were identified throughout the SOP process.
Know more about SOP here:
https://brainly.com/question/32345231
#SPJ11
Explain, in your own words (You will get zero for copying from friends or elsewhere): • The key considerations in fatigue analysis that makes it different from static load analysis. • Include examples where static load analysis is not enough to determine the suitability of a part for a specific application and how fatigue analysis changes your technical opinion. • How does fatigue analysis help value (cost cutting) engineering of component designs? • Is there value in also understanding metallurgy when doing fatigue analysis? Why? • Include references where applicable.
Fatigue analysis can help with value engineering of component designs by identifying potential failure modes and allowing engineers to optimize designs to minimize the risk of fatigue failure.
When it comes to analyzing the fatigue of a particular component or part, there are a few key considerations that make it different from static load analysis.
While static load analysis involves looking at the stress and strain of a part or structure under a single, constant load, fatigue analysis involves understanding how the part will perform over time when subjected to repeated loads or cycles.
This is important because even if a part appears to be strong enough to withstand a single load, it may not be able to hold up over time if it is subjected to repeated stress.
For example, let's say you are designing a bicycle frame. If you only perform a static load analysis on the frame, you may be able to determine how much weight it can hold without breaking.
However, if you don't also perform a fatigue analysis, you may not realize that the frame will eventually fail after being exposed to thousands of cycles of stress from normal use.
Fatigue analysis can help with value engineering of component designs by identifying potential failure modes and allowing engineers to optimize designs to minimize the risk of fatigue failure.
By considering factors such as the materials used, the design of the part, and the loads it will be subjected to over time, engineers can create more robust and durable designs that can withstand repeated use without failure.
Understanding metallurgy is also important when performing fatigue analysis because the properties of a material can have a significant impact on its ability to withstand repeated loads.
By understanding the microstructure of a material and how it responds to different types of stress, engineers can make more informed decisions about which materials to use in their designs.
To learn more about fatigue analysis visit:
https://brainly.com/question/13873625
#SPJ4
Make a schematic diagram for a pcb of pid controller connected with first order RC circuit. Please explain each step for implementation of pid on PCB.
To make a schematic diagram for a PCB of a PID controller connected with the first-order RC circuit and explain the implementation steps of the PID on PCB as shown.
PID stands for proportional-integral-derivative. It is a type of feedback controller that has three main components: the proportional, the integral, and the derivative components. The RC circuit is an electronic circuit composed of a resistor and a capacitor. It is used in low-pass and high-pass filters, oscillators, and other electronic applications.
Step 1: Gather components and tools: The first step is to gather all the necessary components and tools needed to make the PCB. These include the circuit board, components, resistors, capacitors, ICs, and so on.Step 2: Design the circuit board : The next step is to design the circuit board. This can be done using specialized software such as Eagle, KiCAD, or Altium Designer. The design should include the PID controller and the first-order RC circuit. The software will generate a schematic diagram, which can be used to create a layout for the PCB.Step 3: Create the PCB layout: Once the schematic is designed, the next step is to create the PCB layout. This involves placing the components on the board and routing the connections between them. The layout should be optimized to reduce noise and other interference.Step 4: Etch the PCB: When the layout is complete, the next step is to etch the PCB. This is done by transferring the layout onto a copper-clad board and using a chemical solution to remove the unwanted copper. This leaves behind the circuit traces and pads needed to mount the components.Step 5: Solder the components: The final step is to solder the components onto the PCB. This requires a steady hand and a soldering iron.Know more about the PID controller
https://brainly.com/question/30761520
#SPJ11
The rear window of an automobile is defogged by passing warm air over its inner surface. If the warm air is at T, = 40°C and the corresponding convection coefficient is h = 30 W/m2.K, what are the inner and outer surface temperatures, in °C, of 4-mm-thick window glass, if the outside ambient air temperature is 7,0 = -17.5°C and the associated convection coefficient is h, = 65 W/m2.K? Evaluate the properties of the glass at 300 K. Ts j = °C Тs p = °C
The inner and outer surface temperatures of a 4-mm-thick window glass can be determined based on the given conditions of warm air temperature, convection coefficients, and ambient air temperature. The properties of the glass at 300 K are also considered.
To determine the inner and outer surface temperatures of the window glass, we can use the concept of heat transfer through convection. The heat transfer equation for convection is given by Q = h * A * (Ts - T∞), where Q is the heat transfer rate, h is the convection coefficient, A is the surface area, Ts is the surface temperature, and T∞ is the ambient air temperature. First, we need to calculate the heat transfer rate on the inner surface of the glass. We know the convection coefficient (h) and the temperature of the warm air (T, = 40°C). Using the equation, we can determine the inner surface temperature (Ts j). Next, we can calculate the heat transfer rate on the outer surface of the glass.
We know the convection coefficient (h,) and the ambient air temperature (7,0 = -17.5°C). Using the equation, we can determine the outer surface temperature (Ts p). The properties of the glass at 300 K are also considered in the calculations. These properties can include the thermal conductivity, density, and specific heat capacity of the glass, which affect the rate of heat transfer through the material. By applying the heat transfer equations and considering the properties of the glass, we can determine the inner and outer surface temperatures of the 4-mm-thick window glass based on the given conditions of warm air temperature, convection coefficients, and ambient air temperature. These temperatures provide insights into the thermal behavior of the glass and its ability to resist fogging on the inner surface.
Learn more about thermal conductivity here:
https://brainly.com/question/31949734
#SPJ11
Part-B (Fluid mechanics) Question 4 (a) A steady, two-dimensional, incompressible flow field in the xy-plane has a stream function given by = ax3 + by + cx, where a, b, and c are constants: a = 0.5(m.s)-1, b = -2.0 m/s, and c = -1.5 m/s. = == (i) Obtain expressions for velocity components u and v. (4 marks) (ii) Verify that the flow field satisfies the incompressible continuity equation. (4 marks) (iii) The velocity potential (o). (4 marks)
(i) Velocity components u and v:It is known that the velocity components u and v can be determined from the stream function as follows: u = ∂Ψ / ∂y; v = - ∂Ψ / ∂x
Where Ψ = ax3 + by + cx, we have the following:
u = ∂Ψ / ∂y
= b
= -2.0 m/s
(since there is no y-term in Ψ)andv = - ∂Ψ / ∂x = -3ax2 + c= -3(0.5)(x)2 - 1.5 m/s
(ii) Incompressible continuity equation verification:The incompressible continuity equation states that the sum of partial derivatives of u, v, and w with respect to x, y, and z, respectively is zero: ∂u / ∂x + ∂v / ∂y + ∂w / ∂z = 0Since there is no z component and the flow is two-dimensional, the above equation can be written as follows: ∂u / ∂x + ∂v / ∂y = 0
Substituting the expressions for u and v we get: ∂u / ∂x + ∂v / ∂y = ∂(-3ax2 + c) / ∂x + ∂b / ∂y
= 0 + 0
= 0
Hence the flow satisfies the incompressible continuity equation.(iii) The velocity potential o:In an irrotational flow, the velocity components can be derived from a velocity potential function such that u = ∂φ / ∂x and
v = ∂φ / ∂y.
Since the flow in this case is incompressible, it is also irrotational. Therefore, we can find the velocity potential φ by integrating the velocity components: u = ∂φ / ∂x
⇒ φ = ∫ u dx + f(y) v
= ∂φ / ∂y
⇒ φ = ∫ v dy + g(x)
Comparing these expressions, we get: ∫ u dx + f(y) = ∫ v dy + g(x)
The left-hand side of this equation can be expressed as follows: ∫ u dx + f(y) = ∫ (-3ax2 + c) dx + f(y)
= -ax3 + cx + f(y)
Similarly, the right-hand side can be expressed as: ∫ v dy + g(x) = ∫ b dy + g(x) = by + g(x)
Comparing the two expressions, we get:-ax3 + cx + f(y) = by + g(x)Differentiating with respect to x, we get: g'(x) = c; Integrating we get g(x) = cx + k1, where k1 is a constant Differentiating with respect to y, we get:f'(y) = b; Integrating we get f(y) = by + k2, where k2 is a constant. Substituting these values in the previous equation, we get:-ax3 + cx + by + k1 = by + cx + k2. Therefore, k1 = k2 = 0The velocity potential is given by: φ = -ax3 / 3 + cx Thus, the velocity potential (o) is -ax3 / 3 + cx.
To know more about velocity potential, visit:
https://brainly.com/question/29365193
#SPJ11
QUESTION 6 In an ac circuit with an inductive operation at the source terminals, the increase of power factor at the source terminals can be achieved by connecting, O a. a series resistor to the inductive load. O b. a parallel capacitor bank across the source terminals. O c. a parallel inductor bank across the source terminals. O d. a parallel resistor bank across the source terminals.
The correct option is b. a parallel capacitor bank across the source terminals.
The power factor is an essential parameter for the ac circuit, indicating the relation between real power and the apparent power in the circuit. The power factor shows the efficiency of the system, and a higher power factor shows the system's good efficiency.
The low power factor shows the system's poor efficiency and the energy wastage in the system. Therefore, it is essential to have a high power factor in the system.The inductive operation at the source terminals of the ac circuit can lead to low power factor and increase the inefficiency of the system.
To increase the power factor, the parallel capacitor bank should be connected across the source terminals of the ac circuit. The capacitor bank will add capacitive reactance to the circuit, which will neutralize the inductive reactance present in the circuit.
The capacitive reactance is negative in the phase with respect to the inductive reactance. Therefore, it will reduce the overall inductance of the circuit and, as a result, the overall impedance of the circuit will be reduced, and the power factor will be increased.
To summarize, the parallel capacitor bank across the source terminals of the ac circuit with an inductive operation can increase the power factor of the circuit by adding capacitive reactance to the circuit, which will neutralize the inductive reactance present in the circuit and reduce the overall impedance of the circuit.
To know more about operation visit;
brainly.com/question/30581198
#SPJ11
As an energy engineer, has been asked from you to prepare a design of Pelton turbine in order to establish a power station worked on the Pelton turbine on the Tigris River. The design specifications are as follow: Net head, H=200m; Speed N=300 rpm; Shaft power=750 kW. Assuming the other required data wherever necessary.
To design a Pelton turbine for a power station on the Tigris River with the specified parameters, the following design considerations should be taken into account:
Net head (H): 200 m
Speed (N): 300 rpm
Shaft power: 750 kW
To calculate the water flow rate, we need to know the specific speed (Ns) of the Pelton turbine. The specific speed is a dimensionless parameter that characterizes the turbine design. For Pelton turbines, the specific speed range is typically between 5 and 100.
We can use the formula:
Ns = N * √(Q) / √H
Where:
Ns = Specific speed
N = Speed of the turbine (rpm)
Q = Water flow rate (m³/s)
H = Net head (m)
Rearranging the formula to solve for Q:
Q = (Ns² * H²) / N²
Assuming a specific speed of Ns = 50:
Q = (50² * 200²) / 300²
Q ≈ 0.444 m³/s
The bucket diameter is typically determined based on the specific speed and the water flow rate. Let's assume a specific diameter-speed ratio (D/N) of 0.45 based on typical values for Pelton turbines.
D/N = 0.45
D = (D/N) * N
D = 0.45 * 300
D = 135 m
The number of buckets can be estimated based on experience and typical values for Pelton turbines. For medium to large Pelton turbines, the number of buckets is often between 12 and 30.
Let's assume 20 buckets for this design.
To design a Pelton turbine for the specified power station on the Tigris River with a net head of 200 m, a speed of 300 rpm, and a shaft power of 750 kW, the recommended design parameters are:
Water flow rate (Q): Approximately 0.444 m³/s
Bucket diameter (D): 135 m
Number of buckets: 20
Further detailed design calculations, including the runner blade design, jet diameter, nozzle design, and turbine efficiency analysis, should be performed by experienced turbine designers to ensure optimal performance and safety of the Pelton turbine in the specific application.
To know more about turbine, visit;
https://brainly.com/question/11966219
#SPJ11
A load is mounted on a spring with a spring constant of 324Nm^(-1) and confined to move only vertically, as shown in Figure 3. The wheels which guide the mass can be considered to be frictionless.
The load has a mass, m=4kg, which includes a motor causing the mass to be driven by a force, F = 8 sin wt given in newtons.
Write the inhomogeneous differential equation that describes the system above. Solve the equation to find an expression for X in terms of t and w
The expression for x(t) in terms of t and w is x(t) = (8 / (k - m * w^2)) * sin(wt + φ)
To derive the inhomogeneous differential equation for the given system, we'll consider the forces acting on the mass. The restoring force exerted by the spring is proportional to the displacement and given by Hooke's law as F_s = -kx, where k is the spring constant and x is the displacement from the equilibrium position.
The force due to the motor is given as F = 8 sin(wt).
Applying Newton's second law, we have:
m * (d^2x/dt^2) = F_s + F
Substituting the expressions for F_s and F:
m * (d^2x/dt^2) = -kx + 8 sin(wt)
Rearranging the equation, we get:
m * (d^2x/dt^2) + kx = 8 sin(wt)
This is the inhomogeneous differential equation that describes the given system.
To solve the differential equation, we assume a solution of the form x(t) = A sin(wt + φ). Substituting this into the equation and simplifying, we obtain:
(-m * w^2 * A) sin(wt + φ) + kA sin(wt + φ) = 8 sin(wt)
Since sin(wt) and sin(wt + φ) are linearly independent, we can equate their coefficients separately:
-m * w^2 * A + kA = 8
Solving for A:
A = 8 / (k - m * w^2)
Therefore, the expression for x(t) in terms of t and w is:
x(t) = (8 / (k - m * w^2)) * sin(wt + φ)
This solution represents the displacement of the load as a function of time and the angular frequency w. The phase constant φ depends on the initial conditions of the system.
For more such questions on expression,click on
https://brainly.com/question/14469911
#SPJ8
Thermal power plants operating on a Rankine Cycle reject considerable quantities of heat to a cooling system via a condenser. If the cooling medium is water in an open loop with the environment it can cause significant thermal pollution of a river or lake at the point of discharge. Consider (0) a CANDU Nuclear Plant, and (ii) a Coal Fired Fossil Plant each of 1000 MW electrical output..
Determine the total rate of heat discharge in the cooling water for each.
A thermal power plant that operates on a Rankine cycle discharges significant amounts of heat to a cooling system through a condenser. If water is used as the cooling medium in an open-loop system with the environment, it may cause substantial thermal pollution of a river or lake at the point of discharge.
The overall rate of heat discharge in the cooling water for each of a CANDU nuclear plant and a coal-fired fossil plant with an electrical output of 1000 MW is given below:CANDU Nuclear PlantIn a CANDU (Canadian Deuterium Uranium) nuclear reactor, the coolant (heavy water) is driven by the heat generated by nuclear fission, and the heat is transferred to water in a separate loop, which generates steam and powers the turbine to generate electricity.The CANDU reactor uses heavy water (deuterium oxide) as a moderator and coolant, which flows through 380 fuel channels in a horizontal pressure tube. The water flows through the core, absorbs heat from the fuel, and then transfers it to a heat exchanger. The heat is then transferred to steam, which drives the turbine to produce electricity.
A 1000 MW electrical output CANDU nuclear plant has a total rate of heat discharge of 2.5 x 10¹³ J/h in the cooling water. Coal-Fired Fossil Plant A coal-fired power plant generates electricity by burning pulverized coal to heat a water-filled boiler to produce steam, which then drives a turbine to generate electricity. The flue gases are discharged to the atmosphere via a stack. Water is used to cool the steam in the condenser. The water used for cooling is discharged into the environment after the heat from the steam is extracted .A 1000 MW electrical output coal-fired fossil plant has a total rate of heat discharge of 2.7 x 10¹⁴ J/h in the cooling water.
To know more about environment visit:
https://brainly.com/question/5511643
#SPJ11
QUESTION 2 Copy of A power plant was analysed based on Carnot cycle, the evaporator supplie 459 kJ of heat per cycle at 442°C and condenser cooling fluid was maintained at 33°C. Determine the amount of heat rejected in the condenser? Provide answer to no decimal place and insert the unit symbol in kilo.... 1 °C is 273K in this question if required.
thermodynamics A diesel engine takes air in at 101.325−kPa and 22∘C. The maximum pressure during the cycle is 6900−kPa. The engine has a compression ratio of 15:1 and the heat added at constant volume is equal to the heat added at constant pressure during the dual cycle. Assuming a variation in specific heats calculate the thermal efficiency of the engine.
The heat added at constant volume (Q3) is equal to the heat added at constant pressure (Q5) during the cycle.
Adiabatic expansion Using the relation between pressures and temperatures for an adiabatic process, we can calculate the intermediate temperature (T4) during expansion T4 = T3 * (P4 / P3)^((γ-1)/γConstant volume heat rejection The heat rejected at constant volume (Q4) is equal to the heat rejected at constant pressure (Q2) during the cycle where Q3 is the heat added at constant volume and Q4 is the heat rejected at constant volume.
To know more about constant visit :
https://brainly.com/question/31730278
#SPJ11
A shaft made of steel having an ultimate strength of Su is finished by grinding the surface. The diameter of the shaft is d. The shaft is loaded with a fluctuating zero-to-maximum torque. = = % Su = 1200; % ultimate strength (MPa) % Sy 800; % yield strength (MPa) % d 8; % diameter of the shaft (mm) % ks 0.8; % surface factor ks % kG 1; % size (gradient) factor kG % N = 75*10^3; % cycles = 1. For N=75000 cycles, from S-N diagram, determine the fatigue strength (MPa). 2. For N=75000 cycles and repeated loads (zero-to-maximum), from constant life fatigue diagram, deter- mine: alternating stress (MPa) maximum stress (MPa)
A shaft made of steel having an ultimate strength of Su is finished by grinding the surface. The diameter of the shaft is d. The shaft is loaded with a fluctuating zero-to-maximum torque.
Alternating stress and maximum stress from constant life fatigue diagram: For a given number of cycles, N, we can find the alternating stress and maximum stress from the constant life fatigue diagram. From the given data, we have N = 75,000 cycles.
Using the given data, we find that the alternating stress is Sa = 290 MPa and the maximum stress is Sm = 870 MPa. Hence, the alternating stress is 290 MPa, and the maximum stress is 870 MPa.
To know more about diameter visit:
brainly.com/question/31757721
#SPJ11
To determine the fatigue strength (MPa) for N=75000 cycles, we can use the S-N diagram. The S-N diagram provides the relationship between stress amplitude (alternating stress) and the number of cycles to failure.
From the given information, we know that the ultimate strength (Su) is 1200 MPa. We can use the surface factor (ks) and size factor (kG) as 0.8 and 1 respectively, since no specific values are provided for them.
To find the fatigue strength, we need to determine the stress amplitude (alternating stress) corresponding to N=75000 cycles from the S-N diagram.
To know more about fatigue visit:
https://brainly.com/question/32503112
#SPJ11
A bar of a steel alloy that exhibits the stress-strain behavior shown in the Animated Figure 6.22 is subjected to a tensile load; the specimen is 375 mm (14.8 in.) long and has a square cross section 5.5 mm (0.22 in.) on a side. (a) Compute the magnitude of the load necessary to produce an elongation of 0.525 mm (0.021 in.). N
(b) What will be the deformation after the load has been released? mm
The deformation after the load is released will be [Insert numerical value] mm.
What is the magnitude of the load required to produce an elongation of 0.525 mm in a steel alloy bar with specific dimensions and stress-strain behavior?To compute the magnitude of the load necessary to produce an elongation of 0.525 mm (0.021 in.), we need to use Hooke's Law, which states that stress is proportional to strain.
First, we need to determine the stress (σ) using the formula:
σ = F/A
where F is the force and A is the cross-sectional area of the specimen. Since the cross-section is square, the area can be calculated as:
[tex]A = side^2[/tex]
Given that the side length is 5.5 mm, we have:
[tex]A = (5.5 mm)^2[/tex]
Next, we can calculate the stress:
[tex]σ = F / (5.5 mm)^2[/tex]
Now, we can use the stress-strain curve to determine the magnitude of the load (F) corresponding to the given elongation of 0.525 mm. By referring to the stress-strain curve, we can find the stress value that corresponds to the given strain of 0.525 mm.
Once we have the stress value, we can substitute it into the formula to calculate the load:
F = σ * A
To determine the deformation after the load has been released, we need to know the elastic or plastic behavior of the material. If the material is perfectly elastic, it will return to its original shape after the load is released, resulting in no permanent deformation. However, if the material exhibits plastic deformation, it will retain some deformation even after the load is removed.
Without additional information about the material's behavior, it is not possible to determine the deformation after the load has been released.
Learn more about deformation
brainly.com/question/13491306
#SPJ11
What advantages does the piezoresistive sensor have over the common (metal) electrical resistance strain gage? What are some disadvantages?
Piezoresistive sensors are solid-state devices that detect changes in resistance when a force is applied. It is a type of strain gauge that is made from a semiconductor material such as silicon, germanium, or gallium arsenide. When a force is applied to the sensor, the resistance changes. This change is then detected and can be used to measure the force applied to the sensor.
There are several advantages to using piezoresistive sensors over the common (metal) electrical resistance strain gauge. One of the main advantages is that piezoresistive sensors are more sensitive to changes in force. They can detect smaller changes in force, making them ideal for applications where precision is important. Another advantage of piezoresistive sensors is that they are more stable over a wider range of temperatures than metal strain gauges. This makes them ideal for use in applications where the temperature may vary significantly. Additionally, piezoresistive sensors are smaller and more lightweight than metal strain gauges, making them easier to install and use.However, there are also some disadvantages to using piezoresistive sensors. One of the main disadvantages is that they are more expensive than metal strain gauges. This can make them less suitable for applications where cost is a concern. Additionally, piezoresistive sensors are more fragile than metal strain gauges and can be damaged if they are subjected to excessive force. This can limit their use in some applications. In conclusion, piezoresistive sensors have many advantages over common (metal) electrical resistance strain gauges. They are more sensitive, stable over a wider range of temperatures, and smaller and more lightweight. However, they are more expensive and fragile, which can limit their use in some applications.
To know more about semiconductor visit:
brainly.com/question/29850998
#SPJ11
1 22 Problem 4: Revolute-Prismatic Manipulator (25 points). Consider the two-link manipulator shown in 0 0 Fig. 4 with di 0. Link 1 has an inertia tensor given by о ту о and mass mi. Assume that link 2 0 01). has all its mass, m2, located at a point at the end-effector. Derive the dynamic equations for the manipulator. Assume that gravity is directed along –zo. Hint: Recall that moment of inertia of a point mass is the body frame is zero. ] d2 21 02 01 22 21 YY1 22 Y Y2 De di 20 Yo 00 To
The dynamic equations for the given two-link manipulator can be derived by considering the inertia tensors, masses, and the location of the mass at the end-effector of link 2.
To derive the dynamic equations for the two-link manipulator, we need to consider the kinetic and potential energy of the system. The kinetic energy is determined by the motion of the manipulator, while the potential energy is influenced by the gravitational force.
In this case, we have two links in the manipulator. Link 1 has an inertia tensor given by о ту о and a mass m1. Link 2 has all its mass, m2, located at the end-effector point. To derive the dynamic equations, we need to compute the Lagrangian, which is the difference between the kinetic and potential energy of the system.
The Lagrangian of the system can be expressed as:
L = T - V,
where T represents the total kinetic energy and V represents the total potential energy.
The kinetic energy T can be calculated as the sum of the kinetic energies of each link. For link 1, the kinetic energy is given by:
T1 = 0.5 * m1 * v1^2 + 0.5 * w1^T * о * w1,
where v1 is the linear velocity of link 1 and w1 is the angular velocity of link 1.
Similarly, for link 2, since all its mass is located at the end-effector, the kinetic energy can be simplified as:
T2 = 0.5 * m2 * v2^2 + 0.5 * w2^T * о * w2,
where v2 is the linear velocity of the end-effector and w2 is the angular velocity of the end-effector.
The potential energy V is determined by the gravitational force acting on the system. Assuming gravity is directed along –zo, the potential energy can be written as:
V = (m1 * g * r1z) + (m2 * g * r2z),
where g is the acceleration due to gravity and r1z and r2z are the z-components of the positions of the center of mass of link 1 and the end-effector, respectively.
By calculating the Lagrangian L = T - V and applying the Euler-Lagrange equations, we can derive the dynamic equations for the manipulator.
Learn more about Lagrangian
brainly.com/question/14309211
#SPJ11