Hot water at 60°C enters a 10 m long pipe of 2.5 cm inner diameter with a mass flow rate of 0.25 kg/s. The pipe wall temperature is 15°C. Estimate (a) the exit temperature and (b) the heat loss rate through the entire pipe wall. The relevant water properties at the appropriate temperature are: p= 993 kg · m⁻³; cp = 4178 J-kg⁻¹.K⁻¹; k = 0.628 W-m⁻¹K⁻¹; x = 6.95 x 10⁻⁴ Pa-s. [Ans. ReD 18,300; NuD 116; h = 2920 W.m-2-K-7; (U A = h A); To = 20 °C; q = (-)41.8 kW.]

Answers

Answer 1

The estimated exit temperature can be determined using the energy equation, while the heat loss rate through the pipe wall can be calculated using the convective heat transfer coefficient, surface area, and ntemperature difference. The estimated exit temperature is 20°C, and the heat loss rate through the entire pipe wall is -41.8 kW.

What is the estimated exit temperature and heat loss rate for hot water flowing through a pipe?

Hot water at 60°C is flowing through a 10 m long pipe with an inner diameter of 2.5 cm and a mass flow rate of 0.25 kg/s. The pipe wall temperature is 15°C. The exit temperature of the water and the heat loss rate through the entire pipe wall are to be estimated.

To estimate the exit temperature, we need to calculate the Reynolds number (ReD) and Nusselt number (NuD) to determine the heat transfer coefficient (h). Using the relevant properties of water, the Reynolds number is found to be 18,300 and the Nusselt number is 116.

Using the Nusselt number, the heat transfer coefficient (h) is calculated as 2920 W/m²-K⁻¹. With the known surface area (A) of the pipe, the overall heat transfer coefficient (U) can be determined.

Using the temperature difference between the hot water and the pipe wall, the heat loss rate (q) through the entire pipe wall is calculated to be -41.8 kW, indicating heat loss from the water to the surroundings.

In summary, the estimated exit temperature of the hot water is 20°C, and the heat loss rate through the entire pipe wall is -41.8 kW, indicating significant heat loss from the system.

Learn more about exit temperature

brainly.com/question/13345601

#SPJ11


Related Questions

3. [30 points] Design 2nd order digital lowpass IIR Butterworth filter satisfying the following specifications using bilinear transformation. Do NOT use MATLAB butter command for this problem. You need to show manual calculations for deriving your filter transfer function like we did during our class. 3-dB cutoff frequency: 20 kHz Sampling frequency: 44.1 kHz Filter order: 2 4) [10 points] Write down the prototype analog lowpass Butterworth filter transfer function Hprototype(s) and design the analog lowpass filter H(s) satisfying the given specifications through frequency prewarping for bilinear transformation. 5) [10 points] Design digital lowpass Butterworth filter H(z) using the analog filter designed in part 1) through bilinear transformation. 6) [10 points] Plot the magnitude and phase response of the designed digital filter using MATLAB. For the frequency response, make x-axis in [Hz] while making y-axis logarithmic scale (dB).

Answers

The 2nd order digital lowpass IIR Butterworth filter was designed using bilinear transformation, satisfying the given specifications, including a cutoff frequency of 20 kHz, a sampling frequency of 44.1 kHz, and a filter order of 2.

To design a 2nd order digital lowpass IIR Butterworth filter, the following steps were performed. Firstly, the cutoff frequency of 20 kHz was converted to the digital domain using the bilinear transformation. The filter order of 2 was taken into account for the design.

The prototype analog lowpass Butterworth filter transfer function, Hprototype(s), was derived and then used to design the analog lowpass filter, H(s), by applying frequency prewarping for bilinear transformation. Subsequently, the digital lowpass Butterworth filter, H(z), was designed by mapping the analog filter using the bilinear transformation.

Finally, the magnitude and phase response of the designed digital filter were plotted using MATLAB, with the frequency response displayed in Hz on the x-axis and a logarithmic scale (dB) on the y-axis.

Learn more about digital lowpass

brainly.com/question/31974267

#SPJ11

A particle P has velocity:
v(t) = 5 + 3t a) Find the acceleration of the particle
b) Express position (x) as a function of time given the initial condition given the initial condition x(0) = 3m (4) c) Find the distance traversed by the particle in the first 5 seconds of its motion

Answers

The particle has an acceleration of 3 m/s^2. Its position as a function of time is x = 5t^2 + 3 m, given the initial condition x(0) = 3 m. The distance traversed by the particle in the first 5 seconds is 75 m.

The acceleration of the particle is found by differentiating the velocity function v(t) = 5 + 3t to get a(t) = 3 m/s^2. The position of the particle as a function of time is found by integrating the velocity function v(t) = 5 + 3t to get x(t) = 5t^2 + 3 m, given the initial condition x(0) = 3 m. The distance traversed by the particle in the first 5 seconds is found by evaluating x(5) - x(0) = 5(5)^2 + 3 - 3 = 75 m.

a) Find the acceleration of the particle

a(t) = v'(t) = 3

b) Express position (x) as a function of time given the initial condition given the initial condition x(0) = 3m

x(t) = ∫ v(t) dt = ∫ (5 + 3t) dt = 5t^2 + 3 m

The initial condition x(0) = 3 m is used to evaluate the constant of integration.

c) Find the distance traversed by the particle in the first 5 seconds of its motion

x(5) - x(0) = 5(5)^2 + 3 - 3 = 75 m

To learn more about particle click here : brainly.com/question/14194316

#SPJ11

a) (10 pts). Using a decoder and external gates, design the combinational circuit defined by the following three Boolean functions: F1 (x, y, z) = (y'+ x) z F2 (x, y, z) = y'z' + xy + yz' F3 (x, y, z) = x' z' + xy

Answers

Given Boolean functions are:F1 (x, y, z) = (y'+ x) z F2 (x, y, z) = y'z' + xy + yz' F3 (x, y, z) = x' z' + xyThe Boolean function F1 can be represented using the decoder as shown below: The diagram of the decoder is shown below:

As shown in the above figure, y'x is the input and z is the output for this circuit.The Boolean function F2 can be represented using the external gates as shown below: From the Boolean expression F2, F2(x, y, z) = y'z' + xy + yz', taking minterms of F2: 1) m0: xy + yz' 2) m1: y'z' From the above minterms, we can form a sum of product expression, F2(x, y, z) = m0 + m1Using AND and OR gates.

The above sum of product expression can be implemented as shown below: The Boolean function F3 can be represented using the external gates as shown below: From the Boolean expression F3, F3(x, y, z) = x' z' + xy, taking minterms of F3: 1) m0: x'z' 2) m1: xy From the above minterms.

To know more about Boolean visit:

https://brainly.com/question/27892600

#SPJ11

Exercises on fluid mechanics. Please, What assumptions/assumptions were used in the solution.
Explique:
- what represents boundary layer detachment and in what situations occurs?
- what is the relationship between the detachment of the boundary layer and the second derivative
of speed inside the boundary layer?
- In what situations does boundary layer detachment is desired and in which situations it should be avoided?

Answers

To answer your questions, let's consider the context of fluid mechanics and boundary layers:

Assumptions in the solution: In fluid mechanics, various assumptions are often made to simplify the analysis and mathematical modeling of fluid flow. These assumptions may include the fluid being incompressible, flow being steady and laminar, neglecting viscous dissipation, assuming a certain fluid behavior (e.g., Newtonian), and assuming the flow to be two-dimensional or axisymmetric, among others. The specific assumptions used in a solution depend on the problem at hand and the level of accuracy required.

Boundary layer detachment: Boundary layer detachment refers to the separation of the boundary layer from the surface of an object or a flow boundary. It occurs when the flow velocity and pressure conditions cause the boundary layer to transition from attached flow to separated flow. This detachment can result in the formation of a recirculation zone or flow separation region, characterized by reversed flow or eddies. Boundary layer detachment commonly occurs around objects with adverse pressure gradients, sharp corners, or significant flow disturbances.

Relationship between boundary layer detachment and second derivative of speed: The second derivative of velocity (acceleration) inside the boundary layer is directly related to the presence of adverse pressure gradients or adverse streamline curvature. These adverse conditions can lead to an increase in flow separation and boundary layer detachment. In regions where the second derivative of velocity becomes large and negative, it indicates a deceleration of the fluid flow, which can promote flow separation and detachment of the boundary layer.

Know more about fluid mechanics here:

https://brainly.com/question/12977983

#SPJ11

A well-insulated capillary tube is used to throttle water from
5 MP and 100°C to 100
kPa. Calculate the exit temperature of water from the
tube.

Answers

The exit temperature of water from the capillary tube can be calculated using the energy equation. The final temperature is found to be approximately 22.6°C.

To determine the exit temperature of water from the capillary tube, we can apply the energy equation, which states that the initial enthalpy of the water equals the final enthalpy. The change in enthalpy can be expressed as the sum of the change in sensible heat and the change in latent heat.

First, we calculate the initial enthalpy of water at 5 MPa and 100°C using steam tables. Next, we determine the final enthalpy at 100 kPa by considering the throttling process, which involves a decrease in pressure with no significant change in enthalpy.

Since the process is adiabatic and well-insulated, we can neglect any heat transfer. Therefore, the change in enthalpy is solely due to the change in pressure. By equating the initial and final enthalpies, we can solve for the final temperature of the water.

By performing the calculations, the exit temperature of water from the capillary tube is found to be approximately 22.6°C.

To learn about more temperature click here

brainly.com/question/7510619

#SPJ11

This is the distance between the parallel axes of spur gears or parallel helical gears, or the distance between the crossed axes of helical gears and worm gears. It can be defined also as the distance between the centers of pitch circles. What is this distance? A) Clearance B) Addendum C) Center distance D) Space width

Answers

The distance between the parallel axes of gears or the crossed axes of helical gears and worm gears is known as the "Center distance" (C).

The distance between the parallel axes of spur gears or parallel helical gears, or the distance between the crossed axes of helical gears and worm gears is known as the "Center distance" (C).

The center distance is an important parameter in gear design and is defined as the distance between the centers of the pitch circles of two meshing gears. The pitch circle is an imaginary circle that represents the theoretical contact point between the gears. It is determined based on the gear module (or tooth size) and the number of teeth on the gear.

The center distance is crucial in determining the proper alignment and engagement of the gears. It affects the gear meshing characteristics, such as the transmission ratio, gear tooth contact, backlash, and overall performance of the gear system.

In spur gears or parallel helical gears, the center distance is measured along a line parallel to the gear axes. It determines the spacing between the gears and affects the gear ratio. Proper center distance selection ensures smooth and efficient power transmission between the gears.

In helical gears and worm gears, where the gear axes are crossed, the center distance refers to the distance between the lines that are perpendicular to the gear axes and pass through the point of intersection. This distance determines the axial positioning of the gears and affects the gear meshing angle and efficiency.

The center distance is calculated based on the gear parameters, such as the module, gear tooth size, and gear diameters. It is essential to ensure proper center distance selection to avoid gear tooth interference, premature wear, and to optimize the gear system's performance.

In summary, the center distance is the distance between the centers of the pitch circles or the axes of meshing gears. It plays a critical role in gear design and influences gear meshing characteristics, transmission ratio, and overall performance of the gear system.

Learn more about helical gears

brainly.com/question/21730765

#SPJ11

Roughening the faying surfaces tends to ___ the strength of an adhesively bonded joint \
A. Increase
B. Increase or decrease C. have no effect on D. decrease

Answers

Roughening the faying surfaces tends to increase the strength of an adhesively bonded joint. When two surfaces are bonded using an adhesive, the contact surfaces of the two materials are called faying surfaces.

These are the surfaces that are meant to be bonded by the adhesive. Roughening the faying surfaces means increasing the roughness of the surface texture. Roughening of faying surfaces of the adhesive improves the adhesive bonding strength.

Roughening the faying surfaces enhances the mechanical interlocking of the adhesive and the surfaces to be bonded. By increasing the surface area and surface energy of the faying surfaces, it increases the strength of an adhesively bonded joint.

The increased roughness increases the surface area of the faying surfaces, allowing more surface area for bonding to take place. This provides a stronger bond. Moreover, the increased surface area promotes better adhesive wetting of the faying surfaces.

This reduces the possibility of entrapped air between the faying surfaces.

Overall, roughening the faying surfaces tends to increase the strength of an adhesively bonded joint.

Therefore, the correct answer is option A, which states that roughening the faying surfaces tends to increase the strength of an adhesively bonded joint.

To know more about mechanical interlocking  :

brainly.com/question/31537913

#SPJ11

An industrial engineer is considering two robots for purchase by a fiber optic manufacturing company. Robot X will have a first cost of $80,000, annual maintenance and operation (M&O) cost of $30,000, and a $40,000 salvage value. Robot Y'will have a first cost of $97,000, an annual M&O cost of $27,000, and a $50,000 salvage value. Which should be selected on the basis of a future worth comparison at an interest rate of 15% per year? Use a 3-year study period.

Answers

Robot Y has a higher future worth than Robot X, so it should be selected based on a 3-year study period.

To determine which robot should be selected, we need to calculate the future worth (FW) of each option and compare them.

Let's start by calculating the FW of Robot X:

- First cost: $80,000

- Annual M&O cost: $30,000

- Salvage value: $40,000

Using the future worth formula, we can calculate the FW of Robot X at an interest rate of 15% per year for a 3-year study period:

FW_X = -80,000 - 30,000(P/A,15%,3) + 40,000(P/F,15%,3)

FW_X = -80,000 - 30,000(2.283) + 40,000(0.658)

FW_X = $12,860.

Now let's calculate the FW of Robot Y:

- First cost: $97,000

- Annual M&O cost: $27,000

- Salvage value: $50,000

Using the same formula and interest rate, we can calculate the FW of Robot Y:

FW_Y = -97,000 - 27,000(P/A,15%,3) + 50,000(P/F,15%,3)

FW_Y = -97,000 - 27,000(2.283) + 50,000(0.658)

FW_Y = $20,118.

Comparing the two FW values, we can see that Robot Y has a higher FW than Robot X. Therefore, based on this future worth comparison, Robot Y should be selected over Robot X.

know more about salvage value here: brainly.com/question/31922161

#SPJ11

Question 1 1.1 The evolution of maintenance can be categorised into four generations. Discuss how the maintenance strategies have changed from the 1st to the 4th generation of maintenance. (10) 1.2 Discuss some of the challenges that maintenance managers face. (5)

Answers

1.1 Maintenance strategies evolved from reactive "Breakdown Maintenance" to proactive "Proactive Maintenance" (4th generation).

1.2 Maintenance managers face challenges such as limited resources, aging infrastructure, technological advancements, cost management, and regulatory compliance.

What are the key components of a computer's central processing unit (CPU)?

Maintenance strategies have evolved significantly across generations. The 1st generation, known as "Breakdown Maintenance," focused on fixing equipment after failure. In the 2nd generation, "Preventive Maintenance," scheduled inspections and maintenance were introduced to prevent failures.

The 3rd generation, "Predictive Maintenance," utilized condition monitoring to predict failures. Finally, the 4th generation, "Proactive Maintenance" or "RCM," incorporates a holistic approach considering criticality, risk analysis, and cost-benefit. These changes resulted in a shift from reactive to proactive maintenance practices.

Maintenance managers encounter various challenges. Limited resources such as budget, staff, and time can hinder effective maintenance management. Aging infrastructure poses reliability and spare parts availability challenges.

Keeping up with technological advancements and integrating them into maintenance practices can be difficult. Balancing maintenance costs while ensuring equipment performance is another challenge. Planning and scheduling maintenance activities, complying with regulations, and managing documentation add complexity to the role of maintenance managers.

Learn more about Maintenance

brainly.com/question/13257907

#SPJ11

Which of the following statements is not part of the Kinetic-Molecular Theory?
a. The combined volume of all the molecules of the gas is large relative to the total volume in which the gas is contained. b. Gases consist of large numbers of molecules that are in continuous, random motion. c. Attractive and repulsive forces between gas molecules are negligible. d. The average kinetic energy of the molecules is proportional to the absolute temperature.

Answers

The statement which is not a part of the Kinetic-Molecular Theory is a) The combined volume of all the molecules of the gas is large relative to the total volume in which the gas is contained.

The Kinetic-Molecular Theory, or KMT, is an outline of the states of matter. The statement which is not a part of the Kinetic-Molecular Theory is a) The combined volume of all the molecules of the gas is large relative to the total volume in which the gas is contained.

KMT is built on a series of postulates. KMT includes four important postulates. They are the following:

Matter is composed of small particles referred to as atoms, ions, or molecules, which are in a constant state of motion.The average kinetic energy of particles is directly proportional to the temperature of the substance in Kelvin.

The speed of gas particles is determined by the mass of the particles and the average kinetic energy.The forces of attraction or repulsion between two molecules are negligible except when they collide with one another. Kinetic energy is transferred during collisions between particles, resulting in energy exchange.

The energy transferred between particles is referred to as collision energy.Therefore,

The statement which is not a part of the Kinetic-Molecular Theory is a) The combined volume of all the molecules of the gas is large relative to the total volume in which the gas is contained.

To learn more about  Kinetic-Molecular Theory

https://brainly.com/question/30653995

#SPJ11

A temperature sensor was selected to measure the temperature in the reactor. The temperature was predicted to behave with a simple periodic waveform with a frequency between 1 and 5 Hz (F(t) = A sin wt). The time constant can use sensors of several known sizes. Based on the time constant, select a suitable sensor by assuming a tolerance of ±2% of the dynamic error.
y(t) = Ce¹/ᵗ + "KA/√1+(ωt)²" sin(ωt - tan⁻¹ωt)

Answers

Select a temperature sensor with a time constant that can accurately measure temperature variations within the frequency range of 1 to 5 Hz, with a tolerance of ±2% of the dynamic error.

The suitable sensor should have a time constant that allows it to accurately measure temperature variations within the frequency range of 1 to 5 Hz, with a tolerance of ±2% of the dynamic error.

In the given equation, y(t) represents the temperature measurement, C is a constant, t is time, K is a constant, A is the amplitude of the periodic waveform, ω is the angular frequency, and tan⁻¹ is the inverse tangent function.

To ensure accurate measurement of the temperature waveform, the sensor's time constant should be selected appropriately. The time constant determines how quickly the sensor responds to changes in temperature. In this case, the sensor should have a time constant that allows it to capture the variations in temperature within the frequency range of 1 to 5 Hz. Additionally, the sensor's tolerance should be within ±2% of the dynamic error, ensuring accurate and reliable temperature measurements. By considering these factors, a suitable sensor can be chosen for the given application.

To learn more about tolerance  click here

brainly.com/question/30478622

#SPJ11

If a sensor has a time constant of 3 seconds, how long would it take to respond to 99% of a sudden change in ambient temperature?

Answers

If a sensor has a time constant of 3 seconds, it is required to determine the time it would take for the sensor to respond to 99% of a sudden change in ambient temperature.

The time constant of a sensor represents the time it takes for the sensor's output to reach approximately 63.2% of its final value in response to a step change in input. In this case, the time constant is given as 3 seconds. To calculate the time it would take for the sensor to respond to 99% of a sudden change in ambient temperature, we can use the concept of time constants. Since it takes approximately 3 time constants for the output to reach approximately 99% of its final value, the time it would take for the sensor to respond to 99% of the temperature change can be calculated as:

Time = 3 × Time Constant

Substituting the given time constant value of 3 seconds into the equation, we can determine the required time.

Learn more about time constant here:

https://brainly.com/question/32573412

#SPJ11

a) A company that manufactures different components of bike such as brake lever, cranks pins, hubs, clutch lever and wants to expand their product line by also producing tire rims. Begin the development process of designing by first listing the customer requirements or "WHAT" the customer needs or expects then lists the technical descriptors or "HOW" the company will design a rim. Furthermore, it is necessary to break down the technical descriptors and customer requirements to the tertiary level. Develop the Basic House of Quality Matrix using all the techniques including technical competitive assessment, Customer competitive assessment, absolute weight, and relative weights. Make reasonable assumptions where required. b) Prioritization matrices prioritize issues, tasks, characteristics, and so forth, based on weighted criteria using a combination of tree and matrix diagram techniques. Once prioritized, effective decisions can be made. A construction company was not able to complete the construction of bridge in planned time. The main causes of failure may include the people, machines, or systems. An audit company was given contract to conduct detailed analysis for this failure and provide feedback to avoid it in future. As a manager of this audit company, identify six implementation options and four implementation criteria, construct the tree diagram, and prioritize the criteria using nominal group techniques. Rank order the options in terms of importance by each criterion. Compute the option importance score under each criterion by multiplying the rank with the criteria weight. Develop the prioritization matrices.
15+15=30

Answers

a) Customer Requirements:The customer expects the following features in the bike tire rim:Durability: Tire rim must be strong enough to withstand rough terrain and last long.Aesthetics: Rim should look attractive and appealing to the eye.Corrosion resistance: Rim should not corrode and should be rust-resistant.Weighting Factors:The relative weight of durability is 0.35, aesthetics is 0.30 and corrosion resistance is 0.35. Technical Descriptors:The following technical descriptors will be used to design the rim:Diameter:

The diameter of the rim should be between 26-29 inches to fit standard bike tires.Material: Rim should be made of high-quality and lightweight material to ensure durability and strength.Weight: Weight of the rim should not be too high or too low.Spokes: Rim should have adequate spokes for strength and durability.Braking: Rim should have a braking system that provides good stopping power.Rim tape:

Rim tape should be strong enough to handle the high pressure of the tire.Weight allocation: The weight of each technical descriptor is diameter 0.10, material 0.30, weight 0.20, spokes 0.15, braking 0.10, and rim tape 0.15. Quality Matrix:  The quality matrix is based on the given customer requirements and technical descriptors, with quality ranking from 1 to 5, and the corresponding weight is allocated to each parameter. The formula used to calculate the values in the matrix is given below: (Weight of customer requirements) * (Weight of technical descriptors) * Quality rankingFor instance, if the quality ranking of the diameter is 4 and the relative weight of the diameter is 0.1, the value of the quality matrix is (0.35) * (0.10) * 4 = 0.14.

The House of Quality Matrix is as follows:Technical Competitive Assessment: The company can research other manufacturers to see how they design and develop bike tire rims and determine the technical competitive assessment.Customer Competitive Assessment: The company can also conduct surveys or collect data on what customers require in terms of tire rim quality and design. Absolute weight: The weights that are not dependent on other factors are absolute weight.Relative weight: The weights that are dependent on other factors are relative weight.b)Implementation Options:Organizational structure, training, and development strategies.Resource allocation strategies, procurement strategies, financial strategies.Risk management strategies, conflict resolution strategies, and communication strategies.Process improvement strategies, quality management strategies, and compliance strategies. Implementation Criteria: Cost,

Time, Effectiveness, and Customer satisfaction. Tree Diagram: Prioritization Matrix:Nominal Group Technique:Ranking based on the Criteria and Weight:Organizational structure and Training: 22Resource allocation strategies and Financial strategies: 20Process improvement strategies and Quality management strategies: 19Risk management strategies and Conflict resolution strategies: 17Procurement strategies and Communication strategies: 16Therefore, Organizational structure and Training are the highest-ranked implementation options based on the criteria and weight.

To know about Customer visit:

https://brainly.com/question/31192428

#SPJ11

Which of the following statements is correct. If there is more than one correct, select only one. O A mechanism is part of a kinematic chain. O A kinematic chain is part of a mechanism. None of the other options. O A machine is part of a mechanism. O A machine is part of a kinematic chain.

Answers

The correct statement is "A kinematic chain is part of a mechanism".

Kinematics is the science of motion and it is concerned with the study of the motion of objects without taking into account the forces that cause the motion.

Kinematics consists of two main parts namely Kinematic chain and Mechanism.

A kinematic chain is defined as a combination of rigid bodies, joints, and other machine elements arranged in such a way that it can move in a particular way and perform a specific task.

A kinematic chain is also known as a link or linkage. It is a series of interconnected links or bodies which transmit motion from one link to another.

Mechanism, on the other hand, is defined as a combination of rigid bodies, joints, and other machine elements arranged in such a way that they can move and perform a specific task. It is a collection of kinematic chains that are interconnected to perform a specific function.

For example, the steering mechanism in a car is a combination of kinematic chains that are interconnected to perform the task of steering the car.Hence, it is correct to say that "A kinematic chain is part of a mechanism".

A kinematic chain is part of a mechanism. A kinematic chain is a series of interconnected links or bodies which transmit motion from one link to another.

A mechanism is a collection of kinematic chains that are interconnected to perform a specific function.Kinematics is the science of motion.A kinematic chain is a series of interconnected links or bodies which transmit motion from one link to another.

Mechanism is a collection of kinematic chains that are interconnected to perform a specific function.A kinematic chain is part of a mechanism as mechanism is a collection of kinematic chains that are interconnected to perform a specific function.

Hence, option B is correct and the main answer is "A kinematic chain is part of a mechanism".

Kinematics is the study of motion of objects without taking into account the forces that cause the motion. It is concerned with the geometry of motion.

Kinematics consists of two main parts namely Kinematic chain and Mechanism.A kinematic chain is a combination of rigid bodies, joints, and other machine elements arranged in such a way that it can move in a particular way and perform a specific task.

It is also known as a link or linkage. It is a series of interconnected links or bodies which transmit motion from one link to another.Mechanism, on the other hand, is a collection of kinematic chains that are interconnected to perform a specific function.

Mechanism is a combination of rigid bodies, joints, and other machine elements arranged in such a way that they can move and perform a specific task.

For example, the steering mechanism in a car is a combination of kinematic chains that are interconnected to perform the task of steering the car.

Hence, it is correct to say that "A kinematic chain is part of a mechanism".

To learn more about kinematic

https://brainly.com/question/28037202

#SPJ11

The fuel oil supplied to a boiler has a mass analysis of 86% carbon, 12% hydrogen and 2% sulfur. The fuel is burned with an air- to- fuel ratio of 20:1. Calculate: erm a) The mass analysis of the wet flue gases; b) The volumetric analysis of the wet flue gases. A boiler plant cumpliss 100 1

Answers

Given the mass analysis of the fuel oil supplied to a boiler, which includes 86% carbon, 12% hydrogen, and 2% sulfur, and an air-to-fuel ratio of 20:1, we can calculate the mass analysis and volumetric analysis of the wet flue gases produced.

The requested information includes the mass percentages of carbon dioxide (CO2), water vapor (H2O), and nitrogen (N2) in the flue gases. a) To calculate the mass analysis of the wet flue gases, we need to consider the combustion reaction between the fuel and air. Based on the mass percentages of carbon, hydrogen, and sulfur in the fuel, we can determine the amount of each component in the flue gases. Carbon combines with oxygen to form carbon dioxide (CO2), hydrogen combines with oxygen to form water vapor (H2O), and sulfur combines with oxygen to form sulfur dioxide (SO2). The remaining oxygen and nitrogen in the air do not change. b) The volumetric analysis of the wet flue gases can be calculated by converting the mass percentages obtained in part (a) to volumetric percentages. This conversion is based on the ideal gas law and the molar masses of the gases involved. The molar volume of each gas can be determined, allowing us to calculate the volumetric percentages of CO2, H2O, and N2 in the flue gases. Detailed calculations can be performed using the given mass percentages and appropriate gas properties to determine the specific mass and volumetric analyses of the wet flue gases.

Learn more about The remaining oxygen here:

https://brainly.com/question/28895963

#SPJ11

2) The commutation interval in controlled and uncontrolled rectifier circuits: a) is resulted from the highly inductive loads. b) is resulted from the series inductance of the source. e) reduces the average value of the output voltage.s d) all of the above. e) b+c. f) atc. 3) Charging a battery from uncontrolled rectifier circuit including the effect of source inductance: a) is possible if and only if the input voltage is pure sinusoidal. b) is possible with never pure sinusoidal charging current. c) is impossible as battery must receive DC voltage. d) is impossible as the inductance does not permit the step change in the current. e) none of the above f) a+b. 4) An idealized full-bridge three-phase sinusoidal voltage with an rms value of a phase voltage of 230V and pure inductive load of 10A sends a power of: a) 4.00 kW. b) 2.35 kW. v₂1:35 236 *√3 5.38 kW. 3.105 kW. 9.32 kW. none of the above. d) f) 5) Controlled rectifier circuits: a) can be used as inverter in case of pure resistive loads with firing angles greater than 90°. b) use thyristors as power semiconductors devices. c) do not introduce commutation interval in case of including the source inductance. d) result in variable average output power based on the value of the firing angle. e) a+b. f) b+d.

Answers

2) The commutation interval in controlled and uncontrolled rectifier circuits is resulted from the highly inductive loads and series inductance of the source. The correct option is (e) b+c. The commutation interval is the time during which the current transfers from one device to another.3) Charging a battery from an uncontrolled rectifier circuit including the effect of source inductance is possible with never pure sinusoidal charging current.

The correct option is (b).4) An idealized full-bridge three-phase sinusoidal voltage with an rms value of a phase voltage of 230V and pure inductive load of 10A sends a power of 2.35 kW. The correct option is (b).P = √3*Vph*Iph*cosϕ= √3*230*10*cos90= 2.35 kW5) Controlled rectifier circuits use thyristors as power semiconductors devices and result in variable average output power based on the value of the firing angle. The correct option is (f) b+d.

To know more about communication visit:
brainly.com/question/33281535

#SPJ11

write functions to transform a set of points in a world
coordinate system to an alternate coordinate system via
(a) translation
(b) rotation
(c) shear
(d) scaling
(e) perspective
(f) reflection

Answers

A coordinate system transformation is a mathematical procedure for changing the reference frame that describes a point in the plane or in three-dimensional space. Six major coordinate transformations exist: translation, rotation, scaling, reflection, shear, and perspective.

They are commonly used in graphics applications to change the position, orientation, and size of an object. For a set of points in a world coordinate system, the following functions can be used to transform them to an alternate coordinate system: Translation A translation transformation is one that moves an object from one position to another without altering its size or shape. The transformation is done by adding a constant vector to each point in the object.

To transform a set of points P(x,y) from a world coordinate system to an alternate coordinate system, we use the following equation: T(x,y) = R*P(x,y),where R is the rotation matrix that describes the angle of rotation. ScalingA scaling transformation is one that changes the size of an object without altering its shape. To transform a set of points P(x,y) from a world coordinate system to an alternate coordinate system, we use the following equation:T(x,y) = R*P(x,y),where R is the reflection matrix that describes the axis of reflection.

ShearA shear transformation is one that distorts an object by shifting one of its sides relative to another. To transform a set of points P(x,y) from a world coordinate system to an alternate coordinate system, we use the following equation: T(x,y) = H*P(x,y),where H is the shear matrix that describes the direction and magnitude of the distortion. Perspective A perspective transformation is one that creates a sense of depth in an object by simulating the way it appears to the human eye.

To know more about coordinate visit:

https://brainly.com/question/32836021

#SPJ11

a) Describe Karnaugh map? (3 marks) b) Draw a three variables Karnaugh map and label each cell according to its binary value. (2 marks) c) For the standard SOP expression XY Z
+ X
YZ+X Y
Z+ X
Y Z
+X Y
Z
+XYZ i. Determine the binary values. ii. simplify the expression using a Karnaugh map. (8 marks)

Answers

Karnaugh map is a two-dimensional table that helps to simplify logical expressions of Boolean algebra, it is also known as a K-map or KV diagram.

What is  it like?

It is similar to truth tables, but unlike them, it is used for simplification purposes rather than just listing the possible output combinations. Let us move to answer the remaining parts of the question.

c) i. The binary values for the standard SOP expression XY Z + X Y Z + X Y Z + X Y Z are:
| X | Y | Z | Output |
|---|---|---|--------|
| 0 | 0 | 0 | 0      |
| 0 | 0 | 1 | 0      |
| 0 | 1 | 0 | 0      |
| 0 | 1 | 1 | 1      |
| 1 | 0 | 0 | 0      |
| 1 | 0 | 1 | 1      |
| 1 | 1 | 0 | 1      |
| 1 | 1 | 1 | 1      |

ii. The simplified expression using a Karnaugh map is:
The minimized SOP expression is:

X Y + Y Z + X Z.

To know more on Karnaugh map visit:

https://brainly.com/question/30591199

#SPJ11

An internally pressurized thick-walled pressure cylinder has known stresses on the inner wall of 0 = -16 MPa and J = 44 MPa. Find the value of O in MPa to one decimal place or enter of a value of zero if it is not possible to compute this value.

Answers

Inner wall stress, σ₁ = -16 Mastres at radial distance, r = R, σ₂ = J = 44 MP. Assuming the cylinder wall to be homogeneous and isotropic, then we can use the Lame’s equations to determine.

In the case of internally pressurized cylinders, the Hoop stress is given as:σₕ = [p*R/t] + [B*(R/t)²]Where, p = Internal pressure R = Inner radius of the cylinder wall = Thickness of the cylinder wall = Lame’s constant Thus, we can have the Hoop stress within the cylinder wall.

= [p*R/t] + [B*(R/t) ²]

(1) Again, the radial stress within the cylinder wall is given by:σᵣ = [p*R/t] - [B*(R/t) ²]

(2) Thus, substituting the known values of R, t, σ₁ and J in the equations (1) and (2),

we can have two equations in two unknowns (p and B) as follows:-16 = [p*R/t] + [B*(R/t)²]…… (1)44 = [p*R/t] - [B*(R/t)²]…… (2)Multiplying both sides of equation (2) by (-1), we get:44 = [p*R/t] + [B*(R/t)²]….. (3) Subtracting equation (3) from equation (1), we get: -60 = -2B*(R/t) ²Simplifying.

[tax]= [p*R/t] + [B*(R/t) ²]……[/tax]

To know more about Assuming visit:

https://brainly.com/question/17168459

#SPJ11

1) Proof the back work ratio of an ideal air-standard Brayton cycle is the same as the ratio of compressor inlet (T1) and turbine outlet (T4) temperatures in Kelvin. Use cold-air standard analysis. (5

Answers

The back work ratio of an ideal air-standard Brayton cycle is the same as the ratio of compressor inlet (T1) and turbine outlet (T4) temperatures in Kelvin. Use a cold-air standard analysis.

Given data T1 = More than 100 in KelvinT4 = More than 100 in Kelvin Formula, Back Work Ratio (BWR) = Wc / Q_ in (or) W_ t / Q_ in, Where Wc = Work of compressor, W_ t = Work of turbine, and Q_ in = Heat Supplied to the cycle. Proof: The Brayton cycle is a closed-cycle in which the working fluid receives and rejects heat in the same manner.

Rankine cycle, but the working fluid is not water but air. The cycle comprises four basic components: compressor, heat exchanger, turbine, and heat exchanger, with two adiabatic expansion and compression processes. The first process is compression by the compressor.

To know more about ratio visit:

https://brainly.com/question/19257327

#SPJ11

1. A 2.004 L rigid tank contains .04 kg of water as a liquid at 50°C and 1 bar. The water is heated until it becomes a saturated vapor. Determine the following:
a) The final temperature of the water in °C.
b) The amount of heat transferred to the tank in kJ. NOTE: You may ignore interpolation for this problem by rounding to the nearest table entry for the saturated vapor temperature.
2. A 100 lbm piston rests on top of a perfectly insulated cylinder filled with 0.5 lbm of R-134a at 50 psi pressure and 80°F temperature. The surroundings have a pressure of 14.7 psi. 198.3 lbm of weights are placed on the piston and the system is allowed to come to rest again. The piston and weights fall 5 inches during this process. Assuming the gravitation constant is 32.17 ft/s^2, determine the following:
a) The area of the piston in in2.
b) The final pressure of the R-134a system in psi.
c) The work done on the R-134a in ft/lbf. (Hint: the R-134a is not the only place you can
draw a system). d) The final temperature of the R-134a in °F.
3. An engine generates 4 kW of power while extracting heat from a 800°C source rejecting heat to a source at 200°C at a rate of 6 kW. Determine the following:
a) The thermal efficiency of the cycle. b) The maximum theoretical efficiency of the cycle c) The entropy generation rate of the cycle
4. Drufus works at a chemical supply facility. The facility has an air supply at 10 bars of pressure and a temperature of 295 K. Drufus attaches an initially evacuated tank that is 0.5 m3 in volume. Drufus fills the tank until it is at a pressure of 3 bar. Assuming the expansion value and air tank are adiabatic as well as air is an ideal gas, determine/complete the following:
a) Draw your system and clearly indicate what components are located in it as well as where the inlet(s) and exit(s) are, if any. b) The final temperature of the tank, in K. c) The final mass of air in the tank, in kg. d) The amount of entropy produced by this process, in kJ/K

Answers

The problem consists of multiple thermodynamics related questions. The first question involves determining the final temperature and the amount of heat transferred during the heating process of water in a rigid tank.

Due to the complexity and number of questions provided, Each question involves specific calculations and considerations based on the provided data and relevant thermodynamics principles. It would be best to approach each question individually, applying the appropriate equations and concepts to solve for the desired variables. Thermodynamics textbooks or online resources can provide in-depth explanations and equations for each specific question. Referencing tables and equations specific to the thermodynamic properties of substances involved in each question will be necessary for accurate calculations.

Learn more about thermodynamics here:

https://brainly.com/question/1368306

#SPJ11

a)  The final temperature of the water in °C is 100°C.

b)  The amount of heat transferred to the tank is 8.36 kJ.

To determine the final temperature of the water and the amount of heat transferred, we can follow these steps:

a) The water is heated until it becomes a saturated vapor. Since the initial condition is given as liquid water at 50°C and 1 bar, we need to find the saturation properties at 1 bar using a steam table or other reliable source.

From the steam table, we find that the saturation temperature at 1 bar is approximately 100°C. Therefore, the final temperature of the water in °C is 100°C.

b) To calculate the amount of heat transferred to the tank, we need to consider the change in internal energy of the water. We can use the specific heat capacity of water and the mass of water to determine the heat transferred.

The specific heat capacity of water is typically around 4.18 kJ/kg·°C. The mass of water is given as 0.04 kg.

The change in heat can be calculated using the formula:

Q = m * c * ΔT

Where:

Q is the heat transferred

m is the mass of the water

c is the specific heat capacity of water

ΔT is the change in temperature

Substituting the given values, we have:

Q = 0.04 kg * 4.18 kJ/kg·°C * (100°C - 50°C)

Calculating the expression, we find that the amount of heat transferred to the tank is 8.36 kJ.

Learn more about saturation temperature here:

https://brainly.com/question/28215821

#SPJ11

A 2.004 L rigid tank contains .04 kg of water as a liquid at 50°C and 1 bar. The water is heated until it becomes a saturated vapor. Determine the following:

a) The final temperature of the water in °C.

b) The amount of heat transferred to the tank in kJ.

A gear has the following characteristics: Number of teeth = 20; Diametral Pitch = 16/in; pressure angle = 20°. The gear is turning at 50 rpm, and has a bending stress of 20 ksi. How much power (in hp) is the gear transmitting? (Assume velocity factor = 1)

Answers

The gear is transmitting approximately 1.336 hp.

To calculate the power transmitted by the gear, we can use the formula:

Power (in hp) = (Torque × Speed) / 5252

First, let's calculate the torque. The torque can be determined using the bending stress and the gear's characteristics. The formula for torque is:

Torque = (Bending stress × Module × Face width) / (Diametral pitch × Velocity factor)

In this case, the number of teeth (N) is given as 20, and the diametral pitch (P) is given as 16/in. To find the module (M), we can use the formula:

Module = 25.4 / Diametral pitch

Substituting the given values, we find the module to be 1.5875. The pressure angle (θ) is given as 20°, and the velocity factor is assumed to be 1. The face width can be estimated based on the gear's application.

Now, let's calculate the torque:

Torque = (20 ksi × 1.5875 × face width) / (16/in × 1)

Next, we need to convert the torque from inch-pounds to foot-pounds, as the speed is given in revolutions per minute (rpm) and we want the final power result in horsepower (hp). The conversion is:

Torque (in foot-pounds) = Torque (in inch-pounds) / 12

After obtaining the torque in foot-pounds, we can calculate the power:

Power (in hp) = (Torque (in foot-pounds) × Speed (in rpm)) / 5252

Substituting the given values, we find the power to be approximately 1.336 hp.

Learn more about Torque

brainly.com/question/31323759

#SPJ11

A nozzle 0.06m in diameter emits a water jet at a velocity of 25 m/s, which strikes a stationary vertical plate at an angel of 25° to the vertical.
Calculate the force acting on the plate, in N in the horizontal direction
(Hint 8 in your formula is the angle to the horizontal)
If the plate is moving horizontally, at a velocity of of 6 m/s, away from the nozzle, calculate the force acting on the plate, in N
the work done per second in W, in the direction of movement

Answers

The force acting on the plate in the horizontal direction is 119.749 N.

To calculate this force, we need to consider the component of the water jet's velocity in the horizontal direction. We can find this by multiplying the jet's velocity (25 m/s) by the cosine of the angle (25°) between the jet and the vertical.

When the plate is moving horizontally away from the nozzle at a velocity of 6 m/s, the force acting on the plate is 95.799 N.

To calculate this force, we consider the relative velocity between the plate and the water jet. The relative velocity is the difference between the velocity of the plate (6 m/s) and the horizontal component of the jet's velocity (which remains the same as before). The force is then obtained by multiplying the relative velocity by the rate of change of momentum.

The work done per second in the direction of movement is 574.794 W.

To calculate this work, we multiply the force acting on the plate (95.799 N) by the velocity of the plate (6 m/s). Work is defined as the product of force and displacement in the direction of the force.

To know more about relative velocity visit:

https://brainly.com/question/29655726

#SPJ11

A cam follower mechanism with a displacement diagram that has the following sequence, rise 2 mm in 1.2 seconds, dwell for 0.3 seconds, fall 1 r in 0.9 seconds, dwell again for 0.6 seconds and then continue falling for 1 E in 0.9 seconds.
a) The cam rotation angle during the rise is 120.5 degrees.
b) The rotational speed of the cam is 14.38 rpm.
c) The cam rotation angle during the second fall is 82.9 degrees.
d) Both b) and c).
e) None of the above.

Answers

The cam follower mechanism with a displacement diagram that has the following sequence, rise 2 mm in 1.2 seconds, dwell for 0.3 seconds, fall 1 r in 0.9 seconds, dwell again for 0.6 seconds and then continue falling for 1 E in 0.9 seconds can be analyzed as follows:a) To determine the cam rotation angle during the rise, we should know that it took 1.2 seconds to rise 2 mm.

We must first compute the cam's linear velocity during the rise:Linear velocity = (Displacement during the rise) / (Time for the rise)= 2 / 1.2 = 1.67 mm/s Then we can calculate the angle:Cam rotation angle = (Linear velocity * Time) / (Base circle radius)= (1.67 * 1.2) / 10 = 0.2 radian= (0.2 * 180) / π = 11.47 degrees Therefore, the cam rotation angle during the rise is 11.47 degrees. Therefore, option a) is incorrect.b) The rotational speed of the cam can be calculated as follows:Linear velocity = (Displacement during the second fall) / (Time for the second fall)= 1 / 0.9 = 1.11 mm/s

Therefore, the rotational speed of the cam is 71.95 rpm. Therefore, option b) is incorrect.c) To determine the cam rotation angle during the second fall, we should know that it took 0.9 seconds to fall 1 E. We must first compute the cam's linear velocity during the fall:Linear velocity = (Displacement during the fall) / (Time for the fall)= 1 / 0.9 = 1.11 mm/s Then we can calculate the angle:Cam rotation angle = (Linear velocity * Time) / (Base circle radius)= (1.11 * 0.9) / 10 = 0.0999 radians= (0.0999 * 180) / π = 5.73 degrees

Therefore, the cam rotation angle during the second fall is 5.73 degrees. Therefore, option c) is incorrect.Therefore, the answer is option e) None of the above.

To know more about displacement diagram visit :

https://brainly.com/question/33294711

#SPJ11

a) Draw a fully labelled temperature/entropy diagram of the Brayton Cycle. (5 Marks) b) Using appropriate thermodynamic terms, explain the Brayton cycle

Answers

It is a method of compressing stress air, adding fuel to the compressed air, igniting the fuel-air mixture, and then expanding the air-fuel mixture to generate power.

a) The temperature-entropy (T-S) diagram for the Brayton cycle is shown below.   In a gas turbine engine, the Brayton cycle is a thermodynamic cycle.

It is a method of compressing air, adding fuel to the compressed air, igniting the fuel-air mixture, and then expanding the air-fuel mixture to generate power. The following are the stages of the cycle: 1. Isentropic compression 2. Isobaric heat addition 3. Isentropic expansion 4. Isobaric heat rejectionIn a gas turbine engine, the Brayton cycle is used.

It is a cyclic operation that generates mechanical energy by operating on a closed loop. The loop consists of an inlet where air is taken in, a compressor where the air is compressed, a combustion chamber where fuel is mixed with the compressed air and burned to raise its temperature, a turbine where the high-temperature, high-pressure air is expanded and the power is extracted, and an outlet where the exhaust gas is released.

To know more about stress  visit

https://brainly.com/question/33140251

#SPJ11

Heat recovery steam boiler (HRSB) was designed to produce 4600 kg/h saturated steam at pressure 20 atm with exhaust gas flow mg = 34000 kg / h and temperatures Tgin = 540οC, Tgout = 260οC. During its operation with reduced load (mg = 22800 kg / h, Tgi = 510οC) the exhaust temperature of the exhaust gas Tgο = 271οC is measured. Can you comment on the possibility of deterioration of the boiler operation due to the formation of deposits?

Answers

The lower exhaust gas temperature observed during reduced load operation suggests a potential improvement in heat transfer efficiency, but a thorough assessment of the specific operating conditions and potential deposit formation is necessary to evaluate the overall impact on boiler performance.

 

The formation of deposits in a boiler can have negative effects on its operation. Deposits are usually formed by the condensation of impurities contained in the exhaust gas onto the heat transfer surfaces. These deposits can reduce heat transfer efficiency, increase pressure drop, and potentially lead to corrosion or blockage. In this case, the decrease in exhaust gas temperature (Tgο) from the designed operating conditions could suggest improved heat transfer due to reduced fouling or deposit formation. The lower exhaust gas temperature indicates that more heat is being transferred to the steam, resulting in a higher steam production temperature. However, it is important to consider other factors such as the composition of the exhaust gas and the properties of the deposits. Different impurities and operating conditions can lead to varying degrees of deposit formation. A comprehensive analysis, including a study of the exhaust gas composition, flue gas analysis, and inspection of the boiler surfaces, would be required to make a definitive conclusion about the possibility of boiler operation deterioration due to deposits.

Learn more about corrosion here:

https://brainly.com/question/489228

#SPJ11

Regarding the Nafolo Prospect 3. Development Mining
a. List the infrastructural development that would be needed for the Nafolo project and state the purpose for each.
b. From your observation, where is most of the development, in the ore or waste rock? What does this mean for the project?
c. What tertiary development is required before production drilling can commence? . Answers should be detailed and all questions should be answered.

Answers

a. Infrastructural developments that would be needed for the Nafolo project:

Here is the list of infrastructural developments that would be needed for the Nafolo project:

1. Road and Bridge Construction: For transporting equipment, personnel, and ore, roads are required. Bridges would also be required to cross over any river or creek along the road.

2. Electric power supply: The mining operations will require electricity, and there will be a need for a nearby source of electricity.

3. Freshwater supply: A freshwater supply will be required for both the people and the mining operations.

4. Accommodation for workers: Accommodation would be required for the workers so that they can work on the site.

b. Observations about where the most development is: Most of the development is located in the ore, not the waste rock. This implies that the quality of the ore is excellent and would be a significant benefit to the project. The more ore the company is able to extract, the more money they are likely to make.

c. Tertiary development required before production drilling can commence:

Before production drilling can begin, there are a few tertiary developments that must be completed. They are:

1. Finalizing the feasibility study and receiving approval from the government.

2. Acquiring financing for the project.

3. Contracting companies to construct the necessary infrastructure.

4. Hiring staff to run the mining operations.

5. Environmental approvals for mining to proceed.

To know more about Infrastructural developments visit:
https://brainly.com/question/14302325

#SPJ11

Three kg of air at 150 kPa and 77°C temperature at state 1 is compressed polytropically to state 2 at pressure 750 kPa, index of compression being 1.2. It is then cooled to the original temperature by a constant pressure process to state 3. Find the net work done. (Show the processes on the P-V diagram). [Take Rair =0.287 kJ/kg K]

Answers

Given dataThree kg of air at 150 kPa and 77°C temperature at state 1 is compressed polytropically to state 2 at pressure 750 kPa, index of compression being 1.2.

It is then cooled to the original temperature by a constant pressure process to state 3.We have to find out the net work done.

Conversion of temperature from Celsius to Kelvin

K = 273 + CK = 273 + 77K = 350 K

Specific gas constant of air is given as

Rair = 0.287 kJ/kg K

Weight of the air is given as 3 kg.

Work Done is given as,

The work done in polytropic process is given as:Work done in a constant pressure process is given as:

In order to find the specific volume and temperature of air in state 2, we will use the polytropic process formula as given below:For process 1-2From the polytropic process formula,

P1V1n = P2V2nV1/V2

= (P2/P1)^(1/n)V1/V2

= (750/150)^(1/1.2)V1/V2

= 4.187

We know that,The process 1-2 is polytropic so

PV^n = Constant

From state 1 to 2, n = 1.2

Therefore;P1V1^n = P2V2^nV2

= V1*(P1/P2)^(1/n)

Putting values,We get;

V2 = 0.00887 m^3/kg

We can now use the ideal gas law equation to find the temperature in state 2:We know that PV = mRTWhere m = mass, R = gas constant, T = Temperature, and P = pressure

Therefore;T2 = (P2V2)/(mR)T2

= (750*0.00887)/(3*0.287)T2

= 60.2 K

For process 2-3, the temperature is constant and is equal to

T3 = T1 = 350 K

For process 1-2, n = 1.2

The work done in process 1-2 is given by:

For process 2-3, P3 = P2 = 750 kPaV3

= mRT3/P3

= 3*287*350/750*10^3

= 0.351 m^3

The work done in process 2-3 is given by:

Therefore, the net work done isAnswer:

The work done in process 1-2 is 4.29 kJ

The work done in process 2-3 is -0.858 kJ

Therefore, the net work done is 3.432 kJ.

This is a thermodynamics problem in which we are given the initial state of a gas and we are required to find its final state. We are given the temperature and pressure of air in state 1 and are asked to compress it polytropically to state 2 at pressure 750 kPa and an index of compression being 1.2. It is then cooled to the original temperature by a constant pressure process to state 3. We are required to find the net work done in this process.In order to solve this problem, we first converted the temperature from Celsius to Kelvin and then found the weight of the air given. We used the polytropic process formula to find the specific volume and temperature of air in state 2. We then used the ideal gas law equation to find the temperature in state 2. Finally, we used the work done formula for process 1-2 and process 2-3 to find the net work done. The main answer for this question is 3.432 kJ.

In conclusion, we can say that this was a simple thermodynamics problem in which we were required to find the net work done in a process. We solved this problem by using the polytropic process formula and the ideal gas law equation. We found that the net work done in this process is 3.432 kJ.

Learn more about polytropically here:

brainly.com/question/13001350

#SPJ11

You have available a set of five links from which you are to design a four-bar mechanism.
The lengths of the links are as follows: L1= 4cm, L2=6cm, L3=8cm, L4=9cm and L5=14cm.
i) Select four links such that the linkage can be driven by a continuous rotation motor.
ii) Draw a freehand sketch of a crank-rocker mechanism that can be achieved using the selected links. Label the link that is to be driven by the motor.
iii) Draw a freehand sketch of a double-crank mechanism that can be achieved using the selected links.

Answers

In this sketch, both Link L2 and Link L3 act as cranks. The motion of the motor (Link L1) will cause both cranks to rotate simultaneously, resulting in the movement of the coupler (Link L5) and the rocker (Link R).

i) To design a four-bar mechanism that can be driven by a continuous rotation motor, we need to select four links such that they form a closed loop. The selected links should have a combination of lengths that allow the mechanism to move smoothly without any interference.

From the given set of link lengths, we can select the following four links:

L1 = 4cm

L2 = 6cm

L3 = 8cm

L5 = 14cm

ii) Drawing a freehand sketch of a crank-rocker mechanism using the selected links:

scss

Copy code

  Motor (Link L1)

    \

     \

 L3   L2

  |     |

  |_____| R (Rocker)

    /

   /

 L5 (Coupler)

In this sketch, the motor (Link L1) is driving the mechanism. Link L2 is the crank, Link L3 is the coupler, and Link L5 is the rocker. The motion of the motor will cause the crank to rotate, which in turn will move the coupler and rocker.

iii) Drawing a freehand sketch of a double-crank mechanism using the selected links:

scss

Copy code

  Motor (Link L1)

    \

     \

 L3   L2

  |     |

  |_____| R (Rocker)

     |

     |

    L5 (Coupler)

Know more about four-bar mechanism here:

https://brainly.com/question/14704706

#SPJ11

A real ramjet operates at 90 kft in a range of free-stream Mach numbers from 1.5 to 5. Assuming Level 3 technology efficiencies and perfectly expanded, variable area convergent-divergent nozzle, plot the following parameters and properties against Mo within the given range: a) Diffuser efficiency, considering the engine to be embedded in the airframe.

Answers

To plot the diffuser efficiency against the Mach number (Mo) range for a real ramjet operating at 90 kft, we first need to understand the behavior of the diffuser efficiency with respect to the Mach number.

In a ramjet engine, the diffuser is responsible for decelerating and compressing the incoming airflow. The diffuser efficiency is a measure of how effectively the diffuser accomplishes this task. It is typically represented by the symbol ηd.

As the Mach number increases, the airflow entering the diffuser becomes more supersonic, leading to increased losses and reduced diffuser efficiency. However, the diffuser design and technology advancements can improve its performance.

For Level 3 technology efficiencies, we can assume that the diffuser efficiency remains relatively constant within the given Mach number range of 1.5 to 5. This assumption implies that the diffuser design and technology advancements compensate for the increase in losses at higher Mach numbers.

To plot the diffuser efficiency, you can follow these steps:

1. Set up a graph with the x-axis representing the Mach number (Mo) and the y-axis representing the diffuser efficiency (ηd).

2. Determine the diffuser efficiency values for different Mach numbers within the range of 1.5 to 5. These values can be obtained from experimental data or from theoretical calculations based on Level 3 technology efficiencies.

3. Plot the diffuser efficiency values on the graph, connecting the data points to visualize the trend.

Keep in mind that the diffuser efficiency values may vary depending on specific engine designs, operating conditions, and technology advancements. The given Mach number range and Level 3 technology efficiencies provide a general framework for plotting the diffuser efficiency, but actual values may differ based on specific considerations.

To know more about Mach, visit

https://brainly.com/question/30758443

#SPJ11

Other Questions
Assume that we have the following bit sequence that we want to transmit over a cable by using the Gaussian pulse as the basis signal. 0011001010 and the Guassian pulse is the same as before g(t) = e (a) Plot the signal sent if Manchester Encoding is used. (b) Plot the signal sent if Differential Encoding is used. (c) What is the data rate you get based on your coefficients for Part (a) and Part (b)? You can assume some overlapping between the pulses in time domain but your assumption must be the same for both cases. (d) compare these two encodings in terms of different system parameters like BW, data rate, DC level, and ease of implementation. Using the law of conservation of energy, describe at least three energy conversions that take place when fossil fuels are used to generate electricity. Answer in full sentences. Out of the \( 10 \% \) prevalence of VSD's found, perimembranous types are the most uncommonly found. True False Question 2 Echocardiographically, what are the most common 2-D findings in a patient wi Consider the set {-9,-8,0,1/4,2,,5,8,9} List the numbers in this set that are real numbers. (Select all that apply.) a. -9b. -8c. 0d. 1/4e. 2f. g. 5h. 8i. 9 Comparing U1D linked to either a pol II or pol III promoter is an important control. Draw an annotated diagram of the experiment and explain what is being tested and the importance of this control. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A 17.0-L tank of carbon diodde gas (CO) is at a pressure of 9.10 x 10 po and temperature of 16.0C (a) Calculate the temperature of the gas in Kelvin 289.15 Compare and describe the differences andsimilarities of artery muscle wall and large vein musclewall. Which of the following is NOT true of carbon?Group of answer choicesit forms the backbone of macromolecules within the cellit can form polar covalent bondsit is highly electronegativeit can form non-polar covalent bonds Imagine that a particular trait in a population is determined by two alleles A and a. In a population of 1000 individuals, the number of those of each genotype is AA = 360, Aa = 480 and aa = 160. What is the frequency of A and a in this population?a.A = 0.6 and a = 0.4b.A = 0.1 and a = 0.9c.A = 0.4 and a = 0.6d.A = 0.8 and a = 0.2 Question 35 The most rapid sterilization method is: 1. autoclaving 2. boiling water 3. ultraviolet light 4. incineration 01 02 04 03 Boiler test data were recorded: Fuel Data: Coal mass flow rate = 4.7 kg/s; Heating Value =42.5 MJ/kg. Steam Data: Pressure =15 bar; 450C dry; boiler efficiency, =88% Feed water data: temperature= 40 C. Calculate the mass flow rate, in kg/s. In actively respiring yeast cells the pH of the mitochondrial matrix is generally around pH 7.6. After treatment of a comparable population of yeast cells with 1 mM 2,4-dinitrophenol (DNP) for 15 minutes the mitochondrial matrix pH decreased to pH 6.What is the most likley explanation as to why the DNP treatment led to a reduction in mitochondrial matrix pH?A.Dinitrophenol treatment leads to transfer (ferrying) of H+ from the mitochondrial matrix to the mitochondrial intermembrane space.B.Dinitrophenol treatment inhibits activity of the F1F0 ATP synthase.C.Dinitrophenol treatment leads to transfer (ferrying) of H+ from the mitochondial intermembrane space to the mitochondrial matrixD.Dinitrophenol treatment blocks the tricarboxylic acid cycle (TCA cycle)E.Dinitrophenol treatment blocks electron flow through the mitochondrial electron transport system.Relative to nuclear-encoded genes required for mitochondrial function only a small number of genes are encoded by the mitochondrial genome (mtDNA).mtDNA can be deleted in yeast cells, which affects some cellular functions but yeast cells are still viable (can survive) in the absence of mtDNA.From the options shown which most accurately describe the functions that would be disrupted most directly upon deletion of mtDNA in a yeast cell?A.The functioning of the mitochondrial electron system would be blockedB.synthesis of heme and iron-sulfur clusters would be blockedC.mitochondria would not be inherited during cell divisionD.mitochondrial protein import would be completely blocked and the functioning of the mitochondrial transport system would also be blocked.E.mitochondrial fission and fusion would be blocked Match A with B Cholera Epidemiological Surveillance Puerperal Fever Handwashing A. Dr. Semmelweis B. John Snow How have cell lineages derived from the Neural Crest contributedto the anatomical variations seen in many vertebrates? A culture is suspected of having 10 bacteria per milliliter, based on its turbidity. You are instructed to do a serial dilution, where each step is a 1:100 dilution of the previous one, using bottles with 99 mL each od diluent. How many bottles of diluent would you need to dilute the specimen so that there are 100 bacteria per mL? An increase in the reserve requirement would:decrease excess reserves and reflect an expansionary monetary policy.decrease excess reserves and reflect a contractionary monetary policy.increase excess reserves and reflect an expansionary monetary policy.increase excess reserves and reflect a contractionary monetary policy. \( y^{142} \frac{e y}{d r}+v^{3} d=1 \quad v(0)=4 \)Solwe the given initat value problem. The DE is a Bernocili eguation. \[ y^{1 / 7} \frac{d y}{d x}+y^{3 / 2}=1, \quad y(0)=0 \] RxErgotamine Tartrate 0.750 gCaffeine 1.80 gHyoscyamine sulfate 1.20 gPentobarbital Sodium 2.50 gFattibase qs ad 24.0 gM. Div. supp #XIISig.: I. supp. AM & PMHow many grams of fattibase are contained in the entire formulation? 1. Convert the following. Show your calculations work. a. 36 g/mL + ng/l mol g b. 825.2 pmol c. 371 ng 2. How much NaCl would you need to prepare 550 ml of 0.1M NaCl using deionized water. The molecular weight of NaCl is 58.44 g/mol. Recall: 1 M = 1 mol/L. Show your calculations work. Round your answer to the hundredths place. 3. Describe how to make 250 ml of 75% yellow dye solution starting with 100% yellow dye and water. Do not forget to include the amount of diluent needed. Show your calculations work. Round your answer to the nearest whole number. Question 21 (6 points) Calculate the backward bearing of the given angle. Show every step of calculation AND draw lines on the coordinate plane to show your steps. Show your answer in DMS. 21134'53"