Answer:
(c) 1.02
Step-by-step explanation:
(c) The tangent is the ratio of Opposite to Adjacent. Its lowest value will be found where Opposite is lowest, and Adjacent is highest:
min tan(A) = (min BC)/(max AB) = 75/73.5 ≈ 1.020408...(42-digit repeat)
State the correct polar coordinate for the graph shown:
clearly, r=3 units
and 8 segments (sectors actually) in anti-clockwise direction , with each sector having 30° angle so angle is 240°
so option C
Answer:
Solution : ( 3, 240° )
Step-by-step explanation:
In polar coordinates the point is expression as the ordered pair ( r, θ ) where r is the directed distance from the pole, and theta is the directed angle from the positive x - axis. When r > 0, we can tell it = 3 as the point lies on the third circle starting from the center. Now let's start listing coordinates for when r is positive ( r > 0 ). There are two cases to consider here.
( 3, θ ) here theta is 60 degrees more than 180, or 180 + 60 = 240 degrees. Right away you can tell that your solution is ( 3, 240° ), you don't have to consider the second case.
Mr Osei has a rectangular field measured 85m long and 25m wide. How long is the distance around the field?
Answer:
220m
Step-by-step explanation:
l=85m
b=25m
perimeter=2(l+b)
2(85+25)
2(110)
=220m
perimeter is 220m
Answer:
Distance around the field is 220mStep-by-step explanation:
The distance around the field means the perimeter of the field
Since the field is rectangular
Perimeter of a rectangle = 2l + 2w
where l is the length
w is the width
From the question
l = 85m
w = 25m
Perimeter = 2(85) + 2(25)
Perimeter = 170 + 50
The final answer is
Perimeter = 220m
Hope this helps you
Graph the function f(x)=x^2+2x-8
what are x intercepts
what are y intercepts
what is maximum or minimum value
Answer:
The x intercepts are 2, -4
The y intercept is -8
The minimum is -9
Step-by-step explanation:
f(x)=x^2+2x-8
To find the x intercepts, set equal to zero and factor
0 =x^2+2x-8
0 = (x+4)(x-2)
Using the zero product property
0 = x+4 0 = x-2
x = -4 x = 2
The x intercepts are 2, -4
To find the y intercepts, set x =0 and solve for y
y = 0^2 +2(0) -8
y = -8
The y intercept is -8
Since the coefficient of the x^2 is positive, the parabola opens up so we have a minimum.
The vertex is halfway between the x intercepts
(-4+2)/2 = -2/2 = -1
To find the minimum substitute x= -1 into the equation
f(x)=x^2+2x-8
f(-1) = (-1)^2 +2(-1)-8 = 1-2-8 = -9
The minimum is -9
Graph attached
y=x²+2x-8y=x²+4x-2x-8y=x(x+4)-2(x+4)y=(x+4)(x-2)x intercepts (-4,0) and (2,0)
Y intercept :-
Put x=0
y=-8(0,-8)
Vertex is the minimum
(-1,-9)3. CD is the diameter of a circle. The coordinates are C(-2, -3) and D(-12,-5). At what coordinate
is the center of the circle located?
A. (5,1)
B. (-5,-1)
C (-4,-7)
D. (-7,-4)
Answer:
D) (-7,-4)
Step-by-step explanation:
Halfway from -2 to -12 is -7
Halfway from -3 to -5 is -4
savanah solved the equation 3+4 multiplied by the absolute value of x/2+3=11 for one solution. her work is shown below. what is the other solution to the given absolute value equation: savanah's solution was x= -2
Answer:
-10Step-by-step explanation:
Given the equation solved by savanah expressed as [tex]3+4|\frac{x}{2} + 3| = 11[/tex], IF she solved for one of the solution and got x = -2, we are to solve for the other value of x.
Note that the expression in modulus can be expressed as a positive expression and negative expression.
For the positive value of the expression [tex]|\frac{x}{2} + 3|[/tex] i.e [tex]\frac{x}{2} + 3[/tex], the expression becomes;
[tex]3+4(\frac{x}{2} + 3) = 11[/tex]
On simplification;
[tex]3+4(\frac{x}{2} + 3) = 11\\\\3 + 4(\frac{x}{2} )+4(3) = 11\\\\3 + \frac{4x}{2}+ 12 = 11\\\\3 + 2x+12 = 11\\\\2x+15 = 11\\\\Subtract \ 15 \ from \ both \ sides\\\\2x+15-15 = 11-15\\\\2x = -4\\\\x = -2[/tex]
For the negative value of the expression [tex]|\frac{x}{2} + 3|[/tex] i.e [tex]-(\frac{x}{2} + 3)[/tex], the expression becomes;
[tex]3+4[-(\frac{x}{2} + 3)] = 11[/tex]
On simplifying;
[tex]3+4[-(\frac{x}{2} + 3)] = 11\\\\3+4(-\frac{x}{2} - 3)= 11\\\\3-4(\frac{x}{2}) -12 = 11\\\\3 - \frac{4x}{2} - 12 = 11\\\\3 - 2x-12 = 11\\\\-2x-9 = 11\\\\add \ 9 \ to \ both \ sides\\\\-2x-9+9 = 11+9\\-2x = 20\\\\x = -20/2\\\\x = -10[/tex]
Hence her other solution of x is -10
There are two pitchers of lemonade in the fridge there are 1.5 gallons of lemonade in 1 pitcher and 9 quarts of lemonade in the other pitcher how many cups of lemonade are there in the fridge
Answer:
52 cups
Step-by-step explanation:
1 gallon = 4 quarts
1.5 gallons = 6 quarts
6 + 9 = 13 quarts of lemonade in the fridge.
1 quart = 4 cups
13 quarts = 4 × 13 = 52 cups
52 cups of lemonade are in the fridge.
I would really appreciate it if you would mark me brainliest!
Have a blessed day!
Answer:
60 cups
Step-by-step explanation:
1 gal = 16 cups
1 quart = 4 cups
16 cups
1.5 gal x ------------- = 24 cups
1 gal.
4 cups
9 quarts x ----------- = 36 cups
1 quart
number of cups of lemonade in the fridge = 24 cups + 36 cups = 60 cups
Find the value of z.
A. 25.25
B. 76.25
C. 51
D. 129
Answer:
25.25
Step-by-step explanation:
Angle Formed by Two Chords= 1/2(SUM of Intercepted Arcs)
The angle formed by the two chords is (180 -x)
We need to find x first
x = 1/2 (54+204)
x = 129
The angle formed by the two chords is (180 -129) = 51
51 = 1/2 ( z+3z+1)
Multiply by 2
102 = 4z+1
101 = 4x
Divide by 4
101/4 = z
25.25 =z
10 orange sodas, 15 cream sodas and 7 cherry sodas are in an ice chest. How many sodas must be removed from the chest to guarantee that on type of soda has been chosen?
PLEASE, GIVE A STEP BY STEP EXPLANATION
Answer:
25 sodas if the type of soda chosen is cherry sodas
An observer standing on a cliff 320 feet above the ocean measured angles of depression of the near and far sides of an island to be 16.5 and 10.5 respectively. How long is the island ?
Answer:
154.10 Feets
Step-by-step explanation:
Given the following :
Height (h) of cliff = 320 feet
Angle of depression of near side = 16.5°
Angle of depression of far side = 10.5°
Using trigonometry :
We can obtain x and y as shown in the attached picture :
Tanθ = opposite / Adjacent
Adjacent = height of cliff = 320 Feets
For the near side :
Tanθ = opposite / Adjacent
Tan (16.5°) = x / 320
0.2962134 = x / 320
x = 0.2962134 * 320
x = 94.788318 Feets
For the far side :
Tanθ = opposite / Adjacent
Tan (10.5°) = x / 320
0.1853390 = x / 320
x = 0.1853390 * 320
x = 59.308494 Feets
Length of island = (59.308494 + 94.788318) feet
= 154.10 Feets
Which of the following relations is a function? A. (1, 4), (-4, 2), (8, 1), (-8, 2) B. (1, 4), (-4, 6), (1, 3), (-8, 2) C. (1, 0), (-4, 3), (8, 1), (-4, 5) D. (8, 1), (-4, 4), (1, 1), (8, 2)
Answer:
A. (1, 4), (-4, 2), (8, 1), (-8, 2)
Step-by-step explanation:
Each x goes to only 1 y to be a function
A. (1, 4), (-4, 2), (8, 1), (-8, 2)
function
B. (1, 4), (-4, 6), (1, 3), (-8, 2)
1 goes to 4 and 3 so not a function
C. (1, 0), (-4, 3), (8, 1), (-4, 5)
-4 goes to 3 and 5 so not a function
D. (8, 1), (-4, 4), (1, 1), (8, 2)
8 goes to 1 and 2 so not a function
Answer:
[tex]\Large \boxed{\mathrm{A. \ (1, 4), (-4, 2), (8, 1), (-8, 2)}}[/tex]
Step-by-step explanation:
[tex]\sf A \ function \ is \ a \ relation \ if \ each \ x \ value \ is \ for \ each \ y \ value.[/tex]
[tex](1, 4), (-4, 2), (8, 1), (-8, 2) \ \sf represents \ a \ function.[/tex]
[tex](1, 4), (-4, 6), (1, 3), (-8, 2) \ \sf does \ not \ represent \ a \ function.[/tex]
[tex](1, 0), (-4, 3), (8, 1), (-4, 5) \ \sf does \ not \ represent \ a \ function.[/tex]
[tex](8, 1), (-4, 4), (1, 1), (8, 2) \ \sf does \ not \ represent \ a \ function.[/tex]
A clothing store is having a sale on shirts and jeans. Four shirts and two pairs of jeans cost $78. Three shirts and five pairs of jeans cost $111. The system of equations
4s + 2j = 78
3s + 5j = 111
models this situation, where s is the cost of a shirt and j is the cost of a pair of jeans. How much does one shirt and one pair of jeans cost?
Answer:
One shirt is $12 and one pair of jeans is $15
Step-by-step explanation:
Solve by elimination by multiplying the top equation by 3 and the bottom equation by -4:
12s + 6j = 234
-12s - 20j = -444
Add these together, and solve for j:
-14j = -210
j = 15
So, a pair of jeans is $15. Plug in 15 as j into one of the equations and solve for s:
3s + 5j = 111
3s + 5(15) = 111
3s + 75 = 111
3s = 36
s = 12
One shirt is $12 and one pair of jeans is $15.
Which expression is equal to 7 times the sum of a number and 4
Answer:
7(n + 4)
Step-by-step explanation:
Represent the number by n. Then the verbal expression becomes
7(n + 4).
PLzzzz answer quick will give good rate nd say thanks
What is the slope of the line? 5(y+2)=4(x-3)
A 2/3
B 4/5
C 5/4
D 3/2
Step-by-step explanation:
Here,
[tex]5y = 4x - 12 - 10[/tex]
[tex]y = \frac{4}{5} x - \frac{22}{5} [/tex]
slope is 4÷5
Answer:
The answer is option BStep-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
5(y+2)=4(x-3)
To find the slope first expand the terms in the equation
That's
5y + 10 = 4x - 12
Write the equation in the form y = mx+ c
That's
5y = 4x - 12 - 10
5y = 4x - 22
Divide both sides by 5 to make y stand alone
y = 4/5x - 22/5
Comparing with the general equation above the slope of the line is
4/5Hope this helps you
I will name you Brainly hurryyyy What two integers are in between 0.7142
Answer:
0.71419 &0.71421 are the correct.
What is the scale factor of this dilation?
Answer:
5/3
Step-by-step explanation:
on both sides we can see that the orginal length of 3 increased to five
therfore if we multiply 3 by 3/5 we get five which means the scale factor is 5/3
After setting up the width of the compass using the original line segment, why is it important to keep the compass the same
width before drawing an arc? (1 point)
If the width of the compass changed, it would make the arc smaller or larger. This would then make the line segment to be drawn
smaller or larger, so it would not match the original.
of the width of the compass changed, it would make the arc smaller or larger. This would change the angle the new line segment is
drawn at, so it would not match the original.
O if the width of the compass changed, it would be possible for the arc to intersect the original line segment, which is not allowed.
The width of the compass does not matter. All that matters is that a straightedge is used to draw the line segment
Answer:
If the width of the compass changed, it would make the arc smaller or larger. This would then make the line segment to be drawn smaller or larger, so it would not match the original.
Step-by-step explanation:
We assume your construction is trying to copy the length of a line segment. That length is "measured" by the width of the compass. If it is changed, it no longer matches the length of the segment you're trying to copy, so you will not get the copy you want.
what is (2y + 5)(y - 3) in simplified form using the distributive property
Answer:
[tex]\boxed{2y^{2} - y - 15}[/tex]
Step-by-step explanation:
Use the FOIL technique in order to distribute the terms properly. FOIL stands for First Terms, Outside Terms, Inside Terms, and Last Terms. In order to properly distribute, multiply the common terms based on the steps in the FOIL technique. So, in this case:
The first terms are 2y and y. The outside terms are 2y and -3. The inside terms are 5 and y.The last terms are 5 and -3.Therefore, multiply the terms:
2y and y to get 2y²2y and -3 to get -6y5 and y to get 5y5 and -3 to get -15Then, add or subtract based on the signs:
2y² - 6y + 5y - 15
Then, add like terms to finish simplifying the expression. This leaves you with 2y² - y - 15.
Answer:
2y2 – y – 15
Step-by-step explanation:
(2y + 5)(y – 3)
= 2y(y – 3) + 5(y – 3)
= 2y2 – 6y + 5y – 15
= 2y2 – y –15
If the sin of angle x is 4 over 5 and the triangle was dilated to be two times as big as the original, what would be the value of the sin of x for the dilated triangle? Hint—Use the slash symbol ( / ) to represent the fraction bar, and enter the fraction with no spaces. (4 points)
Answer:
Sin of x does not change
Step-by-step explanation:
Whenever a triangle is dilated, the angle remains the same as well as the ratio for sides of triangle. For smshapes with dimensions, when shapes are dilated the dimensions has increment with common factor.
From trigonometry,
Sin(x)=opposite/hypotenose
Where x=4/5
Sin(4/5)= opposite/hypotenose
But we were given the scale factor of 2 which means the dilation is to two times big.
Then we have
Sin(x)=(2×opposite)/(2×hypotenose)
Then,if we divide by 2 the numerator and denominator we still have
Sin(x)=opposite/hypotenose
Which means the two in numerator and denominator is cancelled out.
Then we still have the same sin of x. as sin(4/5)
Hence,Sin of x does not change
Answer:
Step-by-step explanation:
sin of angle x = [tex]\frac{4}{5}[/tex]
If the triangle is dilated 2 times - it becomes two time larger.
4 times 2 = 8 and 5 times 2 = 10
So the ratio would be [tex]\frac{8}{10}[/tex], which when reduced (divide numerator and denominator by 2) becomes [tex]\frac{4}{5}[/tex].
This is correct as dilation changes the size of an image - but not its angles or proportions, meaning ratios remain the same.
So the answer is 4/5.
What is the value of the logarithm below? (Round your answer to two decimal
places.)
log4 12
Answer:
1.68
Step-by-step explanation:
log(4)12=log(48)
log(48)=1.6812... or rounded, 1.68
Let the sample size of leg strengths to be 7 and the sample mean and sample standard deviation be 630 watts and 32 watts, respectively.
(a) Is there evidence that leg strength exceeds 600 watts at significance level 0.05? Find the P-value. There is_________ evidence that the leg strength exceeds 600 watts at ? = 0.05.
A. 0.001 < P-value < 0.005
B. 0.10 < P-value < 0.25
C. 0.010 < P-value < 0.025
D. 0.05 < P-value < 0.10
(b) Compute the power of the test if the true strength is 610 watts.
(c) What sample size would be required to detect a true mean of 610 watts if the power of the test should be at least 0.9? n=
Answer:
a. There is_sufficient evidence that the leg
C. 0.010 < P-value < 0.025
b. Power of test = 1- β=0.2066
c. So the sample size is 88
Step-by-step explanation:
We formulate the null and alternative hypotheses as
H0 : u1= u2 against Ha : u1 > u2 This is a right tailed test
Here n= 7 and significance level ∝= 0.005
Critical value for a right tailed test with 6 df is 1.9432
Sample Standard deviation = s= 32
Sample size= n= 7
Sample Mean =x`= 630
Degrees of freedom = df = n-1= 7-1= 6
The test statistic used here is
Z = x- x`/ s/√n
Z= 630-600 / 32 / √7
Z= 2.4797= 2.48
P- value = 0.0023890 > ∝ reject the null hypothesis.
so it lies between 0.010 < P-value < 0.025
b) Power of test if true strength is 610 watts.
For a right tailed test value of z is = ± 1.645
P (type II error) β= P (Z< Z∝-x- x`/ s/√n)
Z = x- x`/ s/√n
Z= 610-630 / 32 / √7
Z=0.826
P (type II error) β= P (Z< 1.645-0.826)
= P (Z> 0.818)
= 0.7933
Power of test = 1- β=0.2066
(c)
true mean = 610
hypothesis mean = 600
standard deviation= 32
power = β=0.9
Z∝= 1.645
Zβ= 1.282
Sample size needed
n=( (Z∝ +Zβ )*s/ SE)²
n= ((1.645+1.282) 32/ 10)²
Putting the values and solving we get 87.69
So the sample size is 88
The circumference of the circle shown below is 75 inches. Which expression
gives the length in inches of DE?
D
A.
. 75
72
O B.
360
75
O C.
361
. 75
O D.
360
75%
Answer:
B. 360 .75
Step-by-step explanation:
The circumference of the circle is represented by π * diameter of the circle. The circumference of the circle is its perimeter. The circumference is arc length of the circle. The perimeter is curve length around the figure of the circle. The circumference of the circle of 75 inches is represented by 75/360.
Answer: 72/360 multiply by 75
Step-by-step explanation:
i just did this question
8. Write 3x3 – 21x2 + 36x in factored form.
3x(x - 4)(x - 3)
3x(x - 5)(x - 2)
3x(x + 6)(x + 2)
O
3x(x + 4)(x + 3)
Answer:
A
Step-by-step explanation:
3x^3 – 21x^2 + 36x=3x(x^2-7x+12)=3x(x - 4)(x - 3)
Please help me understand this question!
Answer:
C
Step-by-step explanation:
The first sentence basically sets up the equation which is given, so we can read it for knowledge but it is not crucial to solve the problem.
We start here:
we are given: $120 - 0.2($120)
= 120 - (0.2)(120) (factoring out 120)
= 120 (1 - 0.2)
= 120 (0.8)
= 0.8 (120) (answer c)
The chief business officer of a construction equipment company arranges a loan of $9,300, at 12 1 /8 % interest for 37.5 months. Find the amount of interest. (Round to the nearest cent)
a. $2,761.21
b. $3,583.83
c. $3,523.83
d. $3,722.47
Answer:
C). $3523.83
Step-by-step explanation:
loan of principles p= $9,300,
at rate R= 12 1 /8 % interest
Rate R = 12.125%
for duration year T = 37.5 months
T= 37.5/12 = 3.125 years
Interest I=PRT/100
Interest I =( 9300*12.125*3.125)/100
Interest I = (352382.8125)/100
Interest I = 3523.83
Interest I= $3523.83
HELP NEED PRECALC HELP WILL GIVE BRAINLIEST PLEASE HELP
From your earlier questions, we found
[tex]2\sin(4\pi t)+5\cos(4\pi t)=\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)[/tex]
so the wave has amplitude √29. The weight's maximum negative position from equilibrium is then -√29, so you are solving for t in the given interval for which
[tex]\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)=-\dfrac{\sqrt{29}}2[/tex]
Divide both sides by √29:
[tex]\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)=-\dfrac12[/tex]
Take the inverse sine of both sides, noting that we get two possible solution sets because we have
[tex]\sin\left(\dfrac{7\pi}6\right)=\sin\left(\dfrac{11\pi}6\right)=-\dfrac12[/tex]
and the sine wave has period 2π, so [tex]\sin x=\sin(x+2\pi)=\sin(x+4\pi)=\cdots[/tex].
[tex]\implies 4\pi t+\tan^{-1}\left(\dfrac52\right)=\dfrac{7\pi}6+2n\pi[/tex]
OR
[tex]\implies 4\pi t+\tan^{-1}\left(\dfrac52\right)=\dfrac{11\pi}6+2n\pi[/tex]
where n is any integer.
Now solve for t :
[tex]t=\dfrac{\frac{7\pi}6+2n\pi-\tan^{-1}\left(\frac52\right)}{4\pi}[/tex]
OR
[tex]t=\dfrac{\frac{11\pi}6+2n\pi-\tan^{-1}\left(\frac52\right)}{4\pi}[/tex]
We get solutions between 0 and 0.5 when n = 0 of t ≈ 0.196946 and t ≈ 0.363613.
which of the following equations is a linear equation in one variable?
A. 5x-3=4(x+y)
B. 2a+5b-c=2
C. 3m=8
D. x=2/y+5
Answer:
Option C, 3m=8
Step-by-step explanation:
In the equation,
3m=8
or, 3m-8=0
there is only one variable which is m and it's in the form of ax+b=0
so it's an one variable linear equation
donald is a taxi driver. for each ride in the taxi, the cost, c, is given by c = 500+130d, where c is in cents and d is the distance of the ride, in miles. what is the meaning of the value 500 in this equation? a) donald charges 500 cents per mile b) donald drives 500 customers per day c) donald charges at least 500 cents per taxi ride d) donald charges at most 500 cents per taxi ride
can u go to my page real quick and answer my question pls
generate a continuous and differentiable function f(x) with the following properties: f(x) is decreasing at x=−5 f(x) has a local minimum at x=−3 f(x) has a local maximum at x=3
Answer:
see details in graph and below
Step-by-step explanation:
There are many ways to generate the function.
We'll generate a function whose first derivative f'(x) satisfies the required conditions, say, a quadratic.
1. f(x) has a local minimum at x = -3, and
2. a local maximum at x = 3
Therefore f'(x) has to cross the x-axis at x = -3 and x=+3.
Furthermore, f'(x) must be increasing at x=-3 and decreasing at x=+3.
f'(x) = -x^2+9
will satisfy the above conditions.
Finally f(x) must be decreasing at x= -5, which implies that f'(-5) must be negative.
Check: f'(-5) = -(-5)^2+9 = -25+9 = -16 < 0 so ok.
f(x) can then be obtained by integrating f'(x) :
f(x) = integral of -x^2+9 = -x^3/3 + 9x = 9x - x^3/3
A graph of f(x) is attached, and is found to satisfy all three conditions.
A function is differentiable at [tex]x = a[/tex], if the function is continuous at [tex]x = a[/tex]. The function that satisfy the given properties is [tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]
Given that:
The function decreases at [tex]x = -5[/tex] means that: [tex]f(-5) < 0[/tex]
The local minimum at [tex]x = -3[/tex] and local maximum at [tex]x = 3[/tex] means that:
[tex]x = -3[/tex] or [tex]x = 3[/tex]
Equate both equations to 0
[tex]x + 3 = 0[/tex] or [tex]3 - x = 0[/tex]
Multiply both equations to give y'
[tex]y' = (3 - x) \times (x + 3)[/tex]
Open bracket
[tex]y' = 3x + 9 - x^2 - 3x[/tex]
Collect like terms
[tex]y' = 3x - 3x+ 9 - x^2[/tex]
[tex]y' = 9 - x^2[/tex]
Integrate y'
[tex]y = \frac{9x^{0+1}}{0+1} - \frac{x^{2+1}}{2+1} + c[/tex]
[tex]y = \frac{9x^1}{1} - \frac{x^3}{3} + c[/tex]
[tex]y = 9x - \frac{x^3}{3} + c[/tex]
Express as a function
[tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]
[tex]f(-5) < 0[/tex] implies that:
[tex]9\times -5 - \frac{(-5)^3}{3} + c < 0[/tex]
[tex]-45 - \frac{-125}{3} + c < 0[/tex]
[tex]-45 + \frac{125}{3} + c < 0[/tex]
Take LCM
[tex]\frac{-135 + 125}{3} + c < 0[/tex]
[tex]-\frac{10}{3} + c < 0[/tex]
Collect like terms
[tex]c < \frac{10}{3}[/tex]
[tex]c <3.33[/tex]
We can then assume the value of c to be
[tex]c=3[/tex] or any other value less than 3.33
Substitute [tex]c=3[/tex] in [tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]
[tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]
See attachment for the function of f(x)
Read more about continuous and differentiable function at:
https://brainly.com/question/19590547
The sum of two positive number is 6 times their difference. what is the reciprocal of the ratio of the larger number to the smaller?
let the numbers be a and b, a>b
a+b=6(a-b)
we need to find reciprocal of ratio of larger to smaller , which will be same as ratio of smaller to larger or b/a, let's call it x
divide the equation by a.
1+x=6(1-x)
on solving, x=5/7
23. f(x) is vertically shrank by a factor of 1/3. How will you represent f(x) after transformation?
A. f(3x)
B. 3f(x)
C. 13f(x)
D. f(13x)
Answer:
Step-by-step explanation:
vertical stretching / shrinking has the following transformation.
f(x) -> a * f(x)
when a > 1, it is stretching
when 0< a < 1, it is shrinking.
when -1 < a < 0, it is shringking + reflection about the x-axis
when a < -1, it is stretching + reflection about the x axis.
Here it is simple shrinking, so 0 < a < 1.
I expect the answer choice to show (1/3) f(x).
However, if the question plays with the words
"shrink by a factor of 1/3" to actually mean a "stretching by a factor of three", then B is the answer (stretch by a factor of three).