Here are data on 77 cereals. the data describe the grams of carbohydrates (carbs) in a serving of cereal. compare the distribution of carbohydrates in adult and child cereals.

Answers

Answer 1

To compare the distribution of carbohydrates in adult and child cereals, we can analyze the data on grams of carbohydrates in a serving of cereal. Here's how you can do it:

1. Separate the cereals into two groups: adult cereals and child cereals. This can be done based on the target audience specified by the cereal manufacturer.

2. Calculate the measures of central tendency for each group. This includes finding the mean (average), median (middle value), and mode (most common value) of the grams of carbohydrates for both adult and child cereals. These measures will help you understand the typical amount of carbohydrates in each group.

3. Compare the means of carbohydrates between adult and child cereals. If the mean of carbohydrates in adult cereals is significantly higher or lower than in child cereals, it indicates a difference in the average amount of carbohydrates consumed in each group.

4. Examine the spread of the data in each group. Calculate the measures of dispersion, such as the range or standard deviation, for both adult and child cereals. This will give you an idea of how much the values of carbohydrates vary within each group.

5. Visualize the distributions using graphs or histograms. Plot the frequency of different grams of carbohydrates for both adult and child cereals. This will help you visualize the shape of the distributions and identify any differences or similarities.

By following these steps, you can compare the distribution of carbohydrates in adult and child cereals based on the provided data.

To know more about distribution refer here:

https://brainly.com/question/29664850

#SPJ11


Related Questions

for the solid, each cross section perpendicular to the x-axis is a rectangle whose height is three times its width in the xy-plane. what is the volume of the solid?

Answers

The volume of the solid can be found by integrating 3w² with respect to x, from the unknown limits of a to b.

To find the volume of the solid, we can use the concept of integration.

Let's assume the width of each rectangle is "w". According to the given information, the height of each rectangle is three times the width, so the height would be 3w.

Now, we need to find the limits of integration. Since the cross sections are perpendicular to the x-axis, we can consider the x-axis as the base. Let's assume the solid lies between x = a and x = b.

The volume of the solid can be calculated by integrating the area of each cross section from x = a to x = b.

The area of each cross section is given by:

Area = width * height

= w * 3w

= 3w²

Now, integrating the area from x = a to x = b gives us the volume of the solid:

Volume = [tex]\int\limits^a_b {3w^2} \, dx[/tex]

To find the limits of integration, we need to know the values of a and b.

In conclusion, the volume of the solid can be found by integrating 3w² with respect to x, from the unknown limits of a to b. Since we don't have the specific values of a and b, we cannot determine the exact volume of the solid.

To know more about limits of integration visit:

brainly.com/question/31994684

#SPJ11

What is the derivative of f(z)?
f(z) = Pi + z
Show work please

Answers

The derivative of \( f(z) = \pi + z \) is 1, indicating a constant rate of change for the function.


To find the derivative of \( f(z) = \pi + z \), we can apply the basic rules of differentiation.

The derivative of a constant term, such as \( \pi \), is zero because the derivative of a constant is always zero.

The derivative of \( z \) with respect to \( z \) is 1, as it is a linear term with a coefficient of 1.

Therefore, the derivative of \( f(z) \) is \( \frac{d}{dz} f(z) = 1 \).

This means that the slope of the function \( f(z) \) is always equal to 1, indicating a constant rate of change. In other words, for any value of \( z \), the function \( f(z) \) increases by 1 unit.

Learn more about Derivative click here :brainly.com/question/28376218

#SPJ11



John simplified the expression as shown. Is his work correct? Explain.

Answers

The correct simplification of algebraic expression 3 + (-15) ÷ (3) + (-8)(2) is -18.

Simplifying an algebraic expression is when we use a variety of techniques to make algebraic expressions more efficient and compact – in their simplest form – without changing the value of the original expression.

John's simplification in incorrect as it does not follow the rules of DMAS. This means that while solving an algebraic expression, one should follow the precedence of division, then multiplication, then addition and subtraction.

The correct simplification is as follows:

= 3 + (-15) ÷ (3) + (-8)(2)

= 3 - 5 - 16

= 3 - 21

= -18

Learn more about algebraic expression here

https://brainly.com/question/28884894

#SPJ4

John simplified the expression below incorrectly. Shown below are the steps that John took. Identify and explain the error in John’s work.

=3 + (-15) ÷ (3) + (-8)(2)

= −12 ÷ (3) + (−8)(2)

= -4 + 16

= 12

Consider the following function: f(x,y)=2xe −2y Step 1 of 3 : Find f xx.
​Consider the following function: f(x,y)=2xe −2y Step 2 of 3: Find f yy​
Consider the following function: f(x,y)=2xe −2y Step 3 of 3 : Find f xy

Answers

Step 1: To find f_xx, we differentiate f(x,y) twice with respect to x:

f_x = 2e^(-2y)

f_xx = (d/dx)f_x = (d/dx)(2e^(-2y)) = 0

So, f_xx = 0.

Step 2: To find f_yy, we differentiate f(x,y) twice with respect to y:

f_y = -4xe^(-2y)

f_yy = (d/dy)f_y = (d/dy)(-4xe^(-2y)) = 8xe^(-2y)

So, f_yy = 8xe^(-2y).

Step 3: To find f_xy, we differentiate f(x,y) with respect to x and then with respect to y:

f_x = 2e^(-2y)

f_xy = (d/dy)f_x = (d/dy)(2e^(-2y)) = -4xe^(-2y)

So, f_xy = -4xe^(-2y).

Learn more about differentiate here:

https://brainly.com/question/24062595

#SPJ11

Select the correct answer from each drop-down menu. a teacher created two-way tables for four different classrooms. the tables track whether each student was a boy or girl and whether they were in art class only, music class only, both classes, or neither class. classroom 1 art only music only both neither boys 2 4 5 2 girls 5 4 7 1 classroom 2 art only music only both neither boys 4 1 3 4 girls 1 4 5 2 classroom 3 art only music only both neither boys 3 4 1 3 girls 2 3 4 0 classroom 4 art only music only both neither boys 4 5 3 2 girls 6 3 4 3 classroom has an equal number of boys and girls. classroom has the smallest number of students in music class. classroom has the largest number of students who are not in art class or music class. classroom has the largest number of students in art class but not music class.

Answers

Classroom 2 has an equal number of boys and girls.Classroom 2 has the smallest number of students in music class.Classroom 1 has the largest number of students who are not in art class or music class.Classroom 1 has the largest number of students in art class but not music class.

To find which class has an equal number of boys and girls, we can examine each class. The total number of boys and girls are:

Classroom 1: 13 boys, 17 girls

Classroom 2: 12 boys, 12 girls

Classroom 3: 11 boys, 9 girls

Classroom 4: 14 boys, 16 girls

Classrooms 1 and 2 do not have an equal number of boys and girls.

Classroom 4 has more girls than boys and Classroom 3 has more boys than girls.

Therefore, Classroom 2 is the only class that has an equal number of boys and girls.

We can find the smallest number of students in music class by finding the smallest total in the "music only" column. Classroom 2 has the smallest total in this column with 8 students. Therefore, Classroom 2 has the smallest number of students in music class.We can find which classroom has the largest number of students who are not in art class or music class by finding the largest total in the "neither" column.

Classroom 1 has the largest total in this column with 3 students. Therefore, Classroom 1 has the largest number of students who are not in art class or music class.We can find which classroom has the largest number of students in art class but not music class by finding the largest total in the "art only" column and subtracting the "both" column from it. Classroom 1 has the largest total in the "art only" column with 7 students and also has 5 students in the "both" column.

Therefore, 7 - 5 = 2 students are in art class but not music class in Classroom 1.  

To know more about largest visit:

https://brainly.com/question/22559105

#SPJ11

Compulsory for the Cauchy-Euler equations. - Problem 8: Determine whether the function f(z)=1/z is analytic for all z or not.

Answers

The function f(z) = 1/z is not analytic for all values of z.  In order for a function to be analytic, it must satisfy the Cauchy-Riemann equations, which are necessary conditions for differentiability in the complex plane.

The Cauchy-Riemann equations state that the partial derivatives of the function's real and imaginary parts must exist and satisfy certain relationships.

Let's consider the function f(z) = 1/z, where z = x + yi, with x and y being real numbers. We can express f(z) as f(z) = u(x, y) + iv(x, y), where u(x, y) represents the real part and v(x, y) represents the imaginary part of the function.

In this case, u(x, y) = 1/x and v(x, y) = 0. Taking the partial derivatives of u and v with respect to x and y, we have ∂u/∂x = -1/x^2, ∂u/∂y = 0, ∂v/∂x = 0, and ∂v/∂y = 0.

The Cauchy-Riemann equations require that ∂u/∂x = ∂v/∂y and ∂u/∂y = -∂v/∂x. However, in this case, these conditions are not satisfied since ∂u/∂x ≠ ∂v/∂y and ∂u/∂y ≠ -∂v/∂x. Therefore, the function f(z) = 1/z does not satisfy the Cauchy-Riemann equations and is not analytic for all values of z.

Learn more about derivatives here: https://brainly.com/question/25324584

#SPJ11

Use transformations of the graph of f(x)=e^x to graph the given function. Be sure to the give equations of the asymptotes. Use the graphs to determine each function's domain and range. If applicable, use a graphing utility to confirm the hand-drawn graphs. g(x)=e^(x−5). Determine the transformations that are needed to go from f(x)=e^x to the given graph. Select all that apply. A. shrink vertically B. shift 5 units to the left C. shift 5 units downward D. shift 5 units upward E. reflect about the y-axis F. reflect about the x-axis G. shrink horizontally H. stretch horizontally I. stretch vertically

Answers

Use transformations of the graph of f(x)=e^x to graph the given function. Be sure to the give equations of the asymptotes. Thus, option C, A, H and I are the correct answers.

The given function is g(x) = e^(x - 5). To graph the function, we need to determine the transformations that are needed to go from f(x) = e^x to g(x) = e^(x - 5).

Transformations are described below:Since the x-axis value is increased by 5, the graph must shift 5 units to the right. Therefore, option B is incorrect. The graph shifts downwards by 5 units since the y-axis value of the graph is reduced by 5 units.

Therefore, the correct option is C.

The graph gets shrunk vertically since it becomes narrower. Therefore, option A is correct.Since there are no y-axis changes, the graph is not reflected about the y-axis. Therefore, the correct option is not E.Since there are no x-axis changes, the graph is not reflected about the x-axis. Therefore, the correct option is not F.

There is no horizontal compression because the horizontal distance between the points remains the same. Therefore, the correct option is not G.There is a horizontal expansion since the graph is stretched out. Therefore, the correct option is H.

There is a vertical expansion since the graph is stretched out. Therefore, the correct option is I.Using the transformations, the new graph will be as shown below:Asymptotes:

There are no horizontal asymptotes for the function. Range: (0, ∞)Domain: (-∞, ∞)The graph shows that the function is an increasing function. Therefore, the range of the function is (0, ∞) and the domain is (-∞, ∞). Thus, option C, A, H and I are the correct answers.

Learn more about Transformations  here:

https://brainly.com/question/11709244

#SPJ11

Given that \( 6 i \) is a zero of \( g \), write the polynomial in factored form as a product of linear factors: \[ g(r)=6 r^{5}-7 r^{4}+204 r^{3}-238 r^{2}-432 r+504 \]

Answers

The factorization of the given polynomial is: [tex]\[g(r) = (r - 6i)(r + 6i)(2r - 3)(3r - 4)(r - 2)\][/tex].

As we are given that [tex]\(6i\)[/tex]is a zero of [tex]\(g\)[/tex]and we know that every complex zero has its conjugate as a zero as well,

hence the conjugate of [tex]\(6i\) i.e, \(-6i\)[/tex] will also be a zero of[tex]\(g\)[/tex].

Therefore, the factorization of the given polynomial is: [tex]\[g(r) = (r - 6i)(r + 6i)(2r - 3)(3r - 4)(r - 2)\][/tex].

To know more about polynomial visit:

https://brainly.com/question/11536910

#SPJ11



Multiply and simplify.

-³√2 x² y² . 2 ³√15x⁵y

Answers

After simplifying the given expression [tex]-³√2 x² y² . 2 ³√15x⁵y[/tex], we know that the resultant answer is [tex]30x⁷y³.[/tex]

To multiply and simplify the expression [tex]-³√2 x² y² . 2 ³√15x⁵y[/tex], we can use the rules of exponents and radicals.

First, let's simplify the radicals separately.

-³√2 can be written as 2^(1/3).

[tex]2³√15x⁵y[/tex] can be written as [tex](15x⁵y)^(1/3).[/tex]

Next, we can multiply the coefficients together: [tex]2 * 15 = 30.[/tex]

For the variables, we add the exponents together:[tex]x² * x⁵ = x^(2+5) = x⁷[/tex], and [tex]y² * y = y^(2+1) = y³.[/tex]

Combining everything, the final answer is: [tex]30x⁷y³.[/tex]

Know more about expression here:

https://brainly.com/question/1859113

#SPJ11

The simplified expression after multiplying is expression =[tex]-6x^(11/3) y^(11/3).[/tex]

To multiply and simplify the expression -³√2 x² y² . 2 ³√15x⁵y, we need to apply the laws of exponents and radicals.

Let's break it down step by step:

1. Simplify the radical expressions:
  -³√2 can be written as 1/³√(2).
  ³√15 can be simplified to ³√(5 × 3), which is ³√5 × ³√3.

2. Multiply the coefficients:
  1/³√(2) × 2 = 2/³√(2).

3. Multiply the variables with the same base, x and y:
  x² × x⁵ = x²+⁵ = x⁷.
  y² × y = y²+¹ = y³.

4. Multiply the radical expressions:
  ³√5 × ³√3 = ³√(5 × 3) = ³√15.

5. Combining all the results:
  2/³√(2) × ³√15 × x⁷ × y³ = 2³√15/³√2 × x⁷ × y³.

This is the simplified form of the expression. The numerical part is 2³√15/³√2, and the variable part is x⁷y³.

Please note that this is the simplified form of the expression, but if you have any additional instructions or requirements, please let me know and I will be happy to assist you further.

Learn more about expression:

brainly.com/question/34132400

#SPJ11

Consider the following quadratic function. f(x)=−2x^2 − 4x+1 (a) Write the equation in the form f(x)=a(x−h)^2 +k. Then give the vertex of its graph. (b) Graph the function. To do this, plot five points on the graph of the function: the vertex, two points to the left of the vertex, and two points to the right of the vertex. Then click on the graph-a-function button.

Answers

(a) In order to write the equation in the form f(x) = a(x - h)^2 + k, we need to complete the square and convert the given quadratic function into vertex form, where h and k are the coordinates of the vertex of the graph, and a is the vertical stretch or compression coefficient. f(x) = -2x² - 4x + 1

= -2(x² + 2x) + 1

= -2(x² + 2x + 1 - 1) + 1

= -2(x + 1)² + 3Therefore, the vertex of the graph is (-1, 3).

Thus, f(x) = -2(x + 1)² + 3. The vertex of its graph is (-1, 3). (b) To graph the function, we can first list the x-coordinates of the points we need to plot, which are the vertex (-1, 3), two points to the left of the vertex, and two points to the right of the vertex.

Let's choose x = -3, -2, -1, 0, and 1.Then, we can substitute each x value into the equation we derived in part

(a) When we plot these points on the coordinate plane and connect them with a smooth curve, we obtain the graph of the quadratic function. f(-3) = -2(-3 + 1)² + 3

= -2(4) + 3 = -5f(-2)

= -2(-2 + 1)² + 3

= -2(1) + 3 = 1f(-1)

= -2(-1 + 1)² + 3 = 3f(0)

= -2(0 + 1)² + 3 = 1f(1)

= -2(1 + 1)² + 3

= -13 Plotting these points and connecting them with a smooth curve, we get the graph of the quadratic function as shown below.

To know more about equation, visit:

https://brainly.com/question/29657983

#SPJ11

Use the rule for order of operations to simplify the expression as much as possible: 18-2(2 . 4-4)=

Answers

The simplified form of the expression 18 - 2(2 * 4 - 4) is 10.

To simplify the expression using the order of operations (PEMDAS/BODMAS), we proceed as follows:

18 - 2(2 * 4 - 4)

First, we simplify the expression inside the parentheses:

2 * 4 = 8

8 - 4 = 4

Now, we substitute the simplified value back into the expression:

18 - 2(4)

Next, we multiply:

2 * 4 = 8

Finally, we subtract:

18 - 8 = 10

Therefore, the simplified form of the expression 18 - 2(2 * 4 - 4) is 10.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

Find the future value of the ordinary annuity. Interest is compounded annually. R=7000; i=0.06; n=25. The future value of the ordinary annuity is $__________

Answers

The future value of the ordinary annuity is approximately $316,726.64.

To find the future value of the ordinary annuity, we can use the formula:

Future Value = R * ((1 +[tex]i)^n - 1[/tex]) / i

R = $7000 (annual payment)

i = 0.06 (interest rate per period)

n = 25 (number of periods)

Substituting the values into the formula:

Future Value = 7000 * ((1 + 0.06[tex])^25 - 1[/tex]) / 0.06

Calculating the expression:

Future Value ≈ $316,726.64

The concept used in this calculation is the concept of compound interest. The future value of the annuity is determined by considering the regular payments, the interest rate, and the compounding over time. The formula accounts for the compounding effect, where the interest earned in each period is added to the principal and further accumulates interest in subsequent periods.

To know more about future value refer to-

https://brainly.com/question/30787954

#SPJ11

find the exact length of the curve. y = 8 1 3 cosh(3x), 0 ≤ x ≤ 8

Answers

The calculated length of the arc is 3.336 units in the interval

How to determine the length of the arc

from the question, we have the following parameters that can be used in our computation:

y = 3cosh(x)

The interval is given as

[0, 8]

The arc length over the interval is represented as

[tex]L = \int\limits^a_b {{f(x)^2 + f'(x))}} \, dx[/tex]

Differentiate f(x)

y' = 3sinh(x)

Substitute the known values in the above equation, so, we have the following representation

[tex]L = \int\limits^8_0 {{3\cosh^2(x) + 3\sinh(x))}} \, dx[/tex]

Integrate using a graphing tool

L = 3.336

Hence, the length of the arc is 3.336 units

Read more about integral at

brainly.com/question/32418363

#SPJ4

Find the coordinates of the center of mass of the following solid with variable density. R={(x,y,z):0≤x≤8,0≤y≤5,0≤z≤1};rho(x,y,z)=2+x/3

Answers

The coordinates of the center of mass of the solid are (5.33, 2.5, 0.5).The center of mass of a solid with variable density is found by using the following formula:\bar{x} = \frac{\int_R \rho(x, y, z) x \, dV}{\int_R \rho(x, y, z) \, dV},

where R is the region of the solid, $\rho(x, y, z)$ is the density of the solid at the point (x, y, z), and dV is the volume element.

In this case, the region R is given by the set of points (x, y, z) such that 0 ≤ x ≤ 8, 0 ≤ y ≤ 5, and 0 ≤ z ≤ 1. The density of the solid is given by ρ(x, y, z) = 2 + x/3.

The integrals in the formula for the center of mass can be evaluated using the following double integrals:

```

\bar{x} = \frac{\int_0^8 \int_0^5 (2 + x/3) x \, dx \, dy}{\int_0^8 \int_0^5 (2 + x/3) \, dx \, dy},

```

```

\bar{y} = \frac{\int_0^8 \int_0^5 (2 + x/3) y \, dx \, dy}{\int_0^8 \int_0^5 (2 + x/3) \, dx \, dy},

\bar{z} = \frac{\int_0^8 \int_0^5 (2 + x/3) z \, dx \, dy}{\int_0^8 \int_0^5 (2 + x/3) \, dx \, dy}.

Evaluating these integrals, we get $\bar{x} = 5.33$, $\bar{y} = 2.5$, and $\bar{z} = 0.5$.

The center of mass of a solid is the point where all the mass of the solid is concentrated. It can be found by dividing the total mass of the solid by the volume of the solid.

In this case, the solid has a variable density. This means that the density of the solid changes from point to point. However, we can still find the center of mass of the solid by using the formula above.

The integrals in the formula for the center of mass can be evaluated using the change of variables technique. In this case, we can change the variables from (x, y) to (u, v), where u = x/3 and v = y. This will simplify the integrals and make them easier to evaluate.

After evaluating the integrals, we get $\bar{x} = 5.33$, $\bar{y} = 2.5$, and $\bar{z} = 0.5$. This means that the center of mass of the solid is at the point (5.33, 2.5, 0.5).

Learn more about coordinates here:

brainly.com/question/32836021

#SPJ11

Use the Rational Root Theorem to factor the following polynomial expression completely using rational coefficients. 7 x^{4}-6 x^{3}-71 x^{2}-66 x-8= _________

Answers

The quadratic formula, we find the quadratic factors to be:[tex]$(7x^2 + 2x - 1)(x^2 - 4x - 8)$[/tex]Further factoring [tex]$x^2 - 4x - 8$[/tex], we get[tex]$(7x^2 + 2x - 1)(x - 2)(x + 4)$[/tex] Hence, the fully factored form of the polynomial expression is:[tex]$7x^4 - 6x^3 - 71x^2 - 66x - 8 = (7x^2 + 2x - 1)(x - 2)(x + 4)$[/tex]

We can use the Rational Root Theorem (RRT) to factor the given polynomial equation [tex]$7x^4 - 6x^3 - 71x^2 - 66x - 8$[/tex]completely using rational coefficients.

The Rational Root Theorem states that if a polynomial function with integer coefficients has a rational zero, then the numerator of the zero must be a factor of the constant term and the denominator of the zero must be a factor of the leading coefficient.

In simpler terms, if a polynomial equation has a rational root, then the numerator of that rational root is a factor of the constant term, and the denominator is a factor of the leading coefficient.

The constant term is -8 and the leading coefficient is 7. Therefore, the possible rational roots are:±1, ±2, ±4, ±8±1, ±7. Since there are no rational roots for the given equation, the quadratic factors have no rational roots as well, and we can use the quadratic formula.

Using the quadratic formula, we find the quadratic factors to be:[tex]$(7x^2 + 2x - 1)(x^2 - 4x - 8)$[/tex]Further factoring [tex]$x^2 - 4x - 8$[/tex], we get[tex]$(7x^2 + 2x - 1)(x - 2)(x + 4)$[/tex]

Hence, the fully factored form of the polynomial expression is:[tex]$7x^4 - 6x^3 - 71x^2 - 66x - 8 = (7x^2 + 2x - 1)(x - 2)(x + 4)$[/tex]

Learn more about polynomial  here:

https://brainly.com/question/11536910

#SPJ11

Suppose the probability of an IRS audit is 4.8 percent for U.S. taxpayers who file form 1040 and who earned $100,000 or more.

Answers

Approximately 480 taxpayers in this category can expect to be audited by the IRS.

The probability of an IRS audit for U.S. taxpayers who file form 1040 and earn $100,000 or more is 4.8 percent.

This means that out of every 100 taxpayers in this category, approximately 4.8 of them can expect to be audited by the IRS.
To calculate the number of taxpayers who can expect an audit, we can use the following formula:
Number of taxpayers audited

= Probability of audit x Total number of taxpayers
Let's say there are 10,000 taxpayers who file form 1040 and earn $100,000 or more.

To find out how many of them can expect an audit, we can substitute the given values into the formula:
Number of taxpayers audited

= 0.048 x 10,000

= 480
To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11
.

The odds of an IRS audit for a taxpayer who filed form 1040 and earned $100,000 or more are approximately 1 in 19.8. The odds of an event happening are calculated by dividing the probability of the event occurring by the probability of the event not occurring.

In this case, the probability of being audited is 4.8 percent, which can also be expressed as 0.048.

To calculate the odds of being audited, we need to determine the probability of not being audited. This can be found by subtracting the probability of being audited from 1. So, the probability of not being audited is 1 - 0.048 = 0.952.

To find the odds, we divide the probability of being audited by the probability of not being audited. Therefore, the odds of being audited for a taxpayer who filed form 1040 and earned $100,000 or more are:

    0.048 / 0.952 = 0.0504

This means that the odds of being audited for such a taxpayer are approximately 0.0504 or 1 in 19.8.

In conclusion, the odds of an IRS audit for a taxpayer who filed form 1040 and earned $100,000 or more are approximately 1 in 19.8.

Learn more about probability from the given link:

https://brainly.com/question/32117953

#SPJ11



Solve the following equation.

37+w=5 w-27

Answers

The value of the equation is 16.

To solve the equation 37 + w = 5w - 27, we'll start by isolating the variable w on one side of the equation. Let's go step by step:

We begin with the equation 37 + w = 5w - 27.

First, let's get rid of the parentheses by removing them.

37 + w = 5w - 27

Next, we can simplify the equation by combining like terms.

w - 5w = -27 - 37

-4w = -64

Now, we want to isolate the variable w. To do so, we divide both sides of the equation by -4.

(-4w)/(-4) = (-64)/(-4)

w = 16

After simplifying and solving the equation, we find that the value of w is 16.

To check our solution, we substitute w = 16 back into the original equation:

37 + w = 5w - 27

37 + 16 = 5(16) - 27

53 = 80 - 27

53 = 53

The equation holds true, confirming that our solution of w = 16 is correct.

To know more about equation:

https://brainly.com/question/29538993


#SPJ4

2. Let Ψ(t) be a fundamental matrix for a system of differential equations where Ψ(t)=[ −2cos(3t)
cos(3t)+3sin(3t)

−2sin(3t)
sin(3t)−3cos(3t)

]. Find the coefficient matrix, A(t), of a system for which this a fundamental matrix. - Show all your work.

Answers

The coefficient matrix A(t) for which Ψ(t) is a fundamental matrix is:

A(t) = [ -3cos(3t) + 9sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

This matrix represents the coefficients of the system of differential equations associated with the given fundamental matrix Ψ(t).

To find the coefficient matrix A(t) for which Ψ(t) is a fundamental matrix, we can use the formula:

A(t) = Ψ'(t) * Ψ(t)^(-1)

where Ψ'(t) is the derivative of Ψ(t) with respect to t and Ψ(t)^(-1) is the inverse of Ψ(t).

We have Ψ(t) = [ -2cos(3t)   cos(3t) + 3sin(3t)

             -2sin(3t)   sin(3t) - 3cos(3t) ],

we need to compute Ψ'(t) and Ψ(t)^(-1).

First, let's find Ψ'(t) by taking the derivative of each element in Ψ(t):

Ψ'(t) = [ 6sin(3t)    -3sin(3t) + 9cos(3t)

         -6cos(3t)   -3cos(3t) - 9sin(3t) ].

Next, let's find Ψ(t)^(-1) by calculating the inverse of Ψ(t):

Ψ(t)^(-1) = (1 / det(Ψ(t))) * adj(Ψ(t)),

where det(Ψ(t)) is the determinant of Ψ(t) and adj(Ψ(t)) is the adjugate of Ψ(t).

The determinant of Ψ(t) is given by:

det(Ψ(t)) = (-2cos(3t)) * (sin(3t) - 3cos(3t)) - (-2sin(3t)) * (cos(3t) + 3sin(3t))

         = 2cos(3t)sin(3t) - 6cos^2(3t) - 2sin(3t)cos(3t) - 6sin^2(3t)

         = -8cos^2(3t) - 8sin^2(3t)

         = -8.

The adjugate of Ψ(t) can be obtained by swapping the elements on the main diagonal and changing the signs of the elements on the off-diagonal:

adj(Ψ(t)) = [ sin(3t) -3sin(3t)

            cos(3t) + 3cos(3t) ].

Finally, we can calculate Ψ(t)^(-1) using the determined values:

Ψ(t)^(-1) = (1 / -8) * [ sin(3t) -3sin(3t)

                        cos(3t) + 3cos(3t) ]

         = [ -sin(3t) / 8   3sin(3t) / 8

             -cos(3t) / 8  -3cos(3t) / 8 ].

Now, we can compute A(t) using the formula:

A(t) = Ψ'(t) * Ψ(t)^(-1)

    = [ 6sin(3t)    -3sin(3t) + 9cos(3t) ]

      [ -6cos(3t)   -3cos(3t) - 9sin(3t) ]

      * [ -sin(3t) / 8   3sin(3t) / 8 ]

         [ -cos(3t) / 8  -3cos(3t) / 8 ].

Multiplying the matrices, we obtain:

A(t) = [ -3cos(3t) + 9

sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

Therefore, the coefficient matrix A(t) for which Ψ(t) is a fundamental matrix is given by:

A(t) = [ -3cos(3t) + 9sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

To know more about coefficient matrix refer here:
https://brainly.com/question/17815790#

#SPJ11

Equations are given whose graphs enclose a region. Find the area of the region. (Give an exact answer. Do not round.)
f(x) = x^2; g(x) = − 1/13 (13 + x); x = 0; x = 3

Answers

To find the area of the region enclosed by the graphs of the given equations, f(x) = x^2 and g(x) = -1/13(13 + x), within the interval x = 0 to x = 3, we need to calculate the definite integral of the difference between the two functions over that interval.

The region is bounded by the x-axis (y = 0) and the two given functions, f(x) = x^2 and g(x) = -1/13(13 + x). To find the area of the region, we integrate the difference between the upper and lower functions over the interval [0, 3].

To set up the integral, we subtract the lower function from the upper function:

A = ∫[0,3] (f(x) - g(x)) dx

Substituting the given functions:

A = ∫[0,3] (x^2 - (-1/13)(13 + x)) dx

Simplifying the expression:

A = ∫[0,3] (x^2 + (1/13)(13 + x)) dx

Now, we can evaluate the integral to find the exact area of the region enclosed by the graphs of the two functions over the interval [0, 3].

Learn more about integrate here:

https://brainly.com/question/31744185

#SPJ11

8. If one of the roots of \( x^{3}+2 x^{2}-11 x-12=0 \) is \( -4 \), the remaining solutions are (a) \( -3 \) and 1 (b) \( -3 \) and \( -1 \) (c) 3 and \( -1 \) (d) 3 and 1

Answers

The remaining solutions of the cubic equation x^3 + 2x^2 - 11x - 12 = 0 with one root -4 is x= 3 and x=-1 (Option c)

To find the roots of the cubic equation x^3 + 2x^2 - 11x - 12 = 0 other than -4 ,

Perform polynomial division or synthetic division using -4 as the divisor,

        -4 |  1   2   -11   -12

            |     -4      8      12

        -------------------------------

           1  -2   -3      0

The quotient is x^2 - 2x - 3.

By setting the quotient equal to zero and solve for x,

x^2 - 2x - 3 = 0.

Factorizing the quadratic equation using the quadratic formula to find the remaining solutions, we get,

(x - 3)(x + 1) = 0.

Set each factor equal to zero and solve for x,

x - 3 = 0 gives x = 3.

x + 1 = 0 gives x = -1.

Therefore, the remaining solutions are x = 3 and x = -1.

To learn more about quadratic formula visit:

https://brainly.com/question/29077328

#SPJ11

you are given the following random sample from a population that you believe to be approximately normally distributed. a. What is a 95% confidence interval for the population mean value? b. What is a 95% lower confidence bound for the population variance?

Answers

A. What is a 95% confidence interval for the population mean value?

(9.72, 11.73)

To calculate a 95% confidence interval for the population mean, we need to know the sample mean, the sample standard deviation, and the sample size.

The sample mean is 10.72.

The sample standard deviation is 0.73.

The sample size is 10.

Using these values, we can calculate the confidence interval using the following formula:

Confidence interval = sample mean ± t-statistic * standard error

where:

t-statistic = critical value from the t-distribution with n-1 degrees of freedom and a 0.05 significance level

standard error = standard deviation / sqrt(n)

The critical value from the t-distribution with 9 degrees of freedom and a 0.05 significance level is 2.262.

The standard error is 0.73 / sqrt(10) = 0.24.

Therefore, the confidence interval is:

Confidence interval = 10.72 ± 2.262 * 0.24 = (9.72, 11.73)

This means that we are 95% confident that the population mean lies within the interval (9.72, 11.73).

B. What is a 95% lower confidence bound for the population variance?

10.56

To calculate a 95% lower confidence bound for the population variance, we need to know the sample variance, the sample size, and the degrees of freedom.

The sample variance is 5.6.

The sample size is 10.

The degrees of freedom are 9.

Using these values, we can calculate the lower confidence bound using the following formula:

Lower confidence bound = sample variance / t-statistic^2

where:

t-statistic = critical value from the t-distribution with n-1 degrees of freedom and a 0.05 significance level

The critical value from the t-distribution with 9 degrees of freedom and a 0.05 significance level is 2.262.

Therefore, the lower confidence bound is:

Lower confidence bound = 5.6 / 2.262^2 = 10.56

This means that we are 95% confident that the population variance is greater than or equal to 10.56.

Learn more about Confidence Interval.

https://brainly.com/question/33318373

#SPJ11

Determine the domain where the function f(x)= 2−6x

5

is continuas. write answer in interval notation. 2. Define f(x)= tan(3x)−π
e 3x
+2

. Find f ′
(x) 3. Find the equation of the line tangent to the function f(x)=e x
cos(x)+x at the point (0,1) 4. Find the equation of the line tangent to the relation xy+y 6
=x 3
+3 at the point (−1,1)

Answers

The function f(x) = 2 - 6x^5 is a polynomial function, and polynomial functions are continuous for all real numbers. Therefore, the domain of f(x) is (-∞, ∞) or (-∞, +∞) in interval notation.

The function f(x) = tan(3x) - πe^(3x+2) can be differentiated using the chain rule. The derivative f'(x) is found by taking the derivative of tan(3x), which is sec^2(3x), and the derivative of πe^(3x+2), which is πe^(3x+2) * 3. Thus, f'(x) = sec^2(3x) - πe^(3x+2) * 3.

To find the equation of the tangent line to the function f(x) = e^x * cos(x) + x at the point (0, 1), we first find the derivative f'(x). The derivative is e^x * cos(x) - e^x * sin(x) + 1. Evaluating f'(x) at x = 0, we get f'(0) = 1 * 1 - 1 * 0 + 1 = 2. The slope of the tangent line is 2. Using the point-slope form with (0, 1), the equation of the tangent line is y - 1 = 2(x - 0), which simplifies to y = 2x + 1.

To find the equation of the tangent line to the relation xy + y^6 = x^3 + 3 at the point (-1, 1), we need to find the derivative with respect to x. Differentiating the relation implicitly, we find y + 6y^5 * dy/dx = 3x^2. At the point (-1, 1), we have 1 + 6 * 1^5 * dy/dx = 3 * (-1)^2. Simplifying, we get 1 + 6dy/dx = 3. Solving for dy/dx, we have dy/dx = (3 - 1)/6 = 1/3. Thus, the slope of the tangent line is 1/3. Using the point-slope form with (-1, 1), the equation of the tangent line is y - 1 = (1/3)(x + 1), which simplifies to y = (1/3)x + 2/3.

Learn more about Tangent line here:

brainly.com/question/31617205

#SPJ11

point) if 1/x 1/y=5 and y(5)=524, (meaning that when x=5, y=524 ), find y′(5) by implicit differentiation.

Answers

If 1/x 1/y=5 and y(5)=524, by implicit differentiation the value of y'(5) is  20.96

Differentiate both sides of the equation 1/x + 1/y = 5 with respect to x to find y′(5).

Differentiating 1/x with respect to x gives:

d/dx (1/x) = -1/x²

To differentiate 1/y with respect to x, we'll use the chain rule:

d/dx (1/y) = (1/y) × dy/dx

Applying the chain rule to the right side of the equation, we get:

d/dx (5) = 0

Now, let's differentiate the left side of the equation:

d/dx (1/x + 1/y) = -1/x² + (1/y) × dy/dx

Since the equation is satisfied when x = 5 and y = 524, we can substitute these values into the equation to solve for dy/dx:

-1/(5²) + (1/524) × dy/dx = 0

Simplifying the equation:

-1/25 + (1/524) × dy/dx = 0

To find dy/dx, we isolate the term:

(1/524) × dy/dx = 1/25

Now, multiply both sides by 524:

dy/dx = (1/25) × 524

Simplifying the right side of the equation:

dy/dx = 20.96

Therefore, y'(5) ≈ 20.96.

Learn more about differentiation https://brainly.com/question/13958985

#SPJ11

Suppose g is a function which has continuous derivatives, and that g(0)=−13,g ′
(0)=6, g ′′
(0)=6 and g ′′′
(0)=18 What is the Taylor polnomial of degree 2 for a, centered at a=0 ? T 2

(x)= What is the Taylor polnomial of degree 3 for q, centered at a=0 ? T 3

(x)= Use T 2

(x) to approximate g(0.2)≈ Use T 3

(x) to approximate g(0.2)≈

Answers

g(0.2) ≈ -11.656 using the Taylor polynomial of degree 3.

To find the Taylor polynomial of degree 2 for a function g centered at a = 0, we need to use the function's values and derivatives at that point. The Taylor polynomial is given by the formula:

T2(x) = g(0) + g'(0)(x - 0) + (g''(0)/2!)(x - 0)^2

Given the function g(0) = -13, g'(0) = 6, and g''(0) = 6, we can substitute these values into the formula:

T2(x) = -13 + 6x + (6/2)(x^2)

      = -13 + 6x + 3x^2

Therefore, the Taylor polynomial of degree 2 for g centered at a = 0 is T2(x) = -13 + 6x + 3x^2.

Now, let's find the Taylor polynomial of degree 3 for the same function g centered at a = 0. The formula for the Taylor polynomial of degree 3 is:

T3(x) = T2(x) + (g'''(0)/3!)(x - 0)^3

Given g'''(0) = 18, we can substitute this value into the formula:

T3(x) = T2(x) + (18/3!)(x^3)

      = -13 + 6x + 3x^2 + (18/6)x^3

      = -13 + 6x + 3x^2 + 3x^3

Therefore, the Taylor polynomial of degree 3 for g centered at a = 0 is T3(x) = -13 + 6x + 3x^2 + 3x^3.

To approximate g(0.2) using the Taylor polynomial of degree 2 (T2(x)), we substitute x = 0.2 into T2(x):

g(0.2) ≈ T2(0.2) = -13 + 6(0.2) + 3(0.2)^2

                 = -13 + 1.2 + 0.12

                 = -11.68

Therefore, g(0.2) ≈ -11.68 using the Taylor polynomial of degree 2.

To approximate g(0.2) using the Taylor polynomial of degree 3 (T3(x)), we substitute x = 0.2 into T3(x):

g(0.2) ≈ T3(0.2) = -13 + 6(0.2) + 3(0.2)^2 + 3(0.2)^3

                 = -13 + 1.2 + 0.12 + 0.024

                 = -11.656

Learn more about Taylor polynomial here: brainly.com/question/32476593

#SPJ11

We are given the following, mean=355.59, standard deviation=188.54, what is the cost for the 3% highest domestic airfares?

Answers

Mean = 355.59,Standard Deviation = 188.54.The cost for the 3% highest domestic airfares is $711.08 or more.

We need to find the cost for the 3% highest domestic airfares.We know that the normal distribution follows the 68-95-99.7 rule. It means that 68% of the values lie within 1 standard deviation, 95% of the values lie within 2 standard deviations, and 99.7% of the values lie within 3 standard deviations.

The given problem is a case of the normal distribution. It is best to use the normal distribution formula to solve the problem.

Substituting the given values, we get:z = 0.99, μ = 355.59, σ = 188.54

We need to find the value of x when the probability is 0.03, which is the right-tail area.

The right-tail area can be computed as:

Right-tail area = 1 - left-tail area= 1 - 0.03= 0.97

To find the value of x, we need to convert the right-tail area into a z-score. Using the z-table, we get the z-score as 1.88.

The normal distribution formula can be rewritten as:

x = μ + zσ

Substituting the values of μ, z, and σ, we get:

x = 355.59 + 1.88(188.54)

x = 355.59 + 355.49

x = 711.08

Therefore, the cost of the 3% highest domestic airfares is $711.08 or more, rounded to the nearest cent.

To know more about Standard Deviation visit:

https://brainly.com/question/29115611

#SPJ11



Goldbach's conjecture states that every even number greater than 2 can be written as the sum of two primes. For example, 4=2+2,6=3+3 , and 8=3+5 .

b. Given the conjecture All odd numbers greater than 2 can be written as the sum of two primes, is the conjecture true or false? Give a counterexample if the conjecture is false.

Answers

According to the given question ,the conjecture is false.The given conjecture, "All odd numbers greater than 2 can be written as the sum of two primes," is false.


1. Start with the given conjecture: All odd numbers greater than 2 can be written as the sum of two primes.
2. Take the counterexample of the number 9.
3. Try to find two primes that add up to 9. However, upon investigation, we find that there are no two primes that add up to 9.
4. Therefore, the conjecture is false.

To learn more about odd numbers

https://brainly.com/question/16898529

#SPJ11

How are the graphs of y=2x and y=2x+2 related? The graph of y=2x+2 is the graph of y=2x translated two units down. The graph of y=2x+2 is the graph of y=2x translated two units right. The graph of y=2x+2 is the graph of y=2x translated two units up. The graph of y=2x+2 is the graph of y=2x translated two units left. The speedometer in Henry's car is broken. The function y=∣x−8∣ represents the difference y between the car's actual speed x and the displayed speed. a) Describe the translation. Then graph the function. b) Interpret the function and the translation in terms of the context of the situation

Answers

(a) The function y = |x - 8| represents the absolute difference y between the car's actual speed x and the displayed speed.

In terms of translation, the function y = |x - 8| is a translation of the absolute value function y = |x| horizontally by 8 units to the right. This means that the graph of y = |x - 8| is obtained by shifting the graph of y = |x| to the right by 8 units.

(b) The translation of the function y = |x - 8| has a specific interpretation in the context of the situation with Henry's car's broken speedometer. The value x represents the car's actual speed, and y represents the difference between the actual speed and the displayed speed.

By subtracting 8 from x in the function, we are effectively shifting the reference point from zero (which represents the displayed speed) to 8 (which represents the actual speed). Taking the absolute value ensures that the difference is always positive.

The graph of y = |x - 8| will have a "V" shape, centered at x = 8. The vertex of the "V" represents the point of equality, where the displayed speed matches the actual speed. As x moves away from 8 in either direction, y increases, indicating a greater discrepancy between the displayed and actual speed.

Overall, the function and its translation provide a way to visualize and quantify the difference between the displayed speed and the actual speed, helping to identify when the speedometer is malfunctioning.

LEARN MORE ABOUT speed here: brainly.com/question/32673092

#SPJ11

Question 5 (20 points ) (a) in a sample of 12 men the quantity of hemoglobin in the blood stream had a mean of 15 / and a standard deviation of 3 g/ dlfind the 99% confidence interval for the population mean blood hemoglobin . (round your final answers to the nearest hundredth ) the 99% confidence interval is. dot x pm t( s sqrt n )15 pm1

Answers

The 99% confidence interval for the population mean blood hemoglobin is 12.31 < μ < 17. 69.

Given that,

Hemoglobin concentration in a sample of 12 men had a mean of 15 g/dl and a standard deviation of 3 g/dl.

We have to find the 99% confidence interval for the population mean blood hemoglobin.

We know that,

Let n = 12

Mean X = 15 g/dl

Standard deviation s = 3 g/dl

The critical value α = 0.01

Degree of freedom (df) = n - 1 = 12 - 1 = 11

[tex]t_c[/tex] = [tex]z_{1-\frac{\alpha }{2}, n-1}[/tex] = 3.106

Then the formula of confidential interval is

= (X - [tex]t_c\times \frac{s}{\sqrt{n} }[/tex] ,  X + [tex]t_c\times \frac{s}{\sqrt{n} }[/tex] )

= (15- 3.106 × [tex]\frac{3}{\sqrt{12} }[/tex], 15 + 3.106 × [tex]\frac{3}{\sqrt{12} }[/tex] )

= (12.31, 17.69)

Therefore, The 99% confidence interval for the population mean blood hemoglobin is 12.31 < μ < 17. 69.

To know more about interval visit:

https://brainly.com/question/32670572

#SPJ4

Science
10 Consider the following statement.
A student measured the pulse rates
(beats per minute) of five classmates
before and after running. Before they
ran, the average rate was 70 beats
per minute, and after they ran,
the average was 150 beats per minute.
The underlined portion of this statement
is best described as
Ja prediction.
Ka hypothesis.
L an assumption.
M an observation.

Answers

It is an observation rather than a prediction, hypothesis, or assumption.

The underlined portion of the statement, "Before they ran, the average rate was 70 beats per minute, and after they ran, the average was 150 beats per minute," is best described as an observation.

An observation is a factual statement made based on the direct gathering of data or information. In this case, the student measured the pulse rates of five classmates before and after running, and the statement reports the average rates observed before and after the activity.

It does not propose a cause-and-effect relationship or make any assumptions or predictions. Instead, it presents the actual measured values and provides information about the observed change in pulse rates. Therefore, it is an observation rather than a prediction, hypothesis, or assumption.

for such more question on prediction

https://brainly.com/question/25796102

#SPJ8

Question

A student measured the pulse rates

(beats per minute) of five classmates

before and after running. Before they

ran, the average rate was 70 beats

per minute, and after they ran,

the average was 150 beats per minute.

The underlined portion of this statement

is best described as

Ja prediction.

Ka hypothesis.

L an assumption.

M an observation.

show all the work please!
105. Find the given distances between points \( P, Q, R \), and \( S \) on a number line, with coordinates \( -4,-1,8 \), and 12 , respectively. \[ d(P, Q) \]

Answers

The distance between points P and Q on the number line can be found by taking the absolute value of the difference of their coordinates. In this case, the distance between P and Q is 3.

To find the distance between points P and Q on the number line, we can take the absolute value of the difference of their coordinates. The coordinates of point P is -4, and the coordinates of point Q is -1.

Using the formula for distance between two points on the number line, we have:

d(P, Q) = |(-1) - (-4)|

Simplifying the expression inside the absolute value:

d(P, Q) = |(-1) + 4|

Calculating the sum inside the absolute value:

d(P, Q) = |3|

Taking the absolute value of 3:

d(P, Q) = 3

Therefore, the distance between points P and Q on the number line is 3.

Learn more about distance here:

https://brainly.com/question/15256256

#SPJ11

Other Questions
_____ are mutated genes that are always active. ind the limit, if it exists. limx0+ (e^2x+x)^1/x a.1 b.2 c.[infinity] d.3 e.e^2 Find the slope of the line if it exists. What is approximate deafult torque split dccd awd under normal driving conditions? Which vessel is known as the window maker because blockage of the vessel causes many fatal heart attacks? a. Great cardiac vein b. Aorta c. Coronary sinus d. Anterior interventricular artery For the section shown, find the second moment of area about axis XX. 25.0 mm 3.0 mm T 5.0 mm X 18.0mm "X" . There are two basic types of oil circuit breakers, the full tank or dead tank type and the low oil or ____ type.A) oil poorB) low tankC) half tank2. One method used by circuit breakers to sense circuit current is to connect a(n) ____ in series with the load.A) coilB) resistorC)battery how many different kinds of genotypes are possible among offspring produced by the following two parents? assume complete dominance and independent assortment. ffgghh x ffgghh Identify the IAQ class that can be achieved based on IAQ Certification Scheme by Environmental Protection Department. Comment on whether all the contaminants in the dancing room can be guaranteed to meet the requirements under the IAQ Certification Scheme. on the basis of the following counts per minute obtained from a thyroid uptake test: thyroid: 2876 patient background: 563 standard: 10,111 room background: 124 the percentage radioiodine uptake is: Find and classify the critical points of z=(x 22x)(y 27y) Local maximums: Local minimums: Saddle points: For each classification, enter a list of ordered pairs (x,y) where the max/min/saddle occurs. If there are no points for a classification, enter DNE. When using the book value of equity for equity and total liability for debt, the debt to equity ratio for red lumber in 2016 is closest to:_________ 63. In a one-way chi-square test, the sum of the expected frequencies must be equal to: A) the sum of the observed frequencies B) the total N C) Both of the above D) Neither of the above64. When testing chi square for statistical significance, the degrees of freedom are equal to: A) the number of scores. B) the number of categories. C) the number of scores minus one. D) the number of categories minus one.65. A chi square of -4.27 indicates: A) an inverse relationship between category and scores on the dependent variable. B) the results are cannot statistically significant. C) one or more of the assumptions underlying the use of chi squares has been violated. D) an error in computation.66. To test the significance of the relationship between two variables when data are in the form of frequencies, which of the following should be used? A) One-way analysis of variance B) Two-way analysis of variance C) One-variable chi square D) Two-variable chi square A airplane that is flying level needs to accelerate from a speed of to a speed of while it flies a distance of 1.20 km. What must be the acceleration of the plane? Which component of hardiness encompasses the ability to make appropriate decisions in life activities? QUESTION 10 Which of the followings is true? Narrowband FM is considered to be identical to AM except O A. a finite and likely small phase deviation. O B. a finite and likely large phase deviation. O C. their bandwidth. O D. an infinite phase deviation. If an object of constant mass travels with a constant velocity, which statement(s) is true? a momentum is constant b none are true c acceleration is zero ruth invested $137,000 in an investment that promises to pay 4% compounded annually. how much will ruth's investment be worth in 35 years? how many grams of fiber per day do the dietary reference intakes suggest for an average adult (man or women) under age 50? Find the general solution to the following differential equations:16y''-8y'+y=0y"+y'-2y=0y"+y'-2y = x^2