The board of directors of Midwest Foods has declared a dividend of $3,500,000. The company has 300,000 shares of preferred stock that pay $2.85 per share and 2,500,000 shares of common stock. After finding the amount of dividends due the preferred shareholders, calculate the dividend per share of common stock.
Answer:
$855,000Dividend per share of common stock = $1.06Step-by-step explanation:
1. Preferred Share dividends.
There are 300,000 preference shares and each of them got $2.85. Total dividends are;
= 300,000 * 2.85
= $855,000
2. Total dividends = $3,500,000
Dividends left for Common Shareholders (preference gets paid first)
= 3,500,000 - 855,000
= $2,645,000
Common shares number 2,500,000
Dividend per share of common stock = [tex]\frac{2,645,000}{2,500,000}[/tex]
= $1.06
A stained-glass window is shaped like a right triangle. The hypotenuse is 15feet. The length of one leg is three more than the other. Find the lengths of the legs.
let us build equation for unknown legs
If we keep the length pf one leg as x
the other leg would be x +3
so we can build a relationship using pythagoras theorem
x^2 + (x+3)^2 = 15^2
x^2 + x^2 + 6x + 9 = 225
2x^2 + 6x + 9 = 225
2x^2 + 6x+ 9-225 = 0
2x^2 + 6x - 216 = 0
x^2 + 3x - 108 = 0 dividing whole equation by 2
x^2 + 12x - 9x - 108 = 0
x ( x + 12 ) - 9 (x + 12) = 0
(x -9) ( x +12) = 0
solutions for x are
x = 9 or x = -12
as lengths cannot be negative
one side length is 9cm
and other which is( x + 3)
9 + 3
12cm
The lengths of the legs of the right angled triangle is 9 feet and 12 feet.
Pythagoras theorem is used to show the relationship between the sides of a right angled triangle. It is given by:
Hypotenuse² = First Leg² + Second leg²
Let x represent the length of one leg. The other leg is three more = x + 3, hypotenuse = 15 ft. Hence:
15² = x² + (x + 3)²
x² + 6x + 9 + x² = 225
2x² + 6x - 216 = 0
x² + 3x - 108 = 0
x = - 12 or x = 9
Since the length cant the negative hence x= 9, x + 3 = 12
The lengths of the legs of the right angled triangle is 9 feet and 12 feet.
Find out more at: https://brainly.com/question/10040532
What is the equation for the plane illustrated below?
Answer:
Hence, none of the options presented are valid. The plane is represented by [tex]3 \cdot x + 3\cdot y + 2\cdot z = 6[/tex].
Step-by-step explanation:
The general equation in rectangular form for a 3-dimension plane is represented by:
[tex]a\cdot x + b\cdot y + c\cdot z = d[/tex]
Where:
[tex]x[/tex], [tex]y[/tex], [tex]z[/tex] - Orthogonal inputs.
[tex]a[/tex], [tex]b[/tex], [tex]c[/tex], [tex]d[/tex] - Plane constants.
The plane presented in the figure contains the following three points: (2, 0, 0), (0, 2, 0), (0, 0, 3)
For the determination of the resultant equation, three equations of line in three distinct planes orthogonal to each other. That is, expressions for the xy, yz and xz-planes with the resource of the general equation of the line:
xy-plane (2, 0, 0) and (0, 2, 0)
[tex]y = m\cdot x + b[/tex]
[tex]m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
Where:
[tex]m[/tex] - Slope, dimensionless.
[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final values for the independent variable, dimensionless.
[tex]y_{1}[/tex], [tex]y_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.
[tex]b[/tex] - x-Intercept, dimensionless.
If [tex]x_{1} = 2[/tex], [tex]y_{1} = 0[/tex], [tex]x_{2} = 0[/tex] and [tex]y_{2} = 2[/tex], then:
Slope
[tex]m = \frac{2-0}{0-2}[/tex]
[tex]m = -1[/tex]
x-Intercept
[tex]b = y_{1} - m\cdot x_{1}[/tex]
[tex]b = 0 -(-1)\cdot (2)[/tex]
[tex]b = 2[/tex]
The equation of the line in the xy-plane is [tex]y = -x+2[/tex] or [tex]x + y = 2[/tex], which is equivalent to [tex]3\cdot x + 3\cdot y = 6[/tex].
yz-plane (0, 2, 0) and (0, 0, 3)
[tex]z = m\cdot y + b[/tex]
[tex]m = \frac{z_{2}-z_{1}}{y_{2}-y_{1}}[/tex]
Where:
[tex]m[/tex] - Slope, dimensionless.
[tex]y_{1}[/tex], [tex]y_{2}[/tex] - Initial and final values for the independent variable, dimensionless.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.
[tex]b[/tex] - y-Intercept, dimensionless.
If [tex]y_{1} = 2[/tex], [tex]z_{1} = 0[/tex], [tex]y_{2} = 0[/tex] and [tex]z_{2} = 3[/tex], then:
Slope
[tex]m = \frac{3-0}{0-2}[/tex]
[tex]m = -\frac{3}{2}[/tex]
y-Intercept
[tex]b = z_{1} - m\cdot y_{1}[/tex]
[tex]b = 0 -\left(-\frac{3}{2} \right)\cdot (2)[/tex]
[tex]b = 3[/tex]
The equation of the line in the yz-plane is [tex]z = -\frac{3}{2}\cdot y+3[/tex] or [tex]3\cdot y + 2\cdot z = 6[/tex].
xz-plane (2, 0, 0) and (0, 0, 3)
[tex]z = m\cdot x + b[/tex]
[tex]m = \frac{z_{2}-z_{1}}{x_{2}-x_{1}}[/tex]
Where:
[tex]m[/tex] - Slope, dimensionless.
[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final values for the independent variable, dimensionless.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.
[tex]b[/tex] - z-Intercept, dimensionless.
If [tex]x_{1} = 2[/tex], [tex]z_{1} = 0[/tex], [tex]x_{2} = 0[/tex] and [tex]z_{2} = 3[/tex], then:
Slope
[tex]m = \frac{3-0}{0-2}[/tex]
[tex]m = -\frac{3}{2}[/tex]
x-Intercept
[tex]b = z_{1} - m\cdot x_{1}[/tex]
[tex]b = 0 -\left(-\frac{3}{2} \right)\cdot (2)[/tex]
[tex]b = 3[/tex]
The equation of the line in the xz-plane is [tex]z = -\frac{3}{2}\cdot x+3[/tex] or [tex]3\cdot x + 2\cdot z = 6[/tex]
After comparing each equation of the line to the definition of the equation of the plane, the following coefficients are obtained:
[tex]a = 3[/tex], [tex]b = 3[/tex], [tex]c = 2[/tex], [tex]d = 6[/tex]
Hence, none of the options presented are valid. The plane is represented by [tex]3 \cdot x + 3\cdot y + 2\cdot z = 6[/tex].
Answer:
It is A 3x+3y+2z=6
Step-by-step explanation:
?? help out plssss ill do the thing wtv its called
Steps to solve:
1 = -4 + 3/8x
~Add 4 to both sides
1 + 4 = -4 + 4 + 3/8x
~Simplify
5 = 3/8x
~Multiply 8/3 to both sides
5 * 8/3 = 3/8x * 8/3
~Simplify
13 1/3 = x
As we look through the answer choices, we can see that none resembles any of the steps I did above but by looking at the answers for each one, the only logical answer is B since it has a final answer of x = 40/3 or 13 1/3.
Best of Luck!
Values for relation g are given in the table. Which ordered pair would be found in the inverse of g? X Y 2 2 3 5 4 9 5 13 A: (4,9) B:(-3.-5) C:(13,5) D:(-2,-2)
Answer:
D (13,5)
Step-by-step explanation:
X 2 3 4 5
Y 2 5 9 13
So the ordered pairs are (2,2),(3,5), (4,9), (5,13)
and the ordered pairs for the inverse are
(2,2),(5,3), (9,4), (13,5)
from which D (13,5) is found among the options.
Answer:
b
Step-by-step explanation:
WILL GIVE YOU BRAINLIEST
Answer:
AB = 20 tan55°
Step-by-step explanation:
Using the tangent ratio in the right triangle
tan55° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{AB}{BC}[/tex] = [tex]\frac{AB}{20}[/tex] ( multiply both sides by 20 )
20 tan55° = AB
20 points please help!!!
Answer:
a = 16
b = [tex]\frac{3}{4}[/tex]
Step-by-step explanation:
Length of the design 16 inches is represented by the point (0, 16) and length of 12 inches by (1, 12).
That means these points lie on the graph of the function 'f' represented by,
f(x) = a(b)ˣ
For the point (0, 16),
f(0) = a(b)⁰
16 = a(1)
a = 16
For another point (1, 12),
f(1) = a(b)¹
12 = ab
12 = 16(b) [Since a = 16]
b = [tex]\frac{12}{16}[/tex]
b = [tex]\frac{3}{4}[/tex]
Therefore, values of a and b are 16 and [tex]\frac{3}{4}[/tex] respectively.
a truck and a car drive uniformly among the expressway from city a to city b. The truck leaves at 09:15 am and arrives at 1:15 pm. The car leaves at 10:00 am and arrives at 12:45 pm. At what times does the car overtake the truck? please help
Answer:
the car overtake the truck at time 11:40 am.
Step-by-step explanation:
We have both vehicules going at constant speed from city a to city b. The distance is unknown, but can be written as d.
We will express the time in hours (and decimals of hours).
The truck speed can be calculated estimating the time between arrival and start:
- The arrival time is 1.15 pm. This is t2=13.25.
- The starting time is 9:15 am. This is t1=9.25.
The truck took t2-t1=13.25-9.25=4 to go from city a to b.
The average speed is then:
[tex]v_t=\dfrac{\Delta x}{\Delta t}=\dfrac{d}{4}[/tex]
We can write the equation for the position x(t) for the truck as:
[tex]x(t)=x_0+v_t\cdot t=x_0+\dfrac{d}{4}t\\\\\\x(13.25)=x_0+\dfrac{d}{4}(13.25)=d\\\\x_0=d-3.3125d=-2.3125d\\\\\\x(t)=-2.3125d+0.25d\cdot t[/tex]
For the car we have:
- The arrival time is 12:45 am. This is t2=12.75.
- The starting time is 10 am. This is t1=10.
The car took t2-t1=12.75-10=2.75.
The average speed is then:
[tex]v_c=\dfrac{\Delta x}{\Delta t}=\dfrac{d}{2.75}[/tex]
We can write the equation for the position x(t) for the car as:
[tex]x(t)=x_0+v_c\cdot t=x_0+\dfrac{d}{2.75}t\\\\\\x(12.75)=x_0+\dfrac{d}{2.75}(12.75)=d\\\\x_0=d-4.6363d=-3.6363d\\\\\\x(t)=-3.6363d+0.3636d\cdot t[/tex]
The time at which the car overtake the car is the time when both vehicles have the same position:
[tex]x(t)/d=-2.3125+0.25\cdot t = -3.6363+0.3636\cdot t\\\\-2.3125+3.6363=(0.3636-0.25)t\\\\1.3238=0.1136t\\\\t=1.3238/0.1136\approx11.65[/tex]
The car overtakes the truck at t=11.65 hours or 11:39 am.
Which steps can be used in order to determine the solution to Negative 1.3 + 4.6 x = 0.3 + 4 x?
Answer:
x=8/3 OR 2.7
Step-by-step explanation:
-1.3+4.6x=0.3+4x
4.6x-4x=0.3+1.3
0.6x=1.6
x=1.6/0.6=8/3
x=8/3 OR 2.7
Hope this helps!
Answer:
[tex]\boxed{x = 2\frac{2}{3} }[/tex]
Step-by-step explanation:
[tex]-1.3+4.6x = 0.3 +4x[/tex]
Collecting like terms
[tex]4.6 x -4x = 0.3+1.3[/tex]
[tex]0.6x = 1.6[/tex]
Dividing both sides by 0.6
x = 1.6 / 0.6
x = 2 2/3
The radius of a nitrogen atom is 5.6 × 10-11 meters, and the radius of a beryllium atom is 1.12 × 10-10 meters. Which atom has a larger radius, and by how many times is it larger than the other?
Answer:
The beryllium atom; 1.99 times larger.
Step-by-step explanation:
The beryllium atom is 0.000000000112 meters, while the nitrogen atom is 0.000000000056 meters. So, the beryllium atom is larger than the other.
(1.12 * 10^-10) / (5.6 * 10^-11)
= (1.112 / 5.6) * (10^-10 + 11)
= 0.1985714286 * 10
= 1.985714286 * 10^0
So, the beryllium atom is about 1.99 times larger than the other.
Hope this helps!
g Refer to these data for the next set of questions: The JMP output is below. Use it to answer the following questions. Write the estimated regression equation. Test for a significant linear regression at the α = 0.05 level of significance At x=, find the 95% confidence interval for μY|x, and verbally explain the answer. At x = 12, compute a 95% CI for μY|x, and verbally explain the answer. How do you explain the different widths of the intervals in parts (c) and (d)?
A survey of 700 non-fatal car accidents showed that 183 involved faulty equipment. Find a point estimate for the population proportion of non-fatal car accidents that involved faulty equipment.
Answer:
Point of faulty equipment car = 0.2614 (Approx)
Step-by-step explanation:
Given:
Total number of car = 700
Faulty equipment car = 183
Find:
Point of faulty equipment car
Computation:
Point of faulty equipment car = Faulty equipment car / Total number of car
Point of faulty equipment car = 183 / 700
Point of faulty equipment car = 0.261428571
Point of faulty equipment car = 0.2614 (Approx)
Solve for x 90°, 45°, and x°
Answer:
x= 45
Step-by-step explanation:
In this diagram, there is an angle that is split into 2 angles.
The angle is a 90 degree angle. We know this because of the little square in the corner that denotes a right angle.
Therefore, the 2 angles inside of the right angle must add to 90 degrees. The 2 angles that make up the right angle are x and 45.
x+45=90
We want to find x. We need to get x by itself. 45 is being added on to x. The inverse of addition is subtraction. Subtract 45 from both sides.
x+45-45=90-45
x= 90-45
x=45
The measure of angle x is 45 degrees.
Graph y less than or equal to 3x
Answer:
See Image Below.
Step-by-step explanation:
The Shaded region is the area of numbers that this equation satisfies.
Answer:
Please see attached image
Step-by-step explanation:
In order to graph the inequality, start from plotting the boundary line defined by the equality;
y = 3 x
You just need two points to accomplish such. so let's use two simple values for x and find what the y-values are:
for x = 0 then y = 3 (0) = 0
for x = 1 then y = 3 (1) = 3
Then use the points (0, 0) and (1, 3) to plot the boundary line.
After this, grab any point on the plane either clearly above the boundary line, or clearly below it and check if the inequality satisfies. For example, you can pick the point (3, 0) which is on the x line, 3 units to the right of the origin, and clearly below the boundary line we just plot.
When you use it in the inequality, you get:
(0) [tex]\leq[/tex] 3 (3)
0 [tex]\leq[/tex] 9
which is a true statement, therefore, the points below the boundary lie are also solutions of the inequality.
Then the solution consists of all the points in the boundary line we just plotted (and indicated by drawing a solid line), plus all the points below the line, as depicted in the attached image.
Can someone please help!
Working backwards, on Wednesday morning we have 60 / (1/2) = 120 pounds of ice.
2/3 melts on Tuesday so 120 pounds must be 1/3 of the ice.
120 / (1/3) = 360
Answer: D. 360
An investigation of a number of automobile accidents revealed the following information:
18 accidents involved alcohol and excessive speed.
26 involved alcohol.
12 accidents involved excessive speed but not alcohol.
21 accidents involved neither alcohol nor excessive speed.
How many accidents were investigated?
Answer:
59 accidents were investigated.
Step-by-step explanation:
The question above is a probability question that involves 2 elements: causes of accidents.
Let
A = Alcohol
E = Excessive speed
In the question, we are given the following information:
18 accidents involved Alcohol and Excessive speed =P(A ∩ E)
26 involved Alcohol = P(A)
12 accidents involved excessive speed but not alcohol = P( E ) Only
21 accidents involved neither alcohol nor excessive speed = neither A U B
We were given P(A) in the question. P(A Only) = P(A) - P(A ∩ E)
P(A Only) = 26 - 18
= 8
So, only 8 accident involved Alcohol but not excessive speed.
The Total number of Accidents investigated = P(A Only) + P( E only) + P(A ∩ E) + P( neither A U B)
= 8 + 12 + 18 + 21
= 59
Therefore, 59 accidents were investigated.
Betty and Karen have been hired to paint the houses in a new development. Working together, the women can paint a house in two-thirds the time that it takes Karen working alone. Betty takes 14 h to paint a house alone. Betty takes 6 h to paint a house alone.
Required:
How long does it take Karen to paint a house working alone?
Answer: 3 hours
Step-by-step explanation:
Here is the correct question:
Betty and karen have been hired to paint the houses in a new development. Working together the women can paint a house in two thirds the time that it takes karen working alone. Betty takes 6 hours to paint a house alone. How long does it take karen to paint a house working alone?
Since Betty takes 6 hours to paint a house alone, that means she can paint 1/6 of the house in 1 hour.
Karen can also paint 1/x in 1 hour
Both of them will paint the house in 3/2 hours.
We then add them together which gives:
1/6 + 1/x = 3/2x
The lowest common multiple is 6x
1x/6x + 6/6x = 9/6x
We then leave out the denominators
1x + 6 = 9
x = 9 - 6
x = 3
Karen working alone will paint a house in 3 hours.
PLZ HELP ITS 20 POINTS Using the linear combination method, what is the solution to the system of linear equations 5 x + 3 y = negative 10 and Negative 20 x minus 7 y = 15? (–5, 1) (–1, 5) (1, –5) (5, –1)
Answer:
The answer is (1,-5). (i.e x=1 and y=-5).
Hope it helps..
Answer:
(1,-5)
Step-by-step explanation:
An exterior angle of a triangle is 120° and one of the interior opposite angle is 50°. Find the other two angles of the triangle.
Answer:
interior angle (2)= 70
interior angle (3)= 60
Step-by-step explanation:
Given:
exterior angle=120°
interior angle (1)=50°
Required:
interior angle (2)=?
interior angle (3)=?
Formula:
exterior angle=interior angle (1) + interior angle (2)
Solution:
exterior angle=interior angle (1)+ interior angle (2)
120°=50°+interior angle (2)
120°+50°=interior angle (2)
70°=interior angle (2)
interior angle (3)= 180°-interior angle (1)- interior angle (2)
interior angle (3)=180°-50°+70°
interior angle (3)=180°-120°
interior angle (3)= 60°
Theorem:
Theorem 1.16
The measure of an exterior angle of a triangle is greater than either of the measures of the remote interior angles.
Hope this helps ;) ❤❤❤
Find the exact values of sin 2θ and cos 2θ for cos θ = 6/13
Answer:
Step-by-step explanation:
cos^-1(6/13)=62.5136°
sin(2*62.5136°)=0.8189
cos(2*62.5136°)=-0.5740
Line AB and Line CD are parallel lines. Which translation of the plane can we use to prove angles x and y are congruent, and why?
Answer:
Option C.
Step-by-step explanation:
In the given figure we have two parallel lines AB and CD.
A transversal line FB intersect the parallel lines at point B and C.
We know that the if a transversal line intersect two parallel lines, then corresponding angles are congruent.
[tex]\angle ABC=\anle ECF[/tex]
[tex]x=y[/tex]
To prove this by translation, we need a translation along the directed line segment CB maps ine CD onto line AB and angle y onto angle x.
Therefore, the correct option is C.
Which phrase best describes the graph of a proportional relationship?
A) a straight line passing
B) a straight line
C) a curve
D) not a straight line
Answer:
A. a straight line passing
Step-by-step explanation:
Answer:
a straight line passing
Step-by-step explanation:
Test the claim that the proportion of men who own cats is smaller than 70% at the 0.05 significance level. The null and alternative hypothesis would be:
Answer:
the null hypothesis would be: p = 70%/0.7
The alternative hypothesis would be: p < 0.7
Step-by-step explanation:
The null hypothesis is most of the time always the default statement while the alternative hypothesis is tested against the null and is its opposite.
In this case study the null hypothesis would be: the proportion of men who own cats is 70%: p = 0.7
The alternative hypothesis would be: the proportion of men who own cats is smaller than 70% : p < 0.7
Math question, need help
In general, if we have [tex]x^a=x^b,[/tex] then [tex]a=b.[/tex] Thus, the first answer choice is correct.
Answer:
[tex]\boxed{\red{2x - 1 = 5x - 14}}[/tex]
First answer is correct.
Step-by-step explanation:
we know that,
[tex] {x}^{a} = {x}^{b} [/tex]
[tex]a = b[/tex]
So, according to that,
[tex] {5}^{(2x - 1)} = {5}^{(5x - 14)} [/tex]
Therefore,
[tex]2x - 1 = 5x - 14[/tex]
x−15≤−6 solve for x pls help
Answer:
x≤9
Step-by-step explanation:
x−15≤−6
Add 15 to each side
x−15+15≤−6+15
x≤9
Answer:
[tex]\boxed{x\leq 9}[/tex]
Step-by-step explanation:
[tex]x-15 \leq -6[/tex]
[tex]\sf Add \ 15 \ to \ both \ parts.[/tex]
[tex]x-15 +15 \leq -6+15[/tex]
[tex]x\leq 9[/tex]
Find a power series for the function, centered at c. f(x) = 1 9 − x , c = 4 f(x) = [infinity] n = 0 Incorrect: Your answer is incorrect. Determine the interval of convergence. (Enter your answer using interval notation.)
Looks like the given function is
[tex]f(x)=\dfrac1{9-x}[/tex]
Recall that for |x| < 1, we have
[tex]\displaystyle\frac1{1-x}=\sum_{n=0}^\infty x^n[/tex]
We want the series to be centered around [tex]x=4[/tex], so first we rearrange f(x) :
[tex]\dfrac1{9-x}=\dfrac1{5-(x-4)}=\dfrac15\dfrac1{1-\frac{x-4}5}[/tex]
Then
[tex]\dfrac1{9-x}=\displaystyle\frac15\sum_{n=0}^\infty\left(\frac{x-4}5\right)^n[/tex]
which converges for |(x - 4)/5| < 1, or -1 < x < 9.
helpppppppppppppppppppppppppppppp
Answer:
0
Step-by-step explanation:
Hope this helps
THe graph is going further than the outline ben 10 benden
Answer:
EB = 9
Step-by-step explanation:
CD = AB
The line with the value of five that also forms a right angle with EB is a perpendicular bisector to AB.
So the value of EB is half of AB (AB is equal to CD).
18/2 = 9
Algebra 2, I need help!!! Solve x^2 + 6x + 7 = 0. If you are going to comment in here please know the answer, this is so serious for me. Thank you.
Answer:
Third option
Step-by-step explanation:
We can't factor this so we need to use the quadratic formula which states that when ax² + bx + c = 0, x = (-b ± √(b² - 4ac)) / 2a. However, we notice that b (which is 6) is even, so we can use the special quadratic formula which states that when ax² + bx + c = 0 and b is even, x = (-b' ± √(b'² - ac)) / a where b' = b / 2. In this case, a = 1, b' = 3 and c = 7 so:
x = (-3 ± √(3² - 1 * 7)) / 1 = -3 ± √2
how many pairs of matching surfaces does a cereal box have
Answer:
3 pairs
Step-by-step explanation:
Top and Bottom
Front and Back
Side and Side.
Cereal Boxes have 6 sides