x= 30 degrees
Step-by-step explanation:
there's 180 degrees in a triangle. You can see 60 degrees right there. Theres a 90 degree angle right next to it. 180-150=30
Write the phrase "the product of 19 and a number" as a mathematical expression.
A 19 + x
B) 19/x
C) 19 x
(D) 19 -x
Answer:
19x
Step-by-step explanation:
product means multiply
19*x
19x
Answer:
The answer is C.
Step-by-step explanation:
if a number and a variable are next to each other, it is assumed they will be multiplied.
Hugo scored 18 points in a recent basketball game, which was 5 points fewer than
Toby scored. Write an equation for this situation, where tis the number of points
Toby scored, and find how many points Toby scored.
A) 18 = t + 5, Toby scored 13 points
B) 18 = t-5, Toby scored 23 points
C) 18 = t - 5, Toby scored 13 points
D) 18 = t + 5, Toby scored 23 points
Which defines a line segment?
two rays with a common endpoint
O a piece of a line with two endpoints
O a piece of a line with one endpoint
all points equidistant from a given point
Answer:
O a piece of a line with two endpoints
Step-by-step explanation:
O a piece of a line with two endpoints
A piece of a line with two endpoints.
What is a line segment?In geometry, a line segment is a part of a line this is bounded by distinct end points and includes every point on the line this is between its endpoints.
What are the examples of line segments in real life?A ruler, a scale, a stick, a boundary line.Learn more about line segments here https://brainly.com/question/2437195
#SPJ2
Carla drove her truck 414 miles on 18 gallons of gasoline. How many miles did she drive per gallon?
Answer:
23 miles per gallon
Step-by-step explanation:
414 miles = 18 gallons
=> 18/18 gallons = 414/18 miles
=> 1 gallon = 23 miles
So, she drove 23 miles per gallon.
(12x^(2)+x-35)-:(4x+17)
Answer:
(3x-5)(4x+7) / 4x + 17
Step-by-step explanation:
Rewrite the division as a fraction
12 x ^2 + x-35 / 4x+17
Factor by grouping
(3x-5)(4x+7) / 4x + 17
Hope this was the answer you were looking for
the difference of 8 and 2, added to x"
Answer:
see below
Step-by-step explanation:
Difference is subtract
(8-2)
Then add this to x
(8-2) +x
6+x
if the LCM and the HCF of two numbers are 9 and 3, respectively, what are the numbers?
Hey There!
Answer:
HCF = 9 (With the two numbers) - 18,9LCM = 3 (with the two numbers) - 6,9Step-by-step explanation:
HCF
If HCF is ''9'' that means that ''9'' is the divisible of two numbers.
So 18 and 19 can be divided by 9 and that's the highest divisible for both factors.
And always remeber the answer is a ''Prime factor.''
LCM
If LCM is ''3'' that means ''3'' is the lowest common multiple out of two numbers.
Hope this helps!
Have a nice Day!:)
In a triangle, the sum of two angles equals the third, Find the measure of the third angle.
A.45 degree
B.60 degree
C.90 degree
D.30 degree
Answer:
C.90 degree
Step-by-step explanation:
45 + 45 + 90 = 180
90 = 45 + 45
simplify the following expression by combining like terms 2x+7x^2-5x+8x^2
Answer:15x^2-3x
Step-by-step explanation:
Kế hoạch đi dã ngoại của một gia đình sẽ bị hủy nếu trời có mây hoặc mưa. Biết xác suất để trời có mây là có mưa là có cả mây và mưa là . Tính xác suất để kế hoạch được thực hiện.
Answer:
itditsktxjtcv6tgcxufh-&#€#€($*:'₹€$*^'ditx_*^,tsitsitxmvditxitsitsjfxkhcoucuofoydoy
Power +, Inc. produces AA batteries used in remote-controlled toy cars. The mean life of these batteries follows the normal probability distribution with a mean of 35.0 hours and a standard deviation of 5.5 hours. As a part of its quality assurance program, Power +, Inc. tests samples of 25 batteries.
A) What can you say about the shape of the distribution of the sample mean?
B) What is the standard error of the distribution of the sample mean?
C) What proportion of the samples will have a mean useful life of more than 36 hours?
D) What proportion of the sample will have a mean useful life greater than 34.5 hours?
E) What proportion of the sample will have a mean useful life between 34.5 and 36.0 hours?
Answer:
(A) The shape of the distribution of the sample mean is bell-shaped.
(B) The standard error of the distribution of the sample mean is 1.1.
(C) The proportion of the samples that have a mean useful life of more than 36 hours is 0.1814.
(D) The proportion of the sample that has a mean useful life greater than 34.5 hours is 0.6736.
(E) The proportion of the sample that has a mean useful life between 34.5 and 36.0 hours is 0.4922.
Step-by-step explanation:
We are given that Power +, Inc. produces AA batteries used in remote-controlled toy cars. The mean life of these batteries follows the normal probability distribution with a mean of 35.0 hours and a standard deviation of 5.5 hours.
As a part of its quality assurance program, Power +, Inc. tests samples of 25 batteries.
Let [tex]\bar X[/tex] = sample mean life of these batteries
(A) The shape of the distribution of the sample mean will be bell-shaped because the sample mean also follows the normal distribution as it is taken from the population data only.
(B) The standard error of the distribution of the sample mean is given by;
Standard error = [tex]\frac{\sigma}{\sqrt{n} }[/tex]
Here, [tex]\sigma[/tex] = standard deviation = 5.5 hours
n = sample of batteries = 25
So, the standard error = [tex]\frac{5.5}{\sqrt{25} }[/tex] = 1.1.
(C) The z-score probability distribution for the sample mean is given by;
Z = [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean life of battery = 35.0 hours
[tex]\sigma[/tex] = standard deviation = 5.5 hours
n = sample of batteries = 25
Now, the proportion of the samples that will have a mean useful life of more than 36 hours is given by = P([tex]\bar X[/tex] > 36 hours)
P([tex]\bar X[/tex] > 36 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{36-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z > 0.91) = 1 - P(Z [tex]\leq[/tex] 0.91)
= 1 - 0.8186 = 0.1814
(D) The proportion of the samples that will have a mean useful life of more than 34.5 hours is given by = P([tex]\bar X[/tex] > 34.5 hours)
P([tex]\bar X[/tex] > 34.5 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{34.5-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z > -0.45) = P(Z [tex]\leq[/tex] 0.45)
= 0.6736
(E) The proportion of the samples that will have a mean useful life between 34.5 and 36.0 hours is given by = P(34.5 hrs < [tex]\bar X[/tex] > 36 hrs)
P(34.5 hrs < [tex]\bar X[/tex] < 36 hrs) = P([tex]\bar X[/tex] < 36 hrs) - P([tex]\bar X[/tex] [tex]\leq[/tex] 34.5 hrs)
P([tex]\bar X[/tex] < 36 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{36-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z < 0.91) = 0.8186
P([tex]\bar X[/tex] [tex]\leq[/tex] 34.5 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{34.5-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z [tex]\leq[/tex] -0.45) = 1 - P(Z [tex]\leq[/tex] 0.45)
= 1 - 0.6736 = 0.3264
Therefore, P(34.5 hrs < [tex]\bar X[/tex] < 36 hrs) = 0.8186 - 0.3264 = 0.4922.
What are the following fractions from least to greatest 3/8 5/8 4/8 2/8 7/8
Answer:
2/8, 3/8, 4/8, 5/8, 7/8. If there are more numbers I apologize, I see 2 boxes that say "obj" instead.
A rectangular vegetable garden will have a width that is 2 feet less than the length, and an area of 48 square feet. If x represents the length, then the length can be found by solving the equation: x(x-2)=48 What is the length, x, of the garden?
Answer:
[tex]x {}^{2} - 2x = 48[/tex]
[tex]x { }^{2} - 2x - 48 = 0[/tex]
using quadratic formula,
[tex] - b \frac{ + }{ - } \sqrt{b {}^{2} - 4ac} \div 2a[/tex]
[tex]2 + \sqrt{196} \div 2[/tex]
[tex]2 + 14 \div 2[/tex]
[tex]x = 8[/tex]
or
[tex]x = - 6[/tex]
Sabrina is 4 and her brother Sam is 9 years older than she is. In how many years will same be twice as old as Sabrina
Answer:
=4-7
=5
:same will be 5 years older than Sabrina
Find the distance between the points (0, 10) and (–9, 1).
[tex]\\ \sf\longmapsto \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]\\ \sf\longmapsto \sqrt{(-9-0)^2+(1-10)^2}[/tex]
[tex]\\ \sf\longmapsto \sqrt{(-9)^2+(-9)^2}[/tex]
[tex]\\ \sf\longmapsto \sqrt{81+81}[/tex]
[tex]\\ \sf\longmapsto \sqrt{162}[/tex]
[tex]\\ \sf\longmapsto 12.42[/tex]
A cube has an edge of 2 feet. The edge is increasing at the rate of 5 feet per minute. Express the volume of the cube as a function of m, the number of minutes elapsed.
Answer:
[tex]V(m) = (2 + 5m)^3[/tex]
Step-by-step explanation:
Given
Solid Shape = Cube
Edge = 2 feet
Increment = 5 feet per minute
Required
Determine volume as a function of minute
From the question, we have that the edge of the cube increases in a minute by 5 feet
This implies that,the edge will increase by 5m feet in m minutes;
Hence,
[tex]New\ Edge = 2 + 5m[/tex]
Volume of a cube is calculated as thus;
[tex]Volume = Edge^3[/tex]
Substitute 2 + 5m for Edge
[tex]Volume = (2 + 5m)^3[/tex]
Represent Volume as a function of m
[tex]V(m) = (2 + 5m)^3[/tex]
2.1x10^8 is how many times the value of 4.2x 10^2
Answer:
500,000
Step-by-step explanation:
(2.1 * 10^8)/(4.2 * 10^2) =
= 2.1/4.2 * 10^8/10^2
= 0.5 * 10^6
= 500,000
The division of 2.1 × 10⁸ and 4.2 × 10² thus the exponent 2.1 × 10⁸ is 500000 times the exponent 4.2 × 10².
What is a number system?The number system is a way to represent or express numbers.
Since the decimal number system employs ten digits from 0 to 9, it has a base of 10.
Any of the multiple sets of symbols and the guidelines for utilizing them to represent numbers are included in the Number System.
As per the given exponents 2.1 × 10⁸
Let's assume 2.1 × 10⁸ is x times 4.2 × 10².
2.1 × 10⁸ = x (4.2 × 10²)
x = 2.1 × 10⁸/4.2 × 10²
x = 500000
Hence "The division of 2.1 × 10⁸ and 4.2 × 10² thus the exponent 2.1 × 10⁸ is 500000 times the exponent 4.2 × 10²".
For more about the number system,
https://brainly.com/question/22046046
#SPJ2
Circle O has a circumference of 36π cm. Circle O with radius r is shown. What is the length of the radius, r? 6 cm 18 cm 36 cm 72 cm
Answer:
18 cm.
Step-by-step explanation:
The circumference of a circle is found by calculating 2 * pi * r.
In this case, the circumference is 36 pi cm.
2 * pi * r = 36 * pi
2 * r = 36
r = 36 / 2
r = 18 cm.
Hope this helps!
Answer:
18 centimeters
Step-by-step explanation:
The circumference of a circle can be found using the following formula.
[tex]c=2\pi r[/tex]
We know the circumference is 36π cm, therefore we can substitute 36π in for c.
[tex]36\pi= 2 \pi r[/tex]
We want to find r, the radius. Therefore, we must get r by itself. First, divide both sides of the equation by pi.
[tex]36\pi / \pi = 2 \pi r / \pi\\\\36= 2 \pi r / \pi\\\\36=2r[/tex]
Next, divide both sides of the equation by 2.
[tex]36=2r \\\\36/2=2r/2\\\\36/2=r\\\\18=r\\\\r=18 cm[/tex]
The radius of Circle O is 18 centimeters.
help please I need help
pls
Answer:
23. -9+2y
24. 6x=5
Step-by-step explanation:
27-6y/-3
3(9-2y)/-3
-(9-2y)
-9+2y
2(6x+5)/2 . cancel 2
6x+5
Answer: (Depends what grade you're in)
Step-by-step explanation:
The screening process for detecting a rare disease is not perfect. Researchers have developed a blood test that is considered fairly reliable. It gives a positive reaction in 94.8% of the people who have that disease. However, it erroneously gives a positive reaction in 3.3% of the people who do not have the disease. Consider the null hypothesis "the individual does not have the disease" to answer the following questions.
a. What is the probability of Type I error?
b. What is the probability of Type II error?
Answer:
Probability of Type 1 error = 0.033
Probability of type II error = 0.952
Step-by-step explanation:
H0: Individual does not have disease
H1: individual has disease
Type 1 error occurs when we fail to accept a correct null hypothesis and accept an alternate Instead
Type ii error occurs when we accept a false null hypothesis instead of the alternate hypothesis
Probability of people with disease = 98.4%
Probability of people without disease = 3.3%
1.probability of type 1 error = 3.3/100
= 0.033
2. Probability of type ii error = (1-98.4%) = 1-0.948
= 0.052
-10 + 7x + 24 - 2x
Your answer
A linear regression analysis uses two distinct types of data. The first are variables that are at least nominal level.
a) true
b) false
Answer:
The answer is
A. True
Step-by-step explanation:
In linear regression, Linear models make a prediction using a linear function of the input features, with one being
For regression, the general prediction formula for a linear model looks as follows:
ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b
Here, x[0] to x[p] denotes the features (in this example, the number of features is p)
of a single data point, w and b are parameters of the model that are learned, and ŷ is
the prediction the model makes. For a dataset with a single feature, this is
ŷ = w[0] * x[0] + b
which you might remember from high school mathematics as the equation for a line.
Here, w[0] is the slope and b is the y-axis offset. For more features, w contains the
slopes along each feature axis. Alternatively, you can think of the predicted response
as being a weighted sum of the input features, with weights (which can be negative)
given by the entries of w.
The ball bearing have volumes of 1.6cm cube and 5.4cm cube . Find the ratio of their surface area.
Answer:
4/9
Step-by-step explanation:
The scale factor for the linear dimensions of the ball bearings will be the cube root of the volume scale factor:
k = ∛(1.6/5.4) = 2/3
Then the scale factor for the areas will be the square of this scale factor:
ratio of surface area = (2/3)² = 4/9
_____
The area is the product of two linear dimensions, so its scale factor is the product of the linear dimension scale factors. That is, the scale factor for area is the square of the linear dimension scale factor.
Similarly, volume is the product of three linear dimensions, so its scale factor is the cube of the linear dimension scale factor.
Which of the following is an arithmetic sequence? A.-2, 4, -6, 8, ... B.2, 4, 8, 16, ... C.-8, -6, -4, -2, ...
Answer:
C. -8, -6, -4, -2, ...
Step-by-step explanation:
An arithmetic sequence increases by the same amount every time through addition or subtraction. There is a common difference.
A: -2, 4, -6, 8, ... If there were a common difference, the numbers would not switch between being positive and back to negative. The numbers would either keep going positive or keep going negative.
B: 2, 4, 8, 16, ... The common difference between 16 and 8 is 16 - 8 = 8. The difference between 8 and 4 is 8 - 4 = 4. Since the difference changes between the numbers, this is not an arithmetic sequence.
C. -8, -6, -4, -2, ... The common difference between -2 and -4 is -2 - (-4) = -2 + 4 = 2. The difference between -4 and -6 is -4 - (-6) = -4 + 6 = 2. The difference between -6 and -8 is -6 - (-8) = -6 + 8 = 2. Since the common difference is always two, this is an arithmetic sequence.
Hope this helps!
Given the following diagram, find the required measures. Given: l | | m m 1 = 120° m 3 = 40° m 2 = 20 60 120
Step-by-step explanation:
your required answer is 60°.
Hello,
Here, in the figure;
angle 1= 120°
To find : m. of angle 2.
now,
angle 1 + angle 2= 180° { being linear pair}
or, 120° +angle 2 = 180°
or, angle 2= 180°-120°
Therefore, the measure of angle 2 is 60°.
Hope it helps you.....
James purchased five acres of land fo 75,000 what was the cost per acre
Answer:
$15,000
Step-by-step explanation:
James purchased a total of 5 acres of land for a total price of $75,000. To find the cost of each individual acre, simply divide the total cost with the total amount of acres purchased:
[tex]\frac{total price of land bought}{total amount of acres} = \frac{75000}{5} = 15000[/tex]
The cost per individual acre, assuming all of them cost the same, is $15,000.
~
Answer:
15000
Step-by-step explanation:
Since
5 acres = 75000
therefore,
the cost price per acre would be
total cost price ➗ 5
7500/5= 15000
What is the volume of a cylinder with a radius of 2 ft and a height of 8 ft.
Use 3.14 for pi, round your answer to the nearest hundredth if necessary, and do not include units.
Answer:
100.48
Step-by-step explanation:
The volume of a cylinder is given by
V = pi r^2 h where r is the radius and h is the height
V = 3.14 ( 2)^2 * 8
V = 3.14 (4)(8)
V = 100.48
Marine ecologists estimate the reproduction curve for swordfish in a fishing ground to be f(p) = −0.01p2 + 9p, where p and f(p) are in hundreds. Find the population that gives the maximum sustainable yield, and the size of the yield.
Answer:
The population that gives the maximum sustainable yield is 45000 swordfishes.
The maximum sustainable yield is 202500 swordfishes.
Step-by-step explanation:
Let be [tex]f(p) = -0.01\cdot p^{2}+9\cdot p[/tex], the maximum sustainable yield can be found by using first and second derivatives of the given function: (First and Second Derivative Tests)
First Derivative Test
[tex]f'(p) = -0.02\cdot p +9[/tex]
Let equalize the resulting expression to zero and solve afterwards:
[tex]-0.02\cdot p + 9 = 0[/tex]
[tex]p = 450[/tex]
Second Derivative Test
[tex]f''(p) = -0.02[/tex]
This means that result on previous part leads to an absolute maximum.
The population that gives the maximum sustainable yield is 45000 swordfishes.
The maximum sustainable yield is:
[tex]f(450) = -0.01\cdot (450)^{2}+9\cdot (450)[/tex]
[tex]f(450) =2025[/tex]
The maximum sustainable yield is 202500 swordfishes.
A car enters a turnpike 22 miles north of a town. The car teavels north at an average speed of 64 miles per hour. How far is the car from the town after 4 hours? Explain how you can use linear function to solve this problem. Then, solve the problem.
Answer:
distance traveled can be modeled by a linear functionthe car is 260 miles north of townStep-by-step explanation:
a) When the speed is constant, the distance traveled is proportional to the travel time, a linear relationship. The distance traveled can be added to the initial distance to obtain the total distance (from town). This relation is a linear function. It can be modeled by the equation ...
d(t) = 4 + 64t . . . where t is travel time in hours, d(t) is the distance in miles
b) After 4 hours, the distance north of town is ...
d(4) = 4 +64(4) = 260
The car is 260 miles from the town after 4 hours.
Answer: Distance is a function of time. The constant rate of change is 64. Write the equation y = 64x + 22. Substitute 4 in for x to get 278 miles.
Step-by-step explanation:
How many cubic inches of a milkshake can you fit up to the brim of this cup without letting it overflow? The
cup is 10 inches tall, and the rim of the cup is 4 inches across. (Hint: the radius is half of the diameter.)
Assuming the cup is a right circular cylinder, it's volume is [tex]V=\pi r^2 h[/tex]
$h=10$, $r=\frac 42$
So the volume is $\pi\cdot(2)^2\cdot10=125.66$
hence you can fill up to 125.66 cubic Inches of milkshake
.