help if you can asap pls!!!!!

Help If You Can Asap Pls!!!!!

Answers

Answer 1

The relationship between DE and AC, considering the triangle midsegment theorem, is given as follows:

DE is half of AC.DE and AC are parallel.

What is the triangle midsegment theorem?

The triangle midsegment theorem states that the midsegment of the triangle divided the length of the midsegment of the triangle is half the length of the base of the triangle, and that the midsegment and the base are parallel.

The parameters for this problem are given as follows:

Midsegment of DE.Base of AC.

Hence the correct statements are given as follows:

DE is half of AC.DE and AC are parallel.

More can be learned about the triangle midsegment theorem at brainly.com/question/7423948

#SPJ1


Related Questions

Find all EXACT solutions of the equation given below in the interval \( [0,2 \pi) \). \[ \tan (x)=-\frac{1}{\sqrt{3}} \] Note: If there is more than one answer, enter them in a list separated by comma

Answers

The equation [tex]\(\tan(x) = -\frac{1}{\sqrt{3}}\)[/tex] has two exact solutions in the interval [tex]\([0, 2\pi)\).[/tex] The solutions are [tex]\(x = \frac{5\pi}{6}\)[/tex] and [tex]\(x = \frac{11\pi}{6}\).[/tex]

To find the solutions to the equation [tex]\(\tan(x) = -\frac{1}{\sqrt{3}}\)[/tex], we need to determine the values of (x) in the interval [tex]\([0, 2\pi)\)[/tex] that satisfies the equation.

The tangent function is negative in the second and fourth quadrants. We can find the reference angle by taking the inverse tangent of the absolute value of the given value [tex]\(\frac{1}{\sqrt{3}}\)[/tex]. The inverse tangent of [tex]\(\frac{1}{\sqrt{3}}\) is \(\frac{\pi}{6}\).[/tex]

In the second quadrant, the angle with a tangent of [tex]\(-\frac{1}{\sqrt{3}}\) is \(\frac{\pi}{6} + \pi = \frac{7\pi}{6}\).[/tex]

In the fourth quadrant, the angle with a tangent of [tex]\(-\frac{1}{\sqrt{3}}\) is \(\frac{\pi}{6} + 2\pi = \frac{13\pi}{6}\).[/tex]

However, we need to consider the interval [tex]\([0, 2\pi)\).[/tex] The angles [tex]\(\frac{7\pi}{6}\) and \(\frac{13\pi}{6}\)[/tex]are not within this interval. So, we need to find coterminal angles that fall within the interval.

Adding or subtracting multiples of [tex]\(2\pi\)[/tex] the angles, we have [tex]\(\frac{7\pi}{6} + 2\pi = \frac{19\pi}{6}\) and \(\frac{13\pi}{6} + 2\pi = \frac{25\pi}{6}\).[/tex]

Therefore, the exact solutions of the equation[tex]\(\tan(x) = -\frac{1}{\sqrt{3}}\) in the interval \([0, 2\pi)\) are \(x = \frac{5\pi}{6}\) and \(x = \frac{11\pi}{6}\).[/tex]

To learn more about exact solutions visit:

brainly.com/question/17119033

#SPJ11

1. In a radical engine the moving parts have a total moment of inertia of 1 kg m 2
, and this is concentrated in the plane of the single crankpin. The engine is directly connected to an air-screw of moment of inertia 18 kg m 2
, by a hollow shaft having outer and inner diameters of 80 mm, and 35 mm, and a single effective length of 0.30 m. The stiffness of the crank-throw alone is 2.5×10 4
Nm/rad. Estimate the natural frequency of torsional vibration of the custen What percentage is involved if the air-screw mass is assumed to be infinite. G=83000 N/mm 2
HINT The stiffness of the crank-throw may be reduced to an equivalent length of shaft at the same diameter as the engine using q
1

= q 1

1

+ q 2

1

Answers

The percentage change in frequency is 0%.Hence, the natural frequency of torsional vibration of the custen is given by f = 25.7 / L₀^(1/2) and the percentage change in frequency is 0%.

We are given that:

Total moment of inertia of moving parts = I = 1 kgm²

Moment of inertia of air-screw = I = 18 kgm²

Outer diameter of hollow shaft = D₀ = 80 mm

Inner diameter of hollow shaft = Dᵢ = 35 mm

Length of hollow shaft = L = 0.30 m

Stiffness of the crank-throw = K = 2.5 × 10⁴ Nm/rad

Shear modulus of elasticity = G = 83000 N/mm²

We need to calculate the natural frequency of torsional vibration of the custen.

The formula for natural frequency of torsional vibration is: f = (1/2π) [(K/L) (J/GD)]^(1/2)

Where, J = Polar moment of inertia

J = (π/32) (D₀⁴ - Dᵢ⁴)

The formula for equivalent length of hollow shaft is given by:

q₁ = q₁₁ + q₁₂

Where, q₁₁ = (π/32) (D₀⁴ - Dᵢ⁴) / L₁q₁₂ = (π/64) (D₀⁴ - Dᵢ⁴) / L₂

L₁ = length of outer diameter

L₂ = length of inner diameter

For the given shaft, L₁ + L₂ = L

Let L₁ = L₀D₀ = D = 80 mm

Dᵢ = d = 35 mm

So, L₂ = L - L₁= 0.3 - L₀...(1)

For the given crank-throw, q₁ = (π/32) (D⁴ - d⁴) / L, where D = 80 mm and d = 80 mm

Hence, q₁ = (π/32) (80⁴ - 35⁴) / L

Therefore, q₁ = (π/32) (80⁴ - 35⁴) / L₀...(2)

From the formula for natural frequency of torsional vibration, f = (1/2π) [(K/L) (J/GD)]^(1/2)

Substituting the values of K, J, G, D and L from above, f = (1/2π) [(2.5 × 10⁴ Nm/rad) / (L₀) ((π/32) (80⁴ - 35⁴) / (83000 N/mm² (80 mm)³))]^(1/2)f = (1/2π) [(2.5 × 10⁴ Nm/rad) / (L₀) (18.12)]^(1/2)f = 25.7 / L₀^(1/2)...(3)

Now, if we assume that the air-screw mass is infinite, then the moment of inertia of the air-screw is infinite.

Therefore, the formula for natural frequency of torsional vibration in this case is:

f = (1/2π) [(K/L) (J/GD)]^(1/2)Substituting I = ∞ in the above formula, we get:

f = (1/2π) [(K/L) (J/GD + J/∞)]^(1/2)f = (1/2π) [(K/L) (J/GD)]^(1/2)f = 25.7 / L₀^(1/2)

So, in this case also the frequency is the same.

Therefore, the percentage change in frequency is 0%.Hence, the natural frequency of torsional vibration of the custen is given by f = 25.7 / L₀^(1/2) and the percentage change in frequency is 0%.

Learn more about elasticity

brainly.com/question/30999432

#SPJ11

What amount invested today would grow to $10,500 after 25 years, if the investment earns: (Do not round intermediate calculations and round your final answers to 2 decimal places.) Amount a. 8% compounded annually $ b. 8% compounded semiannually $ c. 8% compounded quarterly $ d. 8% compounded monthly $

Answers

Amount invested today to grow to $10,500 after 25 years is $2,261.68 for monthly compounding, $2,289.03 for quarterly compounding, $2,358.41 for semiannual compounding, and $2,500.00 for annual compounding.

The amount of money that needs to be invested today to grow to a certain amount in the future depends on the following factors:

The interest rateThe number of yearsThe frequency of compounding

In this case, we are given that the interest rate is 8%, the number of years is 25, and the frequency of compounding can be annual, semiannual, quarterly, or monthly.

We can use the following formula to calculate the amount of money that needs to be invested today: A = P(1 + r/n)^nt

where:

A is the amount of money in the futureP is the amount of money invested todayr is the interest raten is the number of times per year that interest is compoundedt is the number of years

For annual compounding, we get:

A = P(1 + 0.08)^25 = $2,500.00

For semiannual compounding, we get:

A = P(1 + 0.08/2)^50 = $2,358.41

For quarterly compounding, we get:

A = P(1 + 0.08/4)^100 = $2,289.03

For monthly compounding, we get:

A = P(1 + 0.08/12)^300 = $2,261.68

As we can see, the amount of money that needs to be invested today increases as the frequency of compounding increases. This is because more interest is earned when interest is compounded more frequently.

To know more about rate click here

brainly.com/question/199664

#SPJ11

PLEASE DO NOT COPY AND PASTE, MAKE SURE YOUR HANDWRITTEN IS
CLEAR TO UNDERSTAND. I WILL GIVE YOU THUMBS UP IF THE ANSWER IS
CORRECT
SUBJECT : DISCRETE MATH
c) Prove the loop invariant \( x=x^{\star}\left(y^{\wedge} 2\right)^{\wedge} z \) using Hoare triple method for the code segment below. \[ x=1 ; y=2 ; z=1 ; n=5 \text {; } \] while \( (z

Answers

The loop invariant [tex]\( x = x^{\star}(y^{\wedge} 2)^{\wedge} z \)[/tex]holds throughout the execution of the loop, satisfying the requirements of the Hoare triple method.

The Hoare triple method involves three parts: the pre-condition, the loop invariant, and the post-condition. The pre-condition represents the initial state before the loop, the post-condition represents the desired outcome after the loop, and the loop invariant represents a property that remains true throughout each iteration of the loop.

In this case, the given code segment initializes variables [tex]\( x = 1 \), \( y = 2 \), \( z = 1 \), and \( n = 5 \).[/tex] The loop executes while \( z < n \) and updates the variables as follows[tex]: \( x = x \star (y \wedge 2) \), \( y = y^2 \), and \( z = z + 1 \).[/tex]

To prove the loop invariant, we need to show that it holds before the loop, after each iteration of the loop, and after the loop terminates.

Before the loop starts, the loop invariant[tex]\( x = x^{\star}(y^{\wedge} 2)^{\wedge} z \) holds since \( x = 1 \), \( y = 2 \), and \( z = 1 \[/tex]).

During each iteration of the loop, the loop invariant is preserved. The update[tex]\( x = x \star (y \wedge 2) \)[/tex] maintains the expression [tex]\( x^{\star}(y^{\wedge} 2)^{\wedge} z \)[/tex] since the value of [tex]\( x \)[/tex] is being updated with the operation. Similarly, the update [tex]\( y = y^2 \)[/tex]preserves the expression [tex]\( x^{\star}(y^{\wedge} 2)^{\wedge} z \)[/tex]by squaring the value of [tex]\( y \).[/tex] Finally, the update [tex]\( z = z + 1 \)[/tex]does not affect the expression [tex]\( x^{\star}(y^{\wedge} 2)^{\wedge} z \).[/tex]

After the loop terminates, the loop invariant still holds. At the end of the loop, the value of[tex]\( z \)[/tex] is equal to [tex]\( n \),[/tex]and the expression[tex]\( x^{\star}(y^{\wedge} 2)^{\wedge} z \)[/tex]is unchanged.

Learn more about loop invariant here:

https://brainly.com/question/14897837

#SPJ11

Prove the loop invariant x=x

[tex]⋆ (y ∧ 2) ∧[/tex]

z using Hoare triple method for the code segment below. x=1;y=2;z=1;n=5; while[tex](z < n) do \{ x=x⋆y ∧ 2; z=z+1; \}[/tex]

You are buying a new home for $416 000. You have an agreement with the savings and loan company to borrow the needed money if you pay 20% in cash and monthly payments for 30 years at an interest rate of 6.8% compounded monthly. Answer the following questions.
What monthly payments will be required?
The monthly payment required is

Answers

The monthly payment required for the loan is approximately $2,083.46.

To calculate the monthly payment required for a loan, we can use the formula for calculating the monthly mortgage payment, which is based on the loan amount, interest rate, and loan term.

Let's calculate the monthly payment using the provided information:

Loan amount: $416,000

Down payment (20% of the loan amount): 20% * $416,000 = $83,200

Loan amount after down payment: $416,000 - $83,200 = $332,800

Loan term: 30 years = 30 * 12 = 360 months

Interest rate per month: 6.8% / 12 = 0.568%

Now, using the loan amount, loan term, and interest rate per month, we can calculate the monthly payment using the formula for a fixed-rate mortgage:

Monthly payment = (Loan amount * Monthly interest rate) / (1 - (1 + Monthly interest rate)^(-Loan term))

Monthly interest rate = 0.568% = 0.00568

Plugging in the values, we have:

Monthly payment = ($332,800 * 0.00568) / (1 - (1 + 0.00568)^(-360))

≈ $2,083.46.

To know more about monthly payment refer here:

https://brainly.com/question/26192602#

#SPJ11

Given that sin(x)=− 2
1

, whar Provide your answer below: sin(−x)= Given that cos(x)=−0.27, Provide your answer below: cos(−x)= Evaluate the following expression. Give your answer in radians. Provide your answer below: arccsc(−1)=

Answers

The angle whose cosecant is -1. The angle lies in the fourth quadrant where cosecant is negative.

arccsc(-1) = -π/2

Given that sin(x) = -2/1, we can determine the value of x using inverse sine function:

x = arcsin(-2/1) = -π/2

Therefore, sin(-x) = sin(-(-π/2)) = sin(π/2) = 1

Given that cos(x) = -0.27, we can determine the value of x using inverse cosine function:

x = arccos(-0.27) ≈ 1.883

Therefore, cos(-x) = cos(-1.883) ≈ 0.401

To evaluate arccsc(-1), we need to find the angle whose cosecant is -1. The angle lies in the fourth quadrant where cosecant is negative.

arccsc(-1) = -π/2

Therefore, arccsc(-1) = -π/2.

Learn more about cosecant here

https://brainly.com/question/31708994

#SPJ11

For numbers a, b > 1, the expression loga(a²b5) + logb(a/b) can be simplified to A*loga(b) + B*logb(a) + C for some numbers A, B, C. What is A+B+C?

Answers

Substituting A in any of the above equations, we getB = 3So, the required value of A + B + C = 2 + 3 + 0 (as the value of C = 0) = 5Therefore, A + B + C = 5.

Given that, For numbers a, b > 1, the expression loga(a²b⁵) + logb(a/b) can be simplified to A*loga(b) + B*logb(a) + C for some numbers A, B, C. We have to find A+B+C.So, let's solve the expression loga(a²b⁵) + logb(a/b) first,loga(a²b⁵) + logb(a/b)loga(a²b⁵) = loga(a²) + loga(b⁵) {Using product rule of logarithms}loga(a²) + loga(b⁵) = 2loga(a) + 5loga(b)logb(a/b) = logb(a) - logb(b) {Using quotient rule of logarithms}logb(a/b) = logb(a) - logb(b) = logb(a) + logb(1/b) = logb(a) - logb(b⁻¹)Now, the given expression becomes, loga(a²b⁵) + logb(a/b) = 2loga(a) + 5loga(b) + logb(a) - logb(b⁻¹)= 2loga(a) + 5loga(b) + logb(a) + logb(b⁻¹)A*loga(b) + B*logb(a) + C = Aloga(a⁻¹) + Blogb(b⁻¹) + (A + B)loga(b) [Using logarithmic identity loga(x^y) = yloga(x)]= (-A)loga(a) + (-B)logb(b) + (A+B)loga(b) + (A+B)logb(a)= (A+B)loga(b) + (A-B)logb(a)So, comparing the coefficients of the like terms from both the expressions, we getA + B = 5A - B = -1Adding these two equations, we getA + B + A - B = 5 - 1 => 2A = 4 => A = 2Now, substituting A in any of the above equations, we getB = 3So, the required value of A + B + C = 2 + 3 + 0 (as the value of C = 0) = 5Therefore, A + B + C = 5.

Learn more about Equations here,What is equation? Define equation

https://brainly.com/question/29174899

#SPJ11

Find x. Round your answer to the nearest tenth of a degree. A right triangle labeled A B C and A C B is a right angle. Segment A B is 27, and segment C B is labeled 18, and angle A B C is labeled x degrees. Type your numerical answer (without units) below.

Answers

To find the value of angle ABC (labeled x degrees), we can use the trigonometric function tangent (tan).

In a right triangle, the tangent of an angle is defined as the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle.

In this case, we have the side opposite angle ABC as 27 (segment AB) and the side adjacent to angle ABC as 18 (segment CB).

Using the tangent function, we can set up the following equation:

tan(x) = opposite/adjacent

tan(x) = 27/18

Now, we can solve for x by taking the inverse tangent (arctan) of both sides:

x = arctan(27/18)

Using a calculator, we find:

x ≈ 55.6 degrees

Rounding to the nearest tenth of a degree, x is approximately 55.6 degrees.

A precast pretensioned rib 100 mm wide and 200 mm deep, is to be connected to an M-25 Grade cast in situ concrete slab 400 mm wide and 40 mm thick. Estimate the ultimate shearing force which will cause separation of the two elements for the following two cases conforming to BS EN: 1992-1-1 code specifications: (a) If the surface is rough tamped and without links to withstand a horizontal shear stress of 0.6 N/mm 2
, and

Answers

To estimate the ultimate shearing force that will cause separation between a precast pretensioned rib and an M-25 Grade cast in situ concrete slab.

We need to consider the specifications provided in the BS EN: 1992-1-1 code. In this case, we have two scenarios to analyze.

(a) If the surface is rough tamped and without links to withstand a horizontal shear stress of 0.6 N/mm², we can calculate the ultimate shearing force as follows:

First, we need to determine the area of contact between the rib and the slab. The width of the rib is given as 100 mm, and the length of contact can be assumed to be the same as the width of the slab, which is 400 mm. Therefore, the area of contact is 100 mm * 400 mm = 40,000 mm².

Next, we can calculate the ultimate shearing force using the formula:

Ultimate Shearing Force = Shear Stress * Area of Contact

Substituting the given shear stress of 0.6 N/mm² and the area of contact, we get:

Ultimate Shearing Force = 0.6 N/mm² * 40,000 mm² = 24,000 N

Therefore, the estimated ultimate shearing force for this scenario is 24,000 Newtons.

To know more about horizontal shear click here: brainly.com/question/28495799

#SPJ11

What sum of money will grow to
​$6996.18
in
five
years at
6.9​%
compounded semi-annually?
Question content area bottom
Part 1
The sum of money is
​$enter your response here.
​(Round to the nearest cent as needed. Round all intermediate values to six decimal places as​ needed.

Answers

The sum of money that will grow to $6996.18 in five years at a 6.9% interest rate compounded semi-annually is approximately $5039.50 (rounded to the nearest cent).

The compound interest formula is given by the equation A = P(1 + r/n)^(nt), where A is the future value, P is the present value, r is the interest rate, n is the number of compounding periods per year, and t is the number of years.

In this case, the future value (A) is $6996.18, the interest rate (r) is 6.9% (or 0.069), the compounding periods per year (n) is 2 (semi-annually), and the number of years (t) is 5.

To find the present value (P), we rearrange the formula: P = A / (1 + r/n)^(nt).

Substituting the given values into the formula, we have P = $6996.18 / (1 + 0.069/2)^(2*5).

Calculating the expression inside the parentheses, we have P = $6996.18 / (1.0345)^(10).

Evaluating the exponent, we have P = $6996.18 / 1.388742.

Therefore, the sum of money that will grow to $6996.18 in five years at a 6.9% interest rate compounded semi-annually is approximately $5039.50 (rounded to the nearest cent).

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

Use the limit definition of the definite integral (limit of Riemann sums) to find the area under the curve \( f(x)=6-3 x^{2} \) from \( x=1 \) to \( x=5 \).

Answers

To find the area under the curve (f(x) = 6 - 3x²) from x = 1 to x = 5, we need to use the limit definition of the definite integral (limit of Riemann sums). Here's how we can do that:

Step 1: Divide the interval [1, 5] into n subintervals of equal width Δx = (5 - 1) / n = 4/n. The endpoints of these subintervals are given by xi = 1 + iΔx for i = 0, 1, 2, ..., n.

Step 2: Choose a sample point ti in each subinterval [xi-1, xi]. We can use either the left endpoint, right endpoint, or midpoint of the subinterval as the sample point. Let's choose the right endpoint ti = xi.

Step 3: The Riemann sum for the function f(x) over the interval [1, 5] is given by

Rn = Δx[f(1) + f(1 + Δx) + f(1 + 2Δx) + ... + f(5 - Δx)], or

Rn = Δx [f(1) + f(1 + Δx) + f(1 + 2Δx) + ... + f(5 - Δx)] = Δx[6 - 3(1²) + 6 - 3(2²) + 6 - 3(3²) + ... + 6 - 3((n - 1)²)].

Step 4: We can simplify this expression by noting that the sum inside the brackets is just the sum of squares of the first n - 1 integers,

i.e.,1² + 2² + 3² + ... + (n - 1)² = [(n - 1)n(2n - 1)]/6.

Substituting this into the expression for Rn, we get

Rn = Δx[6n - 3(1² + 2² + 3² + ... + (n - 1)²)]

Rn = Δx[6n - 3[(n - 1)n(2n - 1)]/6]

Rn = Δx[6n - (n - 1)n(2n - 1)]

Step 5: Taking the limit of Rn as n approaches infinity gives us the main answer, i.e.,

∫₁⁵ (6 - 3x²) dx = lim[n → ∞] Δx[6n - (n - 1)n(2n - 1)] = lim[n → ∞] (4/n) [6n - (n - 1)n(2n - 1)] = lim[n → ∞] 24 - 12/n - 2(n - 1)/n.

Step 6: We can evaluate this limit by noticing that the second and third terms tend to zero as n approaches infinity, leaving us with

∫₁⁵ (6 - 3x²) dx = lim[n → ∞] 24 = 24.

Therefore, the area under the curve (f(x) = 6 - 3x²) from x = 1 to x = 5 is 24.

The area under the curve from x=1 to x=5 of the function f(x) = 6 - 3x² is 24. The steps for finding the area are given above.

To know more about limit visit:

brainly.com/question/12211820

#SPJ11

Solve the system to find the points of intersection.
y=x2-3
y=x-3
I've tried both the substitution method and the addition method,
and I get x2-x, but I'm not sure where to go from
there.

Answers

The system has two points of intersection: (0, -3) and (1, -2).  

To find the points of intersection between the two equations y=x²-3 and y=x−3, we need to set the equations equal to each other and solve for x.

By solving x²-3 for y n the second equation, we can write the equation as

x²-3=x−3.  

Simplifying this equation, we get x²-x=0.

To solve this quadratic equation, we can factor out x to get x(x-1)=0.

From here, we can set each factor equal to zero and solve for x. So we have two possible solutions: x = 0 and x = 1.

To find the corresponding y-values for each x, we can substitute these

x-values back into one of the original equations.

Plugging x = 0 into y=x²-3 we get y=0²-3=-3.

Similarly, plugging x = 1 into y=x²-3 we get y=1²-3=-2.

Therefore, the system has two points of intersection: (0, -3) and (1, -2).  

To learn more about quadratic equation visit:

brainly.com/question/29269455

#SPJ11

Chris's Photographic Supplies sells a Minolta camera for $551.83. The markup is 72% of cost. a) How much does the store pay for this camera? b) What is the rate of markup based on selling price?

Answers

The rate of markup based on the selling price is approximately 41.36%.

a) To calculate the cost that the store pays for the camera, we need to find the original price before the markup. Let's assume the cost price of the camera is C.

The markup is given as 72% of the cost price. Therefore, the markup amount is 0.72C.

The selling price of the camera is $551.83, which includes both the cost price and the markup. We can express this as:

Selling Price = Cost Price + Markup

$551.83 = C + 0.72C

Combining like terms, we have:

$551.83 = 1.72C

To find the value of C, we divide both sides of the equation by 1.72:

C = $551.83 / 1.72 ≈ $321.02

Therefore, the store pays approximately $321.02 for the camera.

b) The rate of markup based on the selling price can be found by dividing the markup amount by the selling price and expressing it as a percentage.

The markup amount is 0.72C, and the selling price is $551.83. We can calculate the rate of markup as follows:

Rate of Markup = (Markup / Selling Price) * 100%

= (0.72C / $551.83) * 100%

Substituting the value of C that we found earlier, we have:

Rate of Markup = (0.72 * $321.02 / $551.83) * 100%

≈ 41.36%

Therefore, the rate of markup based on the selling price is approximately 41.36%.

Know more about Markup here :

https://brainly.com/question/5189512

#SPJ11

1.2 Examine the term by term differentiability of the series ∑ n=1
[infinity]

( x+n
1

− x+n+1
1

) on I=[1,2]. (7)

Answers

The series ∑ n=1[infinity]​( x+n1​− x+n+11​) is not term by term differentiable on the interval I=[1,2].

To examine the term by term differentiability of the series on the interval I=[1,2], we need to analyze the behavior of each term of the series and check if it satisfies the conditions for differentiability.

The series can be written as ∑ n=1[infinity]​( x+n1​− x+n+11​). Let's consider the nth term of the series: x+n1​− x+n+11​.

To be term by term differentiable, each term must be differentiable on the interval I=[1,2]. However, in this case, the terms involve the variable n, which changes with each term. This implies that the terms are dependent on the index n and not solely on the variable x.

Since the terms of the series are not solely functions of x and depend on the changing index n, the series is not term by term differentiable on the interval I=[1,2].

Therefore, we can conclude that the series ∑ n=1[infinity]​( x+n1​− x+n+11​) is not term by term differentiable on the interval I=[1,2].

Learn more about differentiable here:

https://brainly.com/question/24062595

#SPJ11

please show work
Solve the system of equations by substitution. x + 3y - 2x + 4y = 24 = 18 OA. (1,5) OB. (-6,0) OC. (0,6) OD. no solution

Answers

Simplifying this equation, we get:-x + 24 - x = 24-x + x =0.Therefore, there's no solution.

Given system of equations isx + 3y - 2x + 4y = 24And, we know that x - 2x = -x and 3y + 4y = 7yTherefore, the above equation becomes-y + 7y = 24 6y = 24y = 24/6y = 4 .

Substituting the value of y in the first equation, we getx + 3y - 2x + 4y = 24x + 3(4) - 2x + 4(4) = 24x + 12 - 8 + 16 = 24x + 20 = 24x = 4Hence, the main answer is (0,6).

The given equation is x + 3y - 2x + 4y = 24We can simplify this as: 3y + 4y = 24 + 2x.

Subtracting x from the other side of the equation and simplifying further, we get:7y = 24 - xTherefore, y = (24 - x) / 7.

We substitute this value of y in one of the equations of the system.

For this example, we'll substitute it in the first equation:x + 3y - 2x + 4y = 24.

The equation becomes:x - 2x + 3y + 4y = 24Simplifying, we get:-x + 7y = 24.

Now we can substitute y = (24 - x) / 7 in this equation to get an equation with only one variable:-x + 7(24 - x) / 7 = 24.

Simplifying this equation, we get:-x + 24 - x = 24-x + x = 0.

Therefore, there's no solution.

To know more about system of equations visit:

brainly.com/question/21620502

#SPJ11

Question 21 10/24 answered A person standing close to the edge on top of a 64-foot building throws a ball vertically upward. The quadratic 16t² + 120t+ 64 models the ball's height about the ground, h, in feet, t seconds after it function h = was thrown. a) What is the maximum height of the ball? - > Submit Question feet b) How many seconds does it take until the ball hits the ground? seconds

Answers

a)  The maximum height of the ball is 739 feet.

b)  The ball hits the ground after approximately 2 seconds.

To find the maximum height of the ball, we need to determine the vertex of the quadratic function. The vertex of a quadratic function in the form of ax² + bx + c can be found using the formula x = -b / (2a).

In this case, the quadratic function is 16t² + 120t + 64, where a = 16, b = 120, and c = 64.

Using the formula, we can calculate the time at which the ball reaches its maximum height:

t = -120 / (2× 16) = -120 / 32 = -3.75

Since time cannot be negative in this context, we disregard the negative value. Therefore, the ball reaches its maximum height after approximately 3.75 seconds.

To find the maximum height, we substitute this value back into the quadratic function:

h = 16(3.75)² + 120(3.75) + 64

h = 225 + 450 + 64

h = 739 feet

Therefore, the maximum height of the ball is 739 feet.

To determine how long it takes for the ball to hit the ground, we need to find the value of t when h equals 0 (since the ball is on the ground at that point).

Setting the quadratic function equal to zero:

16t² + 120t + 64 = 0

We can solve this equation by factoring or using the quadratic formula. Factoring the equation, we get:

(4t + 8)(4t + 8) = 0

Setting each factor equal to zero:

4t + 8 = 0

4t = -8

t = -8 / 4

t = -2

Since time cannot be negative in this context, we disregard the negative value. Therefore, it takes approximately 2 seconds for the ball to hit the ground.

So, the ball hits the ground after approximately 2 seconds.

Learn more about quadratic function here:

https://brainly.com/question/18958913

#SPJ11

Use the method of undetermined coefficients to solve the second order ODE \[ y^{\prime \prime}-4 y^{\prime}-12 y=10 e^{-2 x}, \quad y(0)=3, y^{\prime}(0)=-14 \]

Answers

The complete solution to the given ordinary differential equation (ODE)is:

[tex]y(x) = y_h(x) + y_p(x) = 5e^{6x} - 2e^{-2x} + 10e^{-2x} = 5e^{6x} + 8e^{-2x}[/tex]

To solve the second-order ordinary differential equation (ODE) using the method of undetermined coefficients, we assume a particular solution of the form:

[tex]y_p(x) = A e^{-2x}[/tex]

where A is a constant to be determined.

Next, we find the first and second derivatives of [tex]y_p(x)[/tex]:

[tex]y_p'(x) = -2A e^{-2x}\\y_p''(x) = 4A e^{-2x}[/tex]

Substituting these derivatives into the original ODE, we get:

[tex]4A e^{-2x} - 4(-2A e^{-2x}) - 12(A e^{-2x}) = 10e^{-2x}[/tex]

Simplifying the equation:

[tex]4A e^{-2x} + 8A e^{-2x} - 12A e^{-2x} = 10e^{-2x}[/tex]

Combining like terms:

[tex](A e^{-2x}) = 10e^{-2x}[/tex]

Comparing the coefficients on both sides, we have:

A = 10

Therefore, the particular solution is:

[tex]y_p(x) = 10e^{-2x}[/tex]

To find the complete solution, we need to find the homogeneous solution. The characteristic equation for the homogeneous equation y'' - 4y' - 12y = 0 is:

r² - 4r - 12 = 0

Factoring the equation:

(r - 6)(r + 2) = 0

Solving for the roots:

r = 6, r = -2

The homogeneous solution is given by:

[tex]y_h(x) = C1 e^{6x} + C2 e^{-2x}[/tex]

where C1 and C2 are constants to be determined.

Using the initial conditions y(0) = 3 and y'(0) = -14, we can solve for C1 and C2:

y(0) = C1 + C2 = 3

y'(0) = 6C1 - 2C2 = -14

Solving these equations simultaneously, we find C1 = 5 and C2 = -2.

Therefore, the complete solution to the given ODE is:

[tex]y(x) = y_h(x) + y_p(x) = 5e^{6x} - 2e^{-2x} + 10e^{-2x} = 5e^{6x} + 8e^{-2x}[/tex]

The question is:

Use the method of undetermined coefficients to solve the second order ODE y'' - 4 y' - 12y = 10[tex]e ^{- 2x}[/tex], y(0) = 3, y' (0) = - 14

To know more about differential equation:

https://brainly.com/question/32645495


#SPJ4

For the given data: 1; 9; 15; 22; 23; 24; 24; 25; 25; 26; 27; 28; 29; 37; 45; 50 Determine the Quartiles, Q1, Q2 and Q3 of the data: Q1: _________ Q2: _________ Q3: _________

Answers

The quartiles for the given data set are as follows: Q1 = 24, Q2 = 25, and Q3 = 29.

To find the quartiles, we need to divide the data set into four equal parts. First, we arrange the data in ascending order: 1, 9, 15, 22, 23, 24, 24, 25, 25, 26, 27, 28, 29, 37, 45, 50.

Q2, also known as the median, is the middle value of the data set. Since we have an even number of values, we take the average of the two middle values: (24 + 25) / 2 = 24.5, which rounds down to 25.

To find Q1, we consider the lower half of the data set. Counting from the beginning, the position of Q1 is at (16 + 1) / 4 = 4.25, which rounds up to 5. The fifth value in the sorted data set is 23. Hence, Q1 is 23.

To find Q3, we consider the upper half of the data set. Counting from the beginning, the position of Q3 is at (16 + 1) * 3 / 4 = 12.75, which rounds up to 13. The thirteenth value in the sorted data set is 29. Hence, Q3 is 29.

Therefore, the quartiles for the given data set are Q1 = 24, Q2 = 25, and Q3 = 29.

Learn more about quartiles here:

https://brainly.com/question/29809572

#SPJ11

Compare the doubling times found with the approximate and exact doubling time formulas. Then use the exact doubling time formula to answer the given question. Inflation is causing prices to rise at a rate of 10% per year. For an item that costs $400 today, what will the price be in 4 years? Calculate the doubling times found with the approximate and exact doubling time. The approximate doubling time is years and the exact doubling time is years. (Round to two decimal places as needed.) Compare the doubling times found with the approximate and exact doubling time. Choose the correct answer below. O A. The approximate doubling time is more than a year greater than the exact doubling time. O B. The approximate doubling time is less than the exact doubling time. OC. The approximate doubling time is more than a year less than the exact doubling time. OD. The approximate doubling time is greater than the exact doubling time. For an item that costs $400 today, what will the price be in 4 years? $ (Round to two decimal places as needed.)

Answers

The approximate doubling time is less than the exact doubling time. The price of the item in 4 years will be approximately $532.14.

The approximate doubling time formula is commonly used when the growth rate is constant over time. It is given by the formula t ≈ 70/r, where t is the doubling time in years and r is the growth rate expressed as a percentage. In this case, the approximate doubling time would be 70/10 = 7 years.

The exact doubling time formula, on the other hand, takes into account the compounding effect of growth. It is given by the formula t = ln(2)/ln(1 + r/100), where ln denotes the natural logarithm. Using this formula with a growth rate of 10%, we find the exact doubling time to be t ≈ 6.93 years.

Comparing the doubling times found with the approximate and exact doubling time formulas, we can see that the approximate doubling time is less than the exact doubling time. Therefore, the correct answer is B. The approximate doubling time is less than the exact doubling time.

To calculate the price of an item in 4 years, we can use the formula P = P0(1 + r/100)^t, where P0 is the initial price, r is the growth rate, and t is the time in years. Plugging in the given values, with P0 = $400, r = 10%, and t = 4, we get:

P = $400(1 + 10/100)^4 ≈ $532.14

Therefore, the price of the item in 4 years will be approximately $532.14.

Learn more about logarithm here: https://brainly.com/question/30226560

#SPJ11

9. On separate coordinate planes, sketch the graphs of the given functions over the interval -2 ≤ x ≤ 2. a) f(x) = sin r b) g(x) = |sin x| c) h(x) = sin |x|

Answers

a) We can plot these points and connect them to form a smooth curve. Here's the graph of f(x) = sin x:

b)The graph of g(x) = |sin x|:

The given functions over the interval -2 ≤ x ≤ 2 on separate coordinate planes.

a) f(x) = sin x:

To graph the function f(x) = sin x, we need to plot points on the coordinate plane. Let's calculate the values of sin x for various values of x within the given interval:

When x = -2, sin(-2) ≈ -0.909

When x = -1, sin(-1) ≈ -0.841

When x = 0, sin(0) = 0

When x = 1, sin(1) ≈ 0.841

When x = 2, sin(2) ≈ 0.909

Now, we can plot these points and connect them to form a smooth curve. Here's the graph of f(x) = sin x:

        |

   1    |                 .

        |             .

        |         .

---------|---------------------  

        |

  -1    |        .

        |    .

        | .

---------|---------------------

        |

        |

   0    |---------------------

        -2      -1       1      2

b) g(x) = |sin x|:

To graph the function g(x) = |sin x|, we need to calculate the absolute value of sin x for various values of x within the given interval:

When x = -2, |sin(-2)| ≈ 0.909

When x = -1, |sin(-1)| ≈ 0.841

When x = 0, |sin(0)| = 0

When x = 1, |sin(1)| ≈ 0.841

When x = 2, |sin(2)| ≈ 0.909

Now, we can plot these points and connect them to form a smooth curve. Here's the graph of g(x) = |sin x|:

        |

   1    |       .

        |     .

        |   .

---------|---------------------  

        |

  -1    |  .

        | .

        |.

---------|---------------------

        |

        |

   0    |---------------------

        -2      -1       1      2

c) h(x) = sin |x|:

To graph the function h(x) = sin |x|, we need to calculate the values of sin |x| for various values of x within the given interval:

When x = -2, sin |-2| = sin 2 ≈ 0.909

When x = -1, sin |-1| = sin 1 ≈ 0.841

When x = 0, sin |0| = sin 0 = 0

When x = 1, sin |1| = sin 1 ≈ 0.841

When x = 2, sin |2| = sin 2 ≈ 0.909

Now, we can plot these points and connect them to form a smooth curve. Here's the graph of h(x) = sin |x|:

        |

   1    |       .

        |     .

        |   .

---------|---------------------  

        |

  -1    |  .

        | .

        |.

---------|---------------------

        |

        |

   0    |---------------------

        -2      -1       1      2

These are the graphs of the functions f(x) = sin x, g(x) = |sin x|, and h(x) = sin |x| over the interval

-2 ≤ x ≤ 2 on separate coordinate planes.

Learn more about graph here:

https://brainly.com/question/32634451

#SPJ11

A system has the following transfer function. Determine the time to peak, Tp, and the max point, Mp, for this system if it is exposed to a unit step input,
G(s) = 16/s^2+2s +16
(A) Mp = 1.22, Tp, = 0.62 (B) Mp = 1.44, Tp = 0.81 (C) Mp = 2.04, Tp = 1.05 (D) Mp = 2.56, Tp = 1.62

Answers

The time to peak, Tp, and the max point, Mp, for this system if it is exposed to a unit step input is: the closest match is (C) Mp = 2.04, Tp = 1.05. the correct option is (C) Mp = 2.04, Tp = 1.05.

Here, we have,

To determine the time to peak (Tp) and the maximum point (Mp) for the system's response to a unit step input, we can analyze the transfer function and apply the standard formulas for these parameters.

The transfer function is given as:

G(s) = 16 / (s² + 2s + 16)

To find Tp, we need to find the time at which the system's response reaches its peak.

For a second-order system with a transfer function in the form of

G(s) = K / (s² + 2ζω_ns + ω_n²), the time to peak can be calculated as

Tp = π / (ω_n√(1 - ζ^2)), where ω_n is the natural frequency and ζ is the damping ratio.

Comparing the given transfer function G(s) = 16 / (s² + 2s + 16) with the general form, we can identify ω_n = 4 and ζ = 0.5.

Substituting these values into the formula, we get:

Tp = π / (4√(1 - 0.5²))

= π / (4√(1 - 0.25))

= π / (4√(0.75))

≈ 1.05

So, the value of Tp is approximately 1.05.

To find Mp, we need to determine the maximum overshoot or the peak value of the system's response.

For a second-order system, the maximum overshoot can be calculated as Mp = e^((-ζπ) / √(1 - ζ²)).

Here, e represents the exponential constant.

Substituting the given ζ = 0.5 into the formula, we get:

Mp = e^((-0.5π) / √(1 - 0.5²))

≈ 0.296

So, the value of Mp is approximately 0.296.

Comparing these values with the given options, we find that the closest match is (C) Mp = 2.04, Tp = 1.05.

Therefore, the correct option is (C) Mp = 2.04, Tp = 1.05.

To know more about transfer visit:

brainly.com/question/31945253

#SPJ4

Unless every professor is friendly, no student is happy. (Px: x is a professor, Fx: x is friendly, Sx: x is a student, Hx : x is happy,)

Answers

There is a direct causal relationship between a professor's friendliness and a student's happiness, and that no other factors contribute to a student's happiness.

The given statement can be symbolically represented as:

∀x ((Px → Fx) → (¬Sx → ¬Hx))

Where:

Px: x is a professor

Fx: x is friendly

Sx: x is a student

Hx: x is happy

The statement can be interpreted as follows: If every professor is friendly, then no student is unhappy.

This statement implies that if a professor is not friendly (¬Fx), then it is possible for a student to be happy (Hx). In other words, the happiness of students is contingent on the friendliness of professors.

It's important to note that this interpretation assumes that there is a direct causal relationship between a professor's friendliness and a student's happiness, and that no other factors contribute to a student's happiness.

Learn more about symbol here:

https://brainly.com/question/30763784

#SPJ11

For what values of \( a \) and \( b \) will make the two complex numbers equal? \[ 5-2 i=10 a+(3+b) i \]

Answers

For the values of a and b to make the two complex numbers equal are: a = 1/2 and b = -2.

Given equation is 5 - 2i = 10a + (3+b)i

In the equation, 5-2i is a complex number which is equal to 10a+(3+b)i.

Here, 10a and 3i both are real numbers.

Let's separate the real and imaginary parts of the equation: Real part of LHS = Real part of RHS5 = 10a -----(1)

Imaginary part of LHS = Imaginary part of RHS-2i = (3+b)i -----(2)

On solving equation (2), we get,-2i / i = (3+b)1 = (3+b)

Therefore, b = -2

After substituting the value of b in equation (1), we get,5 = 10aA = 1/2

Therefore, the values of a and b are 1/2 and -2 respectively.The solution is represented graphically in the following figure:

Answer:For the values of a and b to make the two complex numbers equal are: a = 1/2 and b = -2.

Know more about complex numbers  here,

https://brainly.com/question/20566728

#SPJ11

Given the Price-Demand equation p=10−0.5x where x is the number items produced and p is the price of each item in dollars. a) Find the revenue function R(x) b) If the production for an item is increasing by 5 items per week, how fast is the revenue increasing (or decreasing) in dollars per week when 100 items are being produced.

Answers

a) The revenue function R(x) is given by R(x) = x * (10 - 0.5x).

b) The revenue is decreasing at a rate of $90 per week when 100 items are being produced.

a) The revenue function R(x) represents the total revenue generated by selling x items. It is calculated by multiplying the number of items produced (x) with the price of each item (p(x)). In this case, the Price-Demand equation p = 10 - 0.5x provides the price of each item as a function of the number of items produced.

To find the revenue function R(x), we substitute the Price-Demand equation into the revenue formula: R(x) = x * p(x). Using p(x) = 10 - 0.5x, we get R(x) = x * (10 - 0.5x).

b) To determine how fast the revenue is changing with respect to the number of items produced, we need to find the derivative of the revenue function R(x) with respect to x. Taking the derivative of R(x) = x * (10 - 0.5x) with respect to x, we obtain R'(x) = 10 - x.

To determine the rate at which the revenue is changing when 100 items are being produced, we evaluate R'(x) at x = 100. Substituting x = 100 into R'(x) = 10 - x, we get R'(100) = 10 - 100 = -90.

Therefore, the revenue is decreasing at a rate of $90 per week when 100 items are being produced.

Learn more about revenue function

brainly.com/question/29148322

#SPJ11

Given the following homogeneous second order linear equation: 4d²y/dx² + 3dy/dx² - 10y = 0 a) Write down the Auxiliary Equation. b) Evaluate the Roots of Auxiliary Equation. c) Evaluate the Complementary Function. 

Answers

The auxiliary equation is 4r² + 3r - 10 = 0. The roots of the auxiliary equation are r₁ = 5/4 and r₂ = -2. The complementary function is y_c = C₁e^(5/4x) + C₂e^(-2x).

a) The auxiliary equation can be obtained by replacing d²y/dx² with r² and dy/dx with r in the equation. Thus, the auxiliary equation is 4r² + 3r - 10 = 0.

b) To find the roots of the auxiliary equation, we can solve the quadratic equation 4r² + 3r - 10 = 0. We can use the quadratic formula: r = (-b ± √(b² - 4ac)) / (2a). Plugging in the values a = 4, b = 3, and c = -10, we get r = (-3 ± √(3² - 4(4)(-10))) / (2(4)). Simplifying further, we have r = (-3 ± √(9 + 160)) / 8, which becomes r = (-3 ± √169) / 8. This gives us two roots: r₁ = (-3 + 13) / 8 = 10 / 8 = 5/4, and r₂ = (-3 - 13) / 8 = -16 / 8 = -2.

c) The complementary function is given by y_c = C₁e^(r₁x) + C₂e^(r₂x), where C₁ and C₂ are constants. Plugging in the values of r₁ and r₂, the complementary function becomes y_c = C₁e^(5/4x) + C₂e^(-2x).

In summary, the auxiliary equation is 4r² + 3r - 10 = 0. The roots of the auxiliary equation are r₁ = 5/4 and r₂ = -2. The complementary function is y_c = C₁e^(5/4x) + C₂e^(-2x).

Learn more about quadratic formula here:

https://brainly.com/question/22364785

#SPJ11

A study of fourteen nations revealed that personal gun ownership was high in nations with high homicide rates. The study concluded that gun owners are more likely to commit homicide. The conclusions of this study are an example of: A.Cohort effect B.Causal inference C.Selection bias D.Measurement bias E.Ecologic fallacy

Answers

A study of fourteen nations revealed that personal gun ownership was high in nations with high homicide rates. The study concluded that gun owners are more likely to commit homicide. The conclusions of this study are an example of:  "Ecologic fallacy" (Option E).

The ecologic fallacy occurs when conclusions about individuals are drawn based on group-level data or associations. In this case, the study observed a correlation between personal gun ownership and high homicide rates at the national level. However, it does not provide direct evidence or establish a causal link between individual gun owners and their likelihood to commit homicide. It is possible that other factors, such as social, economic, or cultural differences among the nations, contribute to both high gun ownership and high homicide rates.

To make a causal inference about gun owners being more likely to commit homicide, individual-level data and a more rigorous study design would be needed to establish a direct relationship between personal gun ownership and individual behavior.

Learn more about   rates from

https://brainly.com/question/119866

#SPJ11

Projectile Motion Problem Formula: s(t)=−4⋅9t2+v0t+s0 Where t is the number of seconds after the object is projected, v0 is the initial velocity and s0 is the initial height in metersof the object. Question: A rocket is fired upward. At the end of the burn it has an upwatd velocity of 147 m/sec and is 588 m high. a) After how many seconds will it reach it maximum height? b) What is the maximum height it will reach? After how many seconds will it reach it maximum height? sec What is the maximum height it will reach ? meters After how many seconds, to the nearest tenth, will the projectile hit the ground? 50c

Answers

It will take approximately 15 seconds for the rocket to reach its maximum height.

The maximum height the rocket will reach is approximately 2278.5 meters.

The projectile will hit the ground after approximately 50 seconds.

To find the time at which the rocket reaches its maximum height, we can use the fact that at the maximum height, the vertical velocity is zero. We are given that the upward velocity at the end of the burn is 147 m/s. As the rocket goes up, the velocity decreases due to gravity until it reaches zero at the maximum height.

Given:

Initial velocity, v0 = 147 m/s

Initial height, s0 = 588 m

Acceleration due to gravity, g = -9.8 m/s² (negative because it acts downward)

(a) To find the time at which the rocket reaches its maximum height, we can use the formula for vertical velocity:

v(t) = v0 + gt

At the maximum height, v(t) = 0. Plugging in the values, we have:

0 = 147 - 9.8t

Solving for t, we get:

9.8t = 147

t = 147 / 9.8

t ≈ 15 seconds

(b) To find the maximum height, we can substitute the time t = 15 seconds into the formula for vertical displacement:

s(t) = -4.9t² + v0t + s0

s(15) = -4.9(15)² + 147(15) + 588

s(15) = -4.9(225) + 2205 + 588

s(15) = -1102.5 + 2793 + 588

s(15) = 2278.5 meters

To find the time it takes for the projectile to hit the ground, we can set the vertical displacement s(t) to zero and solve for t:

0 = -4.9t² + 147t + 588

Using the quadratic formula, we can solve for t. The solutions will give us the times at which the rocket is at ground level.

t ≈ 50 seconds (rounded to the nearest tenth)

Know more about velocity here:

https://brainly.com/question/18084516

#SPJ11

For the real-valued functions \( f(x)=\sqrt{3 x+21} \) and \( g(x)=x-4 \), find the composition \( f \) a \( g \) and specify its domain using interval notation. \[ (f \circ g)(x)= \] Domain of \( f *

Answers

\((f \circ g)(x) = \√{3x + 9}\)

The domain of \( f \circ g \) is the set of all real numbers \( x \) such that \( x \geq -3 \), expressed in interval notation as \((-3, \infty)\).

To find the composition \( f \circ g \), we substitute the function \( g(x) \) into the function \( f(x) \) and simplify:

\((f \circ g)(x) = f(g(x)) = f(x - 4) = \√{3(x - 4) + 21} = \√{3x - 12 + 21} = \√{3x + 9}\).

The domain of the composition \( f \circ g \) is determined by the domain of \( g \) such that the expression \( g(x) \) lies within the domain of \( f \). Let's determine the domain of \( g(x) \) first.

The function \( g(x) = x - 4 \) can take any real value for \( x \) since there are no restrictions or limitations. Therefore, the domain of \( g \) is the set of all real numbers, which can be expressed in interval notation as \((- \infty, \infty)\).

Now, we need to consider the domain of \( f \) in relation to the range of \( g \). The expression \( g(x) = x - 4 \) will yield real values for any \( x \) in the domain of \( f \) as long as \( 3x + 9 \geq 0 \). Solving this inequality:

\(3x + 9 \geq 0\)

\(3x \geq -9\)

\(x \geq -3\).

Therefore, the domain of \( f \circ g \) is the set of all real numbers \( x \) such that \( x \geq -3 \), expressed in interval notation as \((-3, \infty)\).

In summary:

\((f \circ g)(x) = \√{3x + 9}\)

Domain of \( f \circ g \): \((-3, \infty)\)

Learn more about domain here:

https://brainly.com/question/28599653

#SPJ11

Anders discovered an old pay statement from 14 years ago. His monthly salary at the time was $3,300 versus his current salary of $6,320 per month At what (equivalent) compound annual rate has his salary grown during the period? (Do not round intermediate calculations and round your final percentage answer to 2 decimal places.) His salary grew at a rate of % compounded annually

Answers

The required solution is as follows. The salary grew at a rate of 5.23% compounded annually.

Given that Anders discovered an old pay statement from 14 years ago. His monthly salary at the time was $3,300 versus his current salary of $6,320 per month.

We need to find what equivalent compound annual rate has his salary grown during the period?

We can solve this problem using the compound interest formula which is given by,A = P(1 + r/n)ntWhere, A = final amount, P = principal, r = annual interest rate, t = time in years, and n = number of compounding periods per year.Let us assume that the compound annual rate of his salary growth is "r".

Initial Salary, P = $3300Final Salary, A = $6320Time, t = 14 yearsn = 1 (as it is compounded annually) By substituting the given values in the formula we get,A = P(1 + r/n)nt6320 = 3300(1 + r/1)14r/1 = (6320/3300)^(1/14) - 1r = 5.23%

Therefore, Anders' salary grew at a rate of 5.23% compounded annually during the period.

Hence, the required solution is as follows.The salary grew at a rate of 5.23% compounded annually.

To know more about salary grew visit:

brainly.com/question/28828696

#SPJ11

In a circle of diameter 16, find the area of a sector whose central angle is 135° A. 24T B. 8T C. 4320 D. 96T E. NO correct choices

Answers

The area of a sector in a circle can be found using the formula [tex]\(A = \frac{{\theta}}{360^\circ} \pi r^2\)[/tex], where [tex]\(\theta\)[/tex] is the central angle and [tex]\(r\)[/tex] is the radius of the circle. In this case, the diameter of the circle is 16, so the radius is 8. The central angle is given as 135°. We need to substitute these values into the formula to find the area of the sector.

The formula for the area of a sector is [tex]\(A = \frac{{\theta}}{360^\circ} \pi r^2\)[/tex].

Given that the diameter is 16, the radius is half of that, so [tex]\(r = 8\)[/tex].

The central angle is 135°.

Substituting these values into the formula, we have [tex]\(A = \frac{{135}}{360} \pi (8)^2\)[/tex].

Simplifying, we get \(A = \frac{{3}{8} \pi \times 64\).

Calculating further, [tex]\(A = 24\pi\)[/tex].

Therefore, the area of the sector is 24π, which corresponds to option A.

Learn more about diameter here:

https://brainly.com/question/32968193

#SPJ11

Other Questions
During the period of economic recovery between 1983 and 1987 , the main challenge for the Bank of Canada was to a. Stabilize the exchange rate between the U.S. and Canadian dollars. b. decrease the money supply to dampen inflationary expectations. c. increase the money supply so that only a mild form of inflation would reappear. d. accommodate the recovery, and the associated growth in money demand, without increasing the money supply so much as to refuel inflation. e. stabilize the unemployment rate. 8. The suitable length of working time per day depends on: A. type and intense of work B. the way works is organized within social customs (2 Points) a.B b.A c.Bothd. None 19. to fit equipment and tasks to a persons of various body sizes, requires A: anthropometric data B: proper design procedure (2 Points)a. A and B, but B is optional information b.B c.A d.Both Using R studio to answering the questionA medical researcher is investigating whether vitamin C helps to cure the common cold. He takes a sample of 20 subjects, of whom 7 are given vitamin C and 13 a placebo (a "placebo" is a dummy pill tha Steam enters a diffuster steadily at a pressure of 400 psia and a temperature of Tdiffuser = 500.0 F. The velocity of the steam at the inlet is Veldiffuser 80.0 ft s = and the mass flow rate is 5 lbm/s. What is the inlet area of the diffuser? ANS: 11.57in^2 Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10MPa and 5008C and is cooled in the condenser at a pressure of 10kPa. Sketch the cycle on a T-s diagram with respect to saturation lines, and determine: (a) the quality of the steam at the turbine exit, (b) the thermal efficiency of the cycle, (c) the mass flow rate of the steam. (d) Repeat Prob. (a)-(c) assuming an isentropic efficiency of 85 percent for both the turbine and the pump. Given \( f(x)=-x+2 \) and \( g(x)=2 x^{2}-3 x \), determine an explicit equation for each composite function, then state its domain and range. a) \( f(g(x)) \) b) \( g(f(x)) \) c) \( f(f(x)) \) d) \( 2. Consider a silicon JFET having an n-channel region of donor concentration 1x10 cm. (a) Determine the width of the n-channel region for a pinch-off voltage of 12 V. (b) What would the necessary drain voltage (VD) be if the gate voltage is -9 V? (c) Assume the width of the n-channel region to be 40 m. If no gate voltage is applied, what is the minimum necessary drain voltage for pinch-off to occur? (d) Assume a rectangular n-channel of length 1 mm. What would be the magnitude of the electric field in the channel for case (c) above? When torsion subjected to long shaft, we can noticeable elastic twist. Equilibrium of a body requires both a balance of forces and balance of moments. Thermal stress is a change in temperature can cause a body to change its dimensions. Beams are classified to four types. If the beam is supported at only one end and in such a manner that the axis of the beam cannot rotate at that point. 1-:-A A drug is used to inhibit the production of gametes (sex cells). This drug acts by stopping sister chromatids from separating during meiosis.What step of meiosis is this drug targeting?a. Prophase Ib. Prophase IIc. Metaphase Id. Anaphase IIe. Anaphase I Energetics [20] a) Graphically illustrate the influence of body mass on total metabolic rate of mammals (graph axes should be appropriately labelled). State the exponential equation that describes the relationship you have drawn? Explain the use of allometric scaling relationships and how can they be used to infer adaptation? [8] + b) Discuss the selective pressurer (climato ar Question 50 1 pts The amount of infecting agent received by susceptible individuals is called the infectious: 1. number. 2. dose. 3. exposure. 4. level. 3 04 01 02 Previous Next O Atom Transfer Radical Polymerization (ATRP) is a versatile and robust free radical polymerization process employed for the preparation of polymers with controlled number average molecular weights, narrow molecular weight distributions and regiospecific introduction of the functional groups. (a) Briefly discuss the key features of the Atom Transfer Radical Polymerization method. (b) (c) (d) (e) Formulate a detailed mechanism for the Atom Transfer Radical Polymerization process. Using the ATRP method, briefly outline reaction pathways for the preparation of the following polymers. (1) poly(p-bromostyrene) poly(2-hydroxyethyl methacrylate) (iii) a-carboxyl functionalized polystyrene (iv) w-amine functionalized poly(methyl methacrylate) What is a thermoresponsive polymer? Outline a reaction pathway for the preparation of poly(N-isopropylacrylamide) by ATRP methods. 31 What is macromer or macromonomer? Briefly outline the reaction pathway for the preparation of poly(styrene-g-poly(methyl methacrylate) by ATRP methods. (35) Course: Power Generation and ControlPlease ASAP I will like and rate your work.if we impose a transmission line limit of 500 MW on line 1-3, a new constraint should be added as 500 MW = (Base Power)*(01-03)/X13- Select one: O True O False Suppose that in a market, supply is perfectly elastic whiledemand is perfectly inelastic. If the government imposes a tax of$10 per unitGroup of answer choicesthe price buyers pay is unaffected by Question [3] (a) Explain why rubber is effective in providing good mountings for delicate instruments etc. (6) (b) A delicate instrument with a mass of 1.2kg is mounted onto a vibrating plate using rubber mounts with a total stiffness of 3kN/m and a damping coefficient of 200Ns/m. (1) If the plate begins vibrating and the frequency is increased from zero to 650Hz. Sketch a graph of the amplitude of vibrations of the instrument versus the plate frequency highlighting any significant features. (5) (ii) Indicate on the graph what the effect of changing the rubber mounts with equivalent steel springs of similar stiffness would have on the response. (2) (c) Determine the maximum amplitude of vibrations of the instrument when the plate is vibrated with an amplitude of 10mm. (4) (d) Determine the maximum velocity and acceleration of the instrument (3) (e) Describe in detail 3 ways of reducing the amplitude of vibrations of the instrument (5) A velocity compounded impulse turbine has two rows of moving blades with a row of fixed blades between them. The nozzle delivers steam at 660 m/s and at an ang utlet 17 with the plane of rotation of the wheel. The first row of moving blades has an outlet angle of 18 and the second row has an outlet angle of 36. The row of fixed blades has an outlet angle of 22. The mean radius of the blade wheel is 155 mm and it rotates at 4 000 r/min. The steam flow rate is 80 kg/min and its velocity is reduced by 10% over all the blades.Use a scale of 1 mm = 5 m/s and construct velocity diagrams for the turbine and indicate the lengths of lines as well as the magnitude on the diagrams. Determine the following from the velocity diagrams:The axial thrust on the shaft in N The total force applied on the blades in the direction of the wheel in NThe power developed by the turbine in kW The blading efficiency The average blade velocity in m/s How is the structure of the lamprey's gills adapted to their function? Give at least 3 exemples, please. In Koppersmith v. State (1999), Gregory Koppersmith was charged with murder. He was convicted of reckless manslaughter and sentenced to 20 years in prison.3. Is it possible to argue that Koppersmith knowingly or even purposely killed his wife? What facts, if any, support these two states of mind? An ice maker operating at steady state makes ice from liquid water at 32oF. Assume that 144 Btu/lb of energy must be removed by heat transfer to freeze water at 32oF and that the surroundings are at 78oF.The ice maker consumes 1.4 kW of power. Determine the maximum rate that ice can be produced, in lb/h, and the corresponding rate of heat rejection to the surroundings, in Btu/h.6.A:The maximum rate of cooling depends on whether the ice maker:Option A: operates reversibly.Option B: uses the proper cycle.Option C: uses the correct refrigerant.Option D: operates at constant temperature.The energy rate balance for steady state operation of the ice maker reduces to:Option A:Option B:Option C:Option D:Determine the maximum theoretical rate that ice can be produced, in lb/h.Option A: 521Option B: 0.104Option C: 23.1Option D: 355Determine the rate of heat rejection to the surroundings, in Btu/h, for the case of maximum theoretical ice production.Option A: 8102Option B: 4.63x104Option C: 5.59x104Option D: 16.4 ABC Inc. has $100 in cash on its balance at the end of 2009. During 2010, the firm issued $450 in common stock, reduced its notes payable by $40, purchased fixed assets in the amount of $750 and had cash flows from operating activities of $340. How much cash did ABC Inc. have on its balance sheet at the end of 2010?