The table above gives values of f, f’, g, and g’ at selected values of x. If h(x) = f(g(x)), then h’(1) =
A composite function combines two or more functions.
The value of h'(1) is 5
The given parameter is:
[tex]\mathbf{h(x) = f(g(x)}}[/tex]
Take inverse of both sides
[tex]\mathbf{h'(x) = f'(g(x)}}[/tex]
Substitute 1 for x
[tex]\mathbf{h'(1) = f'(g(1))}}[/tex]
From the table, we have:
[tex]\mathbf{g(1) = -1}[/tex]
So, the equation becomes
[tex]\mathbf{h'(1) = f'(-1)}}[/tex]
From the table, we have:
[tex]\mathbf{f'(-1) =5}[/tex]
So, the equation becomes
[tex]\mathbf{h'(1) = 5}[/tex]
Hence, the value of h'(1) is 5
Read more about composite functions at:
https://brainly.com/question/18839694
which best describes the use of a literary device in line 4